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Pre-read of the lecture
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● Multiscale modeling of drug mechanism and safety, Drug Discovery Today 
(2020)

● An introduction to machine learning, Clinical Pharmacology & Therapeutics 
(2020)

● Causal inference in drug discovery and development, arXiv, 2022

Pre-read, not shown

https://www.sciencedirect.com/science/article/pii/S1359644619304684
https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/cpt.1796
https://arxiv.org/abs/2209.14664
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Computational biology transforms drug 
discovery and development
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Three types of computational models

Mechanistic models Causal modelsStatistical and 
machine-learning models

y ~ f(x)



A mechanistic model: physiologically based 
pharmacokinetic modeling

Jones and Rowland-Yeo, 2013

Generalization
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No mechanistic models are available for 
huge amount of data
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Statistical models identify hidden patterns 
and discover correlations
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Statistical models and prior knowledge can 
give rise to mechanistic/causal models

Zhang et al., The Pharmacogenomics Journal (2014) 9

https://www.nature.com/articles/tpj201339


Machine learning expands and enhances 
statistical models

10Badillo et al., Clinical Pharmacology & Therapeutics (2020)

https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/cpt.1796


Correlation is caused by causation or confounding

Statistical models alone cannot derive causality from correlation 11



We learn causality by (1) listing models explicitly and 
(2) manipulating a variable and observe the outcomes

Assume that the data is generated by either 
Model 1, or Model 2, or Model 3. And assume 
that we can manipulate the value of X by 
setting it to 1.0 (the dash line).
Question: which outcomes (red stars or blue 
crosses) would support which models? Why?

Model 1

Model 2

Model 3
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Causality is crucial for drug discovery

The descendant

?

?

?

?

We need both models (knowledge + assumptions) and data to infer causality.

Biomarker, tox study, pathology, 
omics data, real-world data, EHR, ...
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Molecular modeling Omics & cellular modeling Organ & system modeling Populational modeling
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Forward translation

Reverse translation



Computational biologists work with 
experimentalists to empower drug discovery

Patient
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Conclusions

– Computational biologists in drug discovery build and use 
mechanistic, causal, and statistical/machine-learning models.

– Model and data offer insights into disease biology, as well as into 
pharmacology and safety profiles of drug candidates.

– We experiment with a multiscale-modeling approach to drug 
discovery by integrating data and models at molecular, cellular, 
organ and system, and population levels.
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Interested in learning more about 
quantitative aspects of drug discovery?

● Fall Semesters: Applied Mathematics and Informatics In 
Drug Discovery (AMIDD): an introductory course.

○ See more information at http://AMIDD.ch.

● Spring Semesters: Mathematical and Computational 
Biology in Drug Discovery (MCBDD), an advanced course.

○ See more information at http://MCBDD.ch.
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http://amidd.ch/
http://mcbdd.ch/


Doing now what patients need next
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Backup material



Prediction for 
independent 
and  identically 
distributed 
samples

Prediction 
under 
changing 
distributions 
or 
intervention

Answer 
counterfactual 
questions

Obtain 
physical 
insight

Learn from 
data 
(data-driven 
discovery)

Mechanistic 
models yes yes yes yes maybe

Causal models yes yes maybe maybe maybe

Statistical models yes no no no yes

Types of computational models
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Target identification and mechanism & safety 
understanding benefits from single-cell biology 
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www.evocell-itn.eu; Macaulay & Voet, PLoS Genetics 2014
21

http://www.evocell-itn.eu/
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004126
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Disease understanding: 
disease-specific cell types 
and states

Single-cell biology fuels drug discovery

Target identification: 
expression pattern in 
health and disease across 
cell types

MoA and safety 
modeling: perturbation 
effect at single-cell level

Biomarker and patient 
stratification: which 
genes should we measure 
in which cell type(s)?
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Single-cell sequencing (scSeq) workflow
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Overview of the computational workflow

Andrews et al. Nature Protocols 2021

https://doi.org/10.1038/s41596-020-00409-w


Data loading Preprocessing Clustering Visualization Analysis

From FAIR format Quality Control
Filtering, 

Normalization

Dimensionality 
reduction

Cell type 
characterisation

An automatized standard workflow

Clustering

UMAP

Open-source BESCA (BEDA’s single cell analysis)

https://github.com/bedapub/besca
Maedler et al., NAR Genomics and Bioinformatics, 2021
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https://github.com/bedapub/besca
https://academic.oup.com/nargab/article/3/4/lqab102/6423167


Doing now what patients need next


