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System thinking, interdisciplinary research, and
quantitative science are critical to drug discovery

Target identification & assessment
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Cost of target selection and modality selection?
Invisibly high
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Target identification: much unknown, lack of diversity, and
support by genetic evidence is hardly discernible until Phase I/l
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the Impact of Genetic Evidence on Clinical Success. Nature 629 (8012): 624-29. 4
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Novel drugs approved by the FDA’s Center for Drug
Evaluation and Research (CDER) in 2024

m Small molecules: molecular Oligonucleotides
Approvals by modality

weight (MW) less than 1000
Daltons.

RNA
aptamer — —siRNA

Antisense

m Oligonucleotides: MW between 5
and 30 kDa (5000-30000 Da),
negatively changed

o siRNA: small interfering RNA

Proteins Small molecules

m Proteins: MW ~150 kDa i - ‘ i 8
o mAb: monoclonal antibody PR ‘
o Bispecific: antibodies that e
bind simultaneously to two
antigens or two epitopes of isisacifio 3 4 =
the same antigen.

Source: Asher Mullard, Nature Reviews Drug Discovery, 2024. The list can be found on FDA’s website



https://www.nature.com/articles/d41573-024-00001-x
https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2023

Modality selection: many choices, modality-specific challenges,
and often implicit rationales
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ths Number of pipeline products Number of pipeline products Delta
Cattgoly Mccalies by phase (2023) by phase (2024) )
mAb 2,487 2,700 +9
Antibodies ADC 582 +16
BsAb 231 +29
Proteins and
peptides Recombinant _ 2,097 +3
Cell therapies 1,030 +5
CAR-T +14
Cell Stem cells +5
therapies TCRT +14
CAR-NK +11
TiLs 1 +57
Gene Gene augmentation 766 +9
therapies Gene editing 136 +7
DNA and RNA therapies 442 +13
Nucleic :
acids RNAi 236 -2
mRNA 129 +37
185 -3
52 +40
33 +15

W Marketed

M Pre-clinical M Clinical

Sources: Evaluate Pharma; BCG analysis.

Notes: ADC = antibody-drug conjugate; BsAb = bispecific antibody; CAR-NK = chimeric antigen receptor-transduced natural killer cell;
CAR-T = chimeric antigen receptor T cell; mAb = monoclonal antibody; PROTAC = proteolysis-targeting chimera; TCRT = T-cell receptor therapy;
TIL = tumor-infiltrating lymphocyte.

Left: various publications. Right: Chen, et al., New Drug Modalities 2024 6
Boston Consulting Group.


https://www.bcg.com/publications/2024/new-drug-modalities-report

Moore’s versus Eroom’s Law
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New drugs per Sbillion

R&D (log scale)
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FDA tightens regulations
post thalidomide

FDA clears backlog following
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Data come from Scannell, etl al. (2012) Diagnosing the decline in
pharmaceutical R&D efficiency. Nature Reviews Drug Discovery, and personal
communication. Figure by Richard Jones and James Wilsdon



https://physicsworld.com/a/moores-law-further-progress-will-push-hard-on-the-boundaries-of-physics-and-economics/
https://semiconductor.substack.com/p/the-relentless-pursuit-of-moores
https://media.nesta.org.uk/documents/The_Biomedical_Bubble_v6.pdf

Lack of efficacy and insufficient risk-benefit profiles are
main reasons of failure in Phase Il/lll trials

We hypothesize that challenges
In target and modality selection
contribute to many
efficacy/safety failures, and
dwindling productivity overall.

B Commercial M Safety

- Efﬁcacy - Strategy Harrison, Richard K. 2016. “Phase Il and Phase Il Failures: 2013—-2015.” Nature Reviews
- Operational Drug Discovery 15 (November):817-18. https://doi.org/10.1038/nrd.2016.184.




Covalent drugs have gained renewed interests
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https://www.nature.com/articles/s41573-022-00542-z

Ibrutinib, a first-in-class inhibitor of BTK (Bruton's Tyrosine
Kinase)

lbrutinib T | The ATP-binding pocket:
Approval AbbVie (2013) ' g A highly conserved region within
the kinase domain.

Cysteine residue (Cys481):

Binding type Irreversible covalent binding

Binding site C481, ATP-binding domain

Warhead Acrylamide
Half-life ~4-6 hours = Located adjacent to the
ndication CLL, MCL, M2L. WM. GVHD. ATP-binding pocket

= Cys481 is a relatively unique
cysteine, enabling selective
covalent inhibition.

420 mg, qd (CLL/SLL, WM);

Dosage 560 mg, qd (MCL, MZL)

Administration  Oral

o=l Y Upstream kinases
s Q (e.g., LYN or SYK) @
o ADP ADP
W ‘
B; - — Fully activated
Ibrutinib bind to Block ATP Phosphorylation by Conformational BTK
Cys481 adjacent to the binding upstream kinase change ©)
ATP-binding pocket .
Inactivated BTK Y551 Y223
bind ATP Phosphorylation Autophosphorylation

Nature Reviews Drug Discovery 21, 881-898 (2022). Courtesy of Marcus Bantscheff 10



Does it matke sense to develop

covalent drugs for any target?

If not, which targets should be
covalently targeted?



Importance of protein turnover

Turnover visualized, repurposing the lilac tracer
demonstrating Troxler’s effect (Jeremy Hinton, CC-BY 3.0)



https://en.wikipedia.org/wiki/File:Lilac-Chaser.gif

Protein turnover is critical for drug discovery & development

m Protein turnover affects efficacy, ’ Keyn
. — Tatal abundance=
potency, ADME properties, and safety > deg _
profiles of drug candidates. s

m Protein turnover is essential for target 5 ew protein
prioritization and modality selection, for §
instance covalent binders and/or 2 Qld protein
targeted protein degraders. * ":42)

m Understanding protein turnover helps to  Time[AU] N
translate pharmacokinetic and Assumptions: zero-order synthesis (rate ksyn),
pharmacodynamic (PK/PD) relationships ~ first-order degradation (rate k. ), and steady
between systems. state (i.e. no expression changes).

This and following figures, as long as not otherwise indicated, come from Zhang et al. (2025, in revision). Source codes and figures are distributed with GPL-3 license. 13



https://github.com/Accio/2025-03-protein-turnover-review

Quantifying protein turnover and long-living proteins
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Protein half-life in vitro ranges between hours and days
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Protein half-life in vivo ranges between days and years

10.7 days (medi " s
All categorized proteins (N = 1266) | s (nece) B G Table 1| Known long-lived proteins and molecules
Nucleic acid-binding proteins (N = 62) . ®
g,ﬁis,mes EN E 10)) i Protein or molecule* Age* Measure Organism
DNA remodelling and transcriptional regulators (N=11) { - e
Nuclear importins and exportins (N = 10) J Eye lens crystallin >70 years Lifetime Human
RNA processing and translation regulators (N = 14) 4 o
LRANA sy o5 (N - 16) ] Collagen 117 years Half-life Human
Protein synthesis (N =7) 4 : Y
Endoplasmic reticulum components (N = 57) Elastin >78 YEors Lifetime Human
Chaperonee a"dchza‘ z“‘(’fk b (’(VN= 213 1 Enamel and dentine >70years Lifetime Human
a2+ binding proteins (N = 6)
Ca2+ channels (N =5) 1 Histones 223 days Half-life Mouse
Ca2-+/calmodulin-dependent protein kinase (N = 5) 4
Cell adhesion molecules (N=11) 4 117 days Half-life Mouse
Cytoskeletal proteins (N = 117) 4
Kinases (N = 56) - 218 days Half-life Rat
Phosphatases and respective regulators (N = 107) S e
GTPases and respective regulators (N = 41) - Nuclear pore proteins >1 month Lifetime Worm
Small GTPases and related proteins (N = 35) - I
Carrier vesicles (VPS and sorting nexins, N = 15) 4 >1year Lifetime Rat
Membrane trafficking proteins (N = 21) -
Molecular motors (N = 26) z T
SNAREs (N = 10) 4 Myelin 95 days Half-life Rat
Endocytic proteins (N = 16) =
Clathrin endocytosis apparatus (N = 17) { >100 days Half-life Mouse
E t (N=10) 4 - S - 5
Lipid binding p,ff,’;y:s E Ne 13)) ] Myelin proteolipid protein  >100 days Half-life Mouse
Ribosome (N = 62) A
Protein modification and degradation pathway (N = 25) REC8 Weeks Lifetime Mouse
Ubiquitrr patiiway (N-=21) - mRNA Possibly indefinite Lifetime Plant seed
Proteasome (N = 30)
Scaffolding and adaptor proteins (N =29) 4 A
T Sl diaris (=2 | >2 years Half-life Frog oocyte
Extracellular matrix Comﬁ;’“ﬁms( I(VN:1 Zg 1 Cholesterol >18 months Lifetime Rabbit
yelin (N= )
Synapse (N = 104) Phospholipids >192 days Lifetime Rabbit
Mitochondrial proteins (N = 228)
) » > ® & & Toyama, Brandon H., and Martin W. Hetzer. “Protein Homeostasis: Live Long, Won't
Data from Fornasiero et al., 2018, mouse ESme Prosper.” Nature Reviews Molecular Cell Biology, 2013 16
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https://doi.org/10.1038/nrm3496
https://doi.org/10.1038/nrm3496

Half-life varies between proteins and contexts: influencing
factors and an example

S Protein intrinsic factors
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*f"Ce”éyrp;’ggsnsue’ ) Disease " Metabolic status Advances, 2022
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https://www.nature.com/articles/s41467-018-06519-0
https://www.science.org/doi/10.1126/sciadv.abn4437

MAO B turnover (t1/2, days)

Nothing in Biology Makes Sense Except in the Light of
Evolution: the purpose and ubiquity of turnover
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Left: Gabrielsson, J., and S. Hjorth. 2023. “Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance.” Pharmacological Reviews 75 (3):
416-62. https://doi.org/10.1124/pharmrev.121.000524. Right: Reddien, Peter W. 2024. “The Purpose and Ubiquity of Turnover.” Cell 187 (11): 2657-81.
https://doi.org/10.1016/j.cell.2024.04.034. Quote: Theodosius Dobzhansky
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Open models integrate protein turnover into
pharmacological modeling

According to open models (see
the comprehensive review by
Gabrielsson and Hjorth), target
turnover impacts in vivo potency,
efficacy, and clearance.
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Roche’s Protein Turnover Database integrates external and

internal data

The table shows the protein half-life
datasets that David curated for the
turnover database. The curation
contains following steps:

1. The data were curated from
individual studies.

2. Features (uniprot IDs, protein
groups, etc.) were harmonized
and mapped to genes of the
respective genome as well as to
human orthologues.

3. Units of measurements were
harmonized to hours.

4. Sample annotations are
harmonized.

Doerrbaum-2018
Fornasiero-2018
Mathieson-2018-human
Mathieson-2018-mouse
Arike-2020

Li-2021
Morgenstern-2021
Rolfs-2021
Kluever-2022
Chen-2023
Harasimov-2024

Lothar-H4

organism
rat
mouse
human
mouse
mouse
human
human
mouse
mouse
mouse
mouse

human

Roche Protein Turnover Database

Dataset overview (v202407)

assay_type celltype_or_tissue

in vitro

in vivo

in vitro

in vitro

in vivo

in vitro

in vitro

in vivo

in vivo

in vivo

in vivo

in vitro

Primary hippocampal cultures

Brain cortex, Brain cerebellum, Heart, Muscle

NK cells, Hepatocytes, Monocytes, B cells

Neurons

Duodenum, Middle jujunum, lleum, Proximal colon, Distal colon

U20S cells, HEK293T cells, HCT116 cells, RPE1 cells

Hela cells, Huh7 cells

Cartilage, Skeletal muscle, Mucosa, Liver, Blood

Brain cortex, Brain cerebellum
Lung, Heart, Brain
Ovary

H4 cells



We observe in general longer half-life in vivo than in vitro,

with variations between cell/tissue types

Right: density plot of protein
half-life, stratified by assay

type (in vitro versus in vivo) 4
and by cell type or tissue. ?
Most in vivo studies tendto S
report longer half-life than ,

at least some in vitro
studies, though
considerable variability is 0
observed in both categories.

1h
h

C

c

rated_celltype or_tissue

NK cells

Huh7 cells
Primary hippocampal cultures
Hela cells

B cells
Hepatocytes
Monocytes
Neurons

H4 cells
HCT116 cells
RPEL1 cells
U20S cells
HEK293T cells
Skeletal muscle
Brain cerebellum

Brain cortex
Ovary

Brain

Muscle

Heart
Cartilage
Mucosa

Distal colon
Proximal colon
lleum

Middle jujunum
Duodenum
Liver

Lung

Blood
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A survey of half-life of covalent binder targets

Median half-life of targets of covalent binders [hours]

We curated 371

covalent binders which

are either in clinical
development or

approved, targeting a
total of 26 human and

/ viral or bacterial
proteins.

The table summarizes

half-life data for 24
human proteins.

Turnover data of KRAS

is visualized with
boxplots.

EGFR

ERBB2

BTK

KRAS

PSMB5

ERBB4

MAOB

P2RY12

PSMB1

ABAT

ATP4A

FGFR4

HBA1

HMGCR

JAK1

JAK2

JAK3

PSMB10

PSMB2

PSMB8

PSMB9

PTGS1

PTGS2

TYK2

unique_drugs

8

4

3

3

in vitro

35.0

17.8

79.2

843

109.7

111.8

194.8

129.9

185.0

NA

7.7

119.2

10.6

12.5

57.0

104

160.7

133.3

119.8

203.2

667.6

8.2

in vivo

64.9

NA

NA

124.6

2126

70.2

272.6

167.3

163.9

433.6

136.8

NA

NA

5648.8

89.1

NA

NA

46.9

197.5

128.5

266.1

145.1

NA

NA

Mathieson-2018-mouse (neurons) *

Mathieson-2018-human (NK cells) [ ]

Mathieson-2018-human (monocytes) [ ]

Specimen type

Mathieson-2018-human (hepatocytes) *

Mathieson-2018-human (B cells) *

Lothar-H4 (H4) °

Doerrbaum-2018 (primary hippocampal cultures, neuron-enriched cultures) ]

Doerrbaum-2018 (primary hippocampal cultures, mixed cultures) u

Doerrbaum-2018 (primary hippocampal cultures, glia-enriched cultures) |

Rolfs-2021 (Mucosa, vocal fold)

Rolfs-2021 (Liver)

Rolfs-2021 (Cartilage, thyroid)

Kluever-2022 (21m_Ctx_SF)

Kluever-2022 (21m_Cer_SF)

Harasimov-2024 (Ovary)

Fornasiero-2018 (cerebellum synaptosomes control)
Fornasiero-2018 (cerebellum synapt. vesicle control)
Fornasiero-2018 (brain cortex synaptosomes control)
Fornasiero-2018 (brain cortex synapt. vesicle control)
Chen-2023 (lung)

Chen-2023 (brain)

Arike-2020 (proximal colon epithelial cells)
Arike-2020 (middle jejunum epithelial cells)
Arike-2020 (ileum epithelial cells)

Arike-2020 (duodenum epithelial cells)

Arike-2020 (distal colon mucus)

Arike-2020 (distal colon epithelial cells)

1 10

1 10 100 1000 10000

organism
® human
A mouse
m rat

e 233N >y
>t>>>bf;l’

100 1000 10000
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Targets of covalent binders have comparable half-life with
targets of non-covalent binders, yet short-living proteins
are less targeted by the covalent approach

The violin plot compares the half-life of
targets of covalent binders (N=24) with 1

the half-life of targets of non-covalent 7 e M N
molecules for which a high potency or ‘é‘g %ﬁﬁ ’9 IOV:;ZE o
functional inhibition (pACT>=8, N=788). o EE
Targets of covalent binders and those 01

of non-covalent drugs have in general

comparable half-lifes. However,

covalent drug targets are devoid of
shortest-living proteins. dataset
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Protein half-life can be integrated into PK/PD models

Example: target degradation PK/PD model of covalent binding by Andrés Olivares

Modelling and simulation suggests that
the PD effect of target degradation by a

—
o
o

covalent binder is sensitive to target’s 2 S
.. . arge

turnover. Long-living proteins are more § 75 ha|fg_|ife h]
likely to become successful targets for ‘g" - —_ 1
covalent inhibitors. a — 10

L 100

> 25 — 1000
Bayer colleagues also reported that K

o

half-life is a key parameter affecting the
predictions of mechanistic PD models for o }?fne [;f]so 0 =0
targeted protein degraders.
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https://rsconnect-pred.roche.com/covalent-sim/
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.3273

Further points for consideration

1.

Open Models and the importance of protein turnover does not only affect covalent
binders: they are applicable to reversible and irreversible drug-target interactions,
as well as to all protein targeting modalities including small molecules, large
molecules (for instance antibodies), and PROTACs.

a. By taking consideration of the dynamics of RNAs, the Open Models can be
extended to RNA-targeting modalities as well as gene therapies.

Protein turnover does not only affect drug’s potency and duration of response in
vivo: turnover of enzymes and transporters also affects metabolism and transport.

Looking forward, we believe open models, together with experimental data and/or
predictions based on modeling and simulation and machine learning/generative
models, can help us rationally select modalities. Many experiments are on-going or

being planned. We look forward to collaborations.
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Protein turnover is one slice of our work in drug discovery

Nk =

Roche’s research projects and collaborations

Disease model characterization and validation

Phenotypic drug discovery

Preclinical assay development

New experimental and computational tools for clinical drug candidate selection
Predicting and translating pharmacology and safety profiles between systems
Method and software development

Analysis of attritions in drug discovery and development

Selected references:

© N WD =

Van der Vries et al, 2015; Zaidan et al., 2020; Gatti et al., 2022;

Grabole et al., 2016; Reich et al., 2021; Bosch et al. 2024

Moisan et al.,2015; Roudnicky et al., 2020; Wang et al., 2023; Rodriguez-lglesias, 2024

Zhang et al, 2015; Moisan et al., 2017; Jaklin et al, 2020; Jaklin et al., 2022; Riiegger et al. 2025

Zhang et al., 2014; Boess et al, 2017; Mueller et al., 2018; Chen et al.,2022; Klughammer et al., 2023

Zhang et al., 2025 (in revision)

Zhang et al., 2017; Choobdar et al, 2019; Sturm et al., 2019; Madler et al., 2021; Crouzet, et al. 2024; Rot et al., 2024
L.
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Doing now what patients need next



Overview of the dataset and the tasks

We share with you seven curated datasets, which are summarized in the table below.

Together the dataset contains about 100,000 triplets of mouse proteins, samples, and protein
half-life data. We share 99% of the data with you. About 1% of the data was held back.

Your tasks: (1) performing analysis to explore
the dataset, and (2) building models to
predict the held-back test data. Fornasiero-2018

The held-back test data will be shared with Mathieson-2018-

mouse

you on Thursday. Each team is expected to
make a 15-minute presentation about their A0

methods, achievements, and learnings on Rolfs-2021
Friday afternoon. Kluever-2022
Chen-2023

Harasimov-2024

organism

mouse

mouse

mouse

mouse
mouse
mouse

mouse

PMDA Summer School 2024

Dataset overview

assay_type celltype_or_tissue

in vivo

in vitro

in vivo

in vivo

in vivo

in vivo

in vivo

Brain cortex, Brain cerebellum, Heart, Muscle
Neurons

Duodenum, Middle jujunum, lleum, Proximal colon, Distal
colon

Cartilage, Skeletal muscle, Mucosa, Liver, Blood
Brain cortex, Brain cerebellum
Lung, Heart, Brain
Ovary
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Organisers, Guests, and Agenda

Jannick
Lippuner

Niklas
Trapp

Nina
Lareida

Flavia
Spielvogel

Jitao David
/Zhang

Chih-Hsuan
Hsin

Monday Tuesday Wednesday Thursday Friday
(5th of August) (6th of August) (7th of August) (8th of August) (9th of August)
8:30 -10:00
Introduction Group Work Group Work Group Work Group Work
10:00 - 10:30 Snack
10:30 -13:00
Introduction
(continued) Group Work Group Work Group Work Group Work
13:00 - 14:00
Lunch Break
14:00 - 17:00 14:00 - 16:00
Group Work Group Work | Team
Presentation
16:00 - 16:30 15:00 - 15:45
Tune out Talk by Ercan
Group Work Group Work Suekuer
16:30 - 18:00 15:45 - 16:30 16:00 - 16:30
Roche Tour Talk by Tune out
Chih-hsuan
Hsin
17:00 - 17:30 S ineTol Tune out 16:30-17:00 16:30-17:30
Tune out Apero

Wednesday from 18:30 on: Social Dinner @ Don Camillo
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Impressions




Scientific outcome: a summary

Three teams came up with distinctive analysis and predictive models.
A large range of machine-learning models were used, from linear regression,
random forest, to protein language models.

m Theteams explored also the biology of protein turnover, using available information
as input for machine-learning models.

m  Most models performed similar to the baseline ANOVA model, however more
in-depth analysis is needed. Some features fit our previous knowledge (e.g.
mitochondrial proteins tend to have longer half-lifes), while some features are
interesting (e.g. methionine content seems to be correlated with half-life).
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“As I settle back into my lab, [ already
miss the inspirational atmosphere from
our tune-out meetings. The dedicated
group work and the exchange with other
students were incredibly motivating.”

Except from the follow-up email of a participant
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