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Oneness of Target and Modality 
Selection in Drug Discovery
How system thinking may improve R&D productivity in Pharma



Adapted from Paul et al. “How to Improve R&D Productivity: The Pharmaceutical Industry’s 
Grand Challenge.” Nature Reviews Drug Discovery, 2010.

System thinking, interdisciplinary research, and 
quantitative science are critical to drug discovery 

Target identification & assessment
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● Compound and dose selection based on 
absorption, distribution, metabolism, excretion, 
and toxicity (ADMET), pharmacokinetics (PK), and 
pharmacodynamics (PD) profiles

● Mechanism of action (MoA) study
● Biomarker identification

● Target identification, 
assessment, and validation

● Modality selection
● Target Product Profile design

● In vitro-in vivo and 
animal-human translation

● Mechanistic understanding of 
clinical findings

● Informing future projects 
with successes and failures



Cost of target selection and modality selection? 
Invisibly high
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Total≅5%

Total≅12.5y

$ in the unit of Millions
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Target identification: much unknown, lack of diversity, and 
support by genetic evidence is hardly discernible until Phase II/III

References: Oprea, et al. 2018. Unexplored Therapeutic Opportunities in the Human Genome. Nature Reviews Drug Discovery 17 (February):317–32.; Minikel, et al. 2024. Refining 
the Impact of Genetic Evidence on Clinical Success. Nature 629 (8012): 624–29.

Left: Tclin proteins are linked to >=1 approved drug. Tchem proteins bind to small molecules. Tbio have well-defined biological functions. 
GPCR: G-protein coupled receptors. Right: RS=Relative Success. Pre: preclinical development. Numbers: launched target-indication 
(T-I) pairs (numerator), and genetically supported T-I pairs (denominator).

https://doi.org/10.1038/nrd.2018.14
https://doi.org/10.1038/s41586-024-07316-0
https://doi.org/10.1038/s41586-024-07316-0
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Novel drugs approved by the FDA’s Center for Drug 
Evaluation and Research (CDER) in 2024

■ Small molecules: molecular 
weight (MW) less than 1000 
Daltons.

■ Oligonucleotides: MW between 5 
and 30 kDa (5000-30000 Da), 
negatively changed
○ siRNA: small interfering RNA

■ Proteins: MW ~150 kDa
○ mAb: monoclonal antibody
○ Bispecific: antibodies that 

bind simultaneously to two 
antigens or two epitopes of 
the same antigen.

Source: Asher Mullard, Nature Reviews Drug Discovery, 2024. The list can be found on FDA’s website

https://www.nature.com/articles/d41573-024-00001-x
https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2023


6

Modality selection: many choices, modality-specific challenges, 
and often implicit rationales

Monoclonal 
antibodies

Antisense 
oligonucleotides

Bispecific 
antibodies

Irreversible 
covalent 
enzyme 
inhibitors

Reversible
small-molecule
enzyme
inhibitors

PROteolysis 
TArgeting 
Chimera 
(PROTAC)

MacroCyclic
Peptides
(MCP)

Small-
molecule 
splicing 
modifier

Left: various publications. Right: Chen, et al., New Drug Modalities 2024, 
Boston Consulting Group.

Linear
peptides

https://www.bcg.com/publications/2024/new-drug-modalities-report


Moore’s versus Eroom’s Law

Adapted from graphs by Hannah Ritchie and Max Roser and by Jim Keller
Data come from Scannell, etl al. (2012) Diagnosing the decline in 
pharmaceutical R&D efficiency. Nature Reviews Drug Discovery, and personal 
communication. Figure by Richard Jones and James Wilsdon

https://physicsworld.com/a/moores-law-further-progress-will-push-hard-on-the-boundaries-of-physics-and-economics/
https://semiconductor.substack.com/p/the-relentless-pursuit-of-moores
https://media.nesta.org.uk/documents/The_Biomedical_Bubble_v6.pdf


Lack of efficacy and insufficient risk-benefit profiles are 
main reasons of failure in Phase II/III trials

We hypothesize that challenges 
in target and modality selection 
contribute to many 
efficacy/safety failures, and 
dwindling productivity overall.

Harrison, Richard K. 2016. “Phase II and Phase III Failures: 2013–2015.” Nature Reviews 
Drug Discovery 15 (November):817–18. https://doi.org/10.1038/nrd.2016.184.
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Covalent drugs have gained renewed interests

2023

Nature Reviews Drug Discovery, 21, 881–898 (2022)

Ritlecitinib

Warhead

2024

Lazertinib

https://www.nature.com/articles/s41573-022-00542-z
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Ibrutinib, a first-in-class inhibitor of BTK (Bruton's Tyrosine 
Kinase)

Ibrutinib

Approval AbbVie (2013)

Binding type Irreversible covalent binding

Binding site C481, ATP-binding domain

Warhead Acrylamide

Half-life ~4-6 hours

Indication CLL, MCL, MZL, WM, GVHD, 
BN

Dosage 420 mg, qd (CLL/SLL, WM); 
560 mg, qd (MCL, MZL)

Administration Oral

The ATP-binding pocket:
▪ A highly conserved region within 

the kinase domain.
Cysteine residue (Cys481):
▪ Located adjacent to the 

ATP-binding pocket
▪ Cys481 is a relatively unique 

cysteine, enabling selective 
covalent inhibition.

Nature Reviews Drug Discovery 21, 881–898 (2022). Courtesy of Marcus Bantscheff
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Does it make sense to develop 
covalent drugs for any target?
If not, which targets should be 

covalently targeted?
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Importance of protein turnover

Turnover visualized, repurposing the lilac tracer 
demonstrating Troxler’s effect (Jeremy Hinton, CC-BY 3.0)

https://en.wikipedia.org/wiki/File:Lilac-Chaser.gif
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■ Protein turnover affects efficacy, 
potency, ADME properties, and safety 
profiles of drug candidates.

■ Protein turnover is essential for target 
prioritization and modality selection, for 
instance covalent binders and/or 
targeted protein degraders.

■ Understanding protein turnover helps to 
translate pharmacokinetic and 
pharmacodynamic (PK/PD) relationships 
between systems.

Protein turnover is critical for drug discovery & development

Assumptions: zero-order synthesis (rate ksyn), 
first-order degradation (rate kdeg), and steady 
state (i.e. no expression changes).

This and following figures, as long as not otherwise indicated, come from Zhang et al. (2025, in revision). Source codes and figures are distributed with GPL-3 license.

https://github.com/Accio/2025-03-protein-turnover-review
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Quantifying protein turnover and long-living proteins

L- and D-Asp racemization Radio isotope pulse-labelling Stable isotope with amino 
acids in cell culture (SILAC) 

and mass spectrometry (MS)

Western 
blotting 

following 
cycloheximide

(CHX) 
treatment

Source:  various publications. 
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Protein half-life in vitro ranges between hours and days

Data from 
primary human B 
cells (Mathieson 
et al., 2018) Data from primary hippocampal neuronal cells from rat 

(Dörrbaum et al., 2020)

Data from a human non-small cell lung cancer cell line 
(Eden et al., 2011)
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Protein half-life in vivo ranges between days and years

Data from Fornasiero et al., 2018, mouse 
brain 

Toyama, Brandon H., and Martin W. Hetzer. “Protein Homeostasis: Live Long, Won’t 
Prosper.” Nature Reviews Molecular Cell Biology, 2013

https://doi.org/10.1038/nrm3496
https://doi.org/10.1038/nrm3496
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Half-life varies between proteins and contexts: influencing 
factors and an example

Condition Half-life of 
protein X

Source

Human 
neurons in vitro

38.6h Roche in-house 
data

Mouse neurons 
in vitro

34.1h 
(standard 
error:3.9h)

Fornasiero et al., 
Nature 
Communications, 
2018

Mouse cortex in 
vivo

619.2h, or 
25.8d

Kluever et al., 
Science 
Advances, 2022

https://www.nature.com/articles/s41467-018-06519-0
https://www.science.org/doi/10.1126/sciadv.abn4437
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Nothing in Biology Makes Sense Except in the Light of 
Evolution: the purpose and ubiquity of turnover

Left: Gabrielsson, J., and S. Hjorth. 2023. “Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance.” Pharmacological Reviews 75 (3): 
416–62. https://doi.org/10.1124/pharmrev.121.000524. Right: Reddien, Peter W. 2024. “The Purpose and Ubiquity of Turnover.” Cell 187 (11): 2657–81. 
https://doi.org/10.1016/j.cell.2024.04.034. Quote: Theodosius Dobzhansky

https://doi.org/10.1124/pharmrev.121.000524
https://doi.org/10.1016/j.cell.2024.04.034
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Open models integrate protein turnover into 
pharmacological modeling

According to open models (see 
the comprehensive review by 
Gabrielsson and Hjorth), target 
turnover impacts in vivo potency, 
efficacy, and clearance.

https://doi.org/10.1124/pharmrev.121.000524
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Predictions by open models

A. Higher target synthesis rate increases efficacy 
while potency remains unchanged.

B. Higher degradation rate decreases both 
efficacy and potency.

C. Keeping the steady-state abundance fixed, 
increasing both synthesis & degradation rates 
increase both efficacy and potency.

D. Higher ligand-target complex elimination rate 
reduces efficacy while increases potency.

E. Potency of covalent inhibitors is dictated by 
kdeg/kon: slow turnover and fast on-rate are 
preferred.

Highlighted in blue: particularly relevant for covalent binders
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Roche’s Protein Turnover Database integrates external and 
internal data

The table shows the protein half-life 
datasets that David curated for the 
turnover database. The curation 
contains following steps:

1. The data were curated from 
individual studies.

2. Features (uniprot IDs, protein 
groups, etc.) were harmonized 
and mapped to genes of the 
respective genome as well as to 
human orthologues.

3. Units of measurements were 
harmonized to hours.

4. Sample annotations are 
harmonized.
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We observe in general longer half-life in vivo than in vitro, 
with variations between cell/tissue types

Right: density plot of protein 
half-life, stratified by assay 
type (in vitro versus in vivo) 
and by cell type or tissue.

Most in vivo studies tend to 
report longer half-life than 
at least some in vitro 
studies, though 
considerable variability is 
observed in both categories.
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We curated 31 
covalent binders which 
are either in clinical 
development or 
approved, targeting a 
total of 26 human and 
7 viral or bacterial 
proteins.
The table summarizes 
half-life data for 24 
human proteins. 
Turnover data of KRAS 
is visualized with 
boxplots.

A survey of half-life of covalent binder targets
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Targets of covalent binders have comparable half-life with 
targets of non-covalent binders, yet short-living proteins 
are less targeted by the covalent approach

The violin plot compares the half-life of 
targets of covalent binders (N=24) with 
the half-life of targets of non-covalent 
molecules for which a high potency or 
functional inhibition (pACT>=8, N=788). 
Targets of covalent binders and those 
of non-covalent drugs have in general 
comparable half-lifes. However, 
covalent drug targets are devoid of 
shortest-living proteins.
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Protein half-life can be integrated into PK/PD models
Example: target degradation PK/PD model of covalent binding by Andrés Olivares

Modelling and simulation suggests that 
the PD effect of target degradation by a 
covalent binder is sensitive to target’s 
turnover. Long-living proteins are more 
likely to become successful targets for 
covalent inhibitors.

Bayer colleagues also reported that 
half-life is a key parameter affecting the 
predictions of mechanistic PD models for 
targeted protein degraders.

https://rsconnect-pred.roche.com/covalent-sim/
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.3273
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Further points for consideration

1. Open Models and the importance of protein turnover does not only affect covalent 
binders: they are applicable to reversible and irreversible drug-target interactions, 
as well as to all protein targeting modalities including small molecules, large 
molecules (for instance antibodies), and PROTACs.

a. By taking consideration of the dynamics of RNAs, the Open Models can be 
extended to RNA-targeting modalities as well as gene therapies.

2. Protein turnover does not only affect drug’s potency and duration of response  in 
vivo: turnover of enzymes and transporters also affects metabolism and transport.

3. Looking forward, we believe open models, together with experimental data and/or 
predictions based on modeling and simulation and machine learning/generative 
models, can help us rationally select modalities. Many experiments are on-going or 
being planned. We look forward to collaborations.
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Protein turnover is one slice of our work in drug discovery
1. Roche’s research projects and collaborations
2. Disease model characterization and validation
3. Phenotypic drug discovery
4. Preclinical assay development
5. New experimental and computational tools for clinical drug candidate selection
6. Predicting and translating pharmacology and safety profiles between systems
7. Method and software development
8. Analysis of attritions in drug discovery and development 

Selected references:
1. Van der Vries et al, 2015; Zaidan et al., 2020; Gatti et al., 2022;
2. Grabole et al., 2016; Reich et al., 2021; Bosch et al. 2024
3. Moisan et al.,2015; Roudnicky et al., 2020;  Wang et al., 2023; Rodriguez-Iglesias, 2024
4. Zhang et al, 2015; Moisan et al., 2017; Jaklin et al, 2020; Jaklin et al., 2022; Rüegger et al. 2025
5. Zhang et al., 2014; Boess et al, 2017; Mueller et al., 2018; Chen et al.,2022; Klughammer et al., 2023
6. Zhang et al., 2025 (in revision)
7. Zhang et al., 2017; Choobdar et al, 2019; Sturm et al., 2019; Mädler et al., 2021; Crouzet, et al. 2024; Rot et al., 2024
8. Zhang et al. (in preparation)
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Predicting Protein Half-life for 
Drug Discovery
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Doing now what patients need next
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Overview of the dataset and the tasks

Your tasks: (1) performing analysis to explore 
the dataset, and (2) building models to 
predict the held-back test data. 
The held-back test data will be shared with 
you on Thursday. Each team is expected to 
make a 15-minute presentation about their 
methods, achievements, and learnings on 
Friday afternoon.

We share with you seven curated datasets, which are summarized in the table below.

Together the dataset contains about 100,000 triplets of mouse proteins, samples, and protein 
half-life data. We share 99% of the data with you. About 1% of the data was held back.
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Organisers, Guests, and Agenda

Wednesday from 18:30 on: Social Dinner @ Don CamilloJitao David 
Zhang

Jannick
Lippuner

Nina
Lareida

Niklas 
Trapp

Flavia 
Spielvogel

Ercan
Sükür

Chih-Hsuan 
Hsin
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Impressions
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Scientific outcome: a summary

■ Three teams came up with distinctive analysis and predictive models.
■ A large range of machine-learning models were used, from linear regression, 

random forest, to protein language models. 
■ The teams explored also the biology of protein turnover, using available information 

as input for machine-learning models.
■ Most models performed similar to the baseline ANOVA model, however more 

in-depth analysis is needed. Some features fit our previous knowledge (e.g. 
mitochondrial proteins tend to have longer half-lifes), while some features are 
interesting (e.g. methionine content seems to be correlated with half-life).
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“As I settle back into my lab, I already 
miss the inspirational atmosphere from 
our tune-out meetings. The dedicated 
group work and the exchange with other 
students were incredibly motivating.”

Except from the follow-up email of a participant
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Doing now what patients need next


