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Covalent Drugs on the Market

Long standing history of successful drugs o™ X

with breakthrough therapeutic benefit s
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https://www.nature.com/articles/s41573-022-00542-z

Aims of this presentation

PART 1-NEIL Roche)

7

Share how PK/PD modelling contributed to the

selection and development of a covalent inhibitor

Share how in vitro data, in vivo animal data and
physiologically based PK and PD modelling were

used to predict a human dose

PART

2-DAVID

Highlight the importance of target turnover

Share efforts to build and apply target turnover

data



How can PK PD modelling help ?

Questions to be addressed Complexities to be balanced

- E+l—— El —E.I*
How do biochemical readouts of inhibition compare to | Kinact

cellular measures?
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How do in vitro measures translate to in vivo?
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How does target inhibition in vivo relate to efficacy?
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IC50 depends on incubation time

e [CH50is time dependent

e Timeindependent parameters are more complex to measure
o  Conc. for V2 maximal inactivation (Ki)
o st-order inactivation rate constant (kinact)

e Measurement of kinact/Kl require more resource

e However these parameters are related and correlated which

can be useful for lead optimization

In(2) x (1 +S/Ku)

IC50(t) — £ X Kinar /K

A. Thorarensen et al., Bioorg. Med. Chem. 29 (2021) 115865.

1000

100

IC50 (nM)

10

0.01 0.1 1 10 100 1000
Dose

200 400 600
Time of incubation (minutes)

a plot of IC50(t) vs. 1/(kinact/Ki) is
linear with slope affected by [S] and t.



Human dose prediction - Roche Case Study
Early estimation of time dependent inhibition with biochemical assay

Initial estimates of inactivation rate

Enzyme activity measured using an ATP-dependent
fluorescence-based assay employing recombinant enzyme
and a fluorogenic substrate

Used in initial simulations. Combining with estimated target
half-life to explore PK requirements for sustained inhibition
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PK/PD modeling is needed to translate in vitro to to in vivo
Allows consideration of time dependent parameters (KI, kinact), together with target turnover
estimates and in vivo pharmacokinetics

Dose (mgkg):
0
ar [ |

Molecular Weight (MW, g/Mol)

Target abundace (mg)

Free fraction (%)

Volume of central compartment (V1, Likg):
2]
— S

Volume of peripheral compartment (V2, Ukg)
0
e ' 1 |

Intercompartmental clearance (Q, mUmin/kg):
0
o

Protein half life (h)

Absorption rate constant (ka, 1/hr)

0
— - 1

Elimination clearance (CL, mUmin/kg):
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l,

Inactivation rate constant (k_inact, 1/min)

T | 1 |

Dosing interval (hours)
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— g

Number of doses:
0
e 1

Shiny app. developed by Andres Olivares



Human dose prediction - Roche Case Study
Refining inhibition parameters and linking to in vivo efficacy in mouse

cellular in vitro inhibition assay In vivo efficacy
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Human dose prediction - Roche Case Study

Confirming target inhibition in vivo

Plasma Concentration (ng/mL)

PKPD study in
xenograft mouse

30mgkg PK data
10mgkg PK data
3mgkg PK data
1mgkg PK data

Fraction Active Enzyme

Fraction Active Enzyme

Verification of simulated target
inhibition with measurements
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Human PK and Target Inhibition Prediction - Roche Case Study
PBPK prediction of human PK and exploration of inhibition at different doses

1000
100

10

Plasma Concentration (ng/mL)
Fraction of active enzyme

T
0 24 48 72 0 2
Time (h) Time (hrs
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Value for support of Phase 1 and Early Clinical Development

o Model parameter sensitivity analysis leveraged to explore the impact of
uncertainties on dose and dosing regimens
o Target engagement achieved with a different tumor penetration
o @.d.vsb.i.d. dosing
o Rapidly update PK model with first clinical PK
o Accounting for time and dose dependencies
o PKand project to steady state with modelling
o Develop and verify more mechanistic QSP modeling approaches linking TE to
tumor killing
o Transition from PBPK/PD to PopPK/PD considering variability

11



Summary of PK/PD modelling

e Important to understand target inhibition early to guide optimization

e Essential to take account of time dependent inhibition, target turnover, and feedback on target expression
e Understand PK requirements and likely clinical dose range

e Simulation is needed to combine these complexities

e As project advances model input data is refined and model simulations verified vs cellular and in vivo data
e Simulations can guide dose estimation for clinical candidate and explore uncertainties

e Model refined with first clinical data and applied to further guide clinical development

Acknowledgements to the pre-clinical and clinical modelling team & experimental experts:

Stephen Fowler, Matthias Wittwer, Christophe Meille, Gustavo Guerrero, Paul Grimsey, Mattia Berton, Matteo

Berti,Piergiorgio Pettazzoni, Jasmin Emmenegger, Dominik Heer
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Importance of protein turnover

Turnover visualized, repurposing the lilac tracer
demonstrating Troxler’s effect (Jeremy Hinton, CC-BY 3.0)



https://en.wikipedia.org/wiki/File:Lilac-Chaser.gif

Protein turnover is critical for drug discovery & development

m Protein turnover affects efficacy, / ”
potency, ADME properties, and safety = Total abundance= -
profiles of drug candidates. =

m Protein turnover is essential for target % ew protein
prioritization and modality selection, for §
instance covalent binders and/or é Ol s
targeted protein degraders. o . )

2= Ko ~ -
m Understanding protein turnover helps to T Time[AU]

translate pharmacokinetic and
pharmacodynamic (PK/PD) relationships
between systems.

Assumptions: zero-order synthesis (rate ksyn),
first-order degradation (rate k deg), and steady
state (i.e. no expression changes).
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Half-life varies between proteins and contexts: influencing
factors and an example

S Protein intrinsic factors
< Folding  n Condition Half-life of Source
e Tl PE—— protein X
( Sequence : > |7~ Subcellular
S T ) Aggregation I jogalization
.| < R Human 38.6h Roche in-house
(_ Structure )|/ Post-translational |||~ Interaction . S .
—— 1~ |'modifications (PTMs) |||~ partners - T neurons in vitro data
71 \ SR - Technology
e y .
- — ouse neurons | 34.1h Fornasiero et al.,
Protein  __Stochastic . . -
| — tumover . “factors | N vitro (standard Nature
\ o - | \ - Physiological context error:3.9h) Communications,
/ Cells in vitro, | Age ||| Drug treatment 2018
cellsinvivo, | ——— — R
or‘e)r(wlr'reilcie/u ar?/| Sex ) |[T Environment > Species Mouse cortex in | 619.2h, or Klqever etal.,
- - - SRR Vivo 25.8d Science
*f"Ce”éyrp;’ggsnsue’ ) Disease " Metabolic status Advances, 2022
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https://www.nature.com/articles/s41467-018-06519-0
https://www.science.org/doi/10.1126/sciadv.abn4437

Open models integrate protein turnover into
pharmacological modeling

According to open models (see
the comprehensive review by
Gabrielsson and Hjorth), target
turnover impacts in vivo potency,
efficacy, and clearance.
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>
w

T kdeg o Emax 3 l pECSO

Predictions by open models
Highlighted in blue: particularly relevant for covalent binders
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Roche’s Protein Turnover Database integrates external and

internal data

The table shows the protein half-life
datasets that David curated for the
turnover database. The curation
contains following steps:

1. The data were curated from
individual studies.

2. Features (uniprot IDs, protein
groups, etc.) were harmonized
and mapped to genes of the
respective genome as well as to
human orthologues.

3. Units of measurements were
harmonized to hours.

4. Sample annotations are
harmonized.

Doerrbaum-2018
Fornasiero-2018
Mathieson-2018-human
Mathieson-2018-mouse
Arike-2020

Li-2021
Morgenstern-2021
Rolfs-2021
Kluever-2022
Chen-2023
Harasimov-2024

Lothar-H4

organism
rat
mouse
human
mouse
mouse
human
human
mouse
mouse
mouse
mouse

human

Roche Protein Turnover Database

Dataset overview (v202407)

assay_type celltype_or_tissue

in vitro

in vivo

in vitro

in vitro

in vivo

in vitro

in vitro

in vivo

in vivo

in vivo

in vivo

in vitro

Primary hippocampal cultures

Brain cortex, Brain cerebellum, Heart, Muscle

NK cells, Hepatocytes, Monocytes, B cells

Neurons

Duodenum, Middle jujunum, lleum, Proximal colon, Distal colon

U20S cells, HEK293T cells, HCT116 cells, RPE1 cells

Hela cells, Huh7 cells

Cartilage, Skeletal muscle, Mucosa, Liver, Blood

Brain cortex, Brain cerebellum
Lung, Heart, Brain
Ovary

H4 cells



We observe in general longer half-life in vivo than in vitro,

with variations between cell/tissue types

Right: density plot of protein
half-life, stratified by assay

type (in vitro versus in vivo) 4
and by cell type or tissue. ?
Most in vivo studies tendto S
report longer half-life than ,

at least some in vitro
studies, though
considerable variability is 0
observed in both categories.

1h
h

C

c

rated_celltype or_tissue

NK cells

Huh7 cells
Primary hippocampal cultures
Hela cells

B cells
Hepatocytes
Monocytes
Neurons

H4 cells
HCT116 cells
RPEL1 cells
U20S cells
HEK293T cells
Skeletal muscle
Brain cerebellum

Brain cortex
Ovary

Brain

Muscle

Heart
Cartilage
Mucosa

Distal colon
Proximal colon
lleum

Middle jujunum
Duodenum
Liver

Lung

Blood

19



A survey of half-life of covalent binder targets

Median half-life of targets of covalent binders [hours]

We curated 371

covalent binders which

are either in clinical
development or

approved, targeting a
total of 26 human and

/ viral or bacterial
proteins.

The table summarizes

half-life data for 24
human proteins.

Turnover data of KRAS

is visualized with
boxplots.

EGFR

ERBB2

BTK

KRAS

PSMB5

ERBB4

MAOB

P2RY12

PSMB1

ABAT

ATP4A

FGFR4

HBA1

HMGCR

JAK1

JAK2

JAK3

PSMB10

PSMB2

PSMB8

PSMB9

PTGS1

PTGS2

TYK2

unique_drugs

8

4

3

3

in vitro

35.0

17.8

79.2

843

109.7

111.8

194.8

129.9

185.0

NA

7.7

119.2

10.6

12.5

57.0

104

160.7

133.3

119.8

203.2

667.6

8.2

in vivo

64.9

NA

NA

124.6

2126

70.2

272.6

167.3

163.9

433.6

136.8

NA

NA

5648.8

89.1

NA

NA

46.9

197.5

128.5

266.1

145.1

NA

NA

Mathieson-2018-mouse (neurons) *

Mathieson-2018-human (NK cells) [ ]

Mathieson-2018-human (monocytes) [ ]

Specimen type

Mathieson-2018-human (hepatocytes) *

Mathieson-2018-human (B cells) *

Lothar-H4 (H4) °

Doerrbaum-2018 (primary hippocampal cultures, neuron-enriched cultures) ]

Doerrbaum-2018 (primary hippocampal cultures, mixed cultures) u

Doerrbaum-2018 (primary hippocampal cultures, glia-enriched cultures) |

Rolfs-2021 (Mucosa, vocal fold)

Rolfs-2021 (Liver)

Rolfs-2021 (Cartilage, thyroid)

Kluever-2022 (21m_Ctx_SF)

Kluever-2022 (21m_Cer_SF)

Harasimov-2024 (Ovary)

Fornasiero-2018 (cerebellum synaptosomes control)
Fornasiero-2018 (cerebellum synapt. vesicle control)
Fornasiero-2018 (brain cortex synaptosomes control)
Fornasiero-2018 (brain cortex synapt. vesicle control)
Chen-2023 (lung)

Chen-2023 (brain)

Arike-2020 (proximal colon epithelial cells)
Arike-2020 (middle jejunum epithelial cells)
Arike-2020 (ileum epithelial cells)

Arike-2020 (duodenum epithelial cells)

Arike-2020 (distal colon mucus)

Arike-2020 (distal colon epithelial cells)

1 10

1 10 100 1000 10000

organism
® human
A mouse
m rat

e 233N >y
>t>>>bf;l’

100 1000 10000
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Targets of covalent binders have comparable half-life with
targets of non-covalent binders, yet short-living proteins
are less targeted by the covalent approach

The violin plot compares the half-life of
targets of covalent binders (N=24) with 1

the half-life of targets of non-covalent 7 e M N
molecules for which a high potency or ‘é‘g %ﬁﬁ ’9 IOV:;ZE o
functional inhibition (pACT>=8, N=788). o EE
Targets of covalent binders and those 01

of non-covalent drugs have in general

comparable half-lifes. However,

covalent drug targets are devoid of
shortest-living proteins. dataset

Half-life [hours]
=
B 8

[

2018
Li-2021
Lothar-H4

Arike-2020
Chen-2023
ornasiero-2018
2024

2022

Rolfs-2021

Kluever-

on-2018-mouse
Morgenstern-2021

Doerrbaum-
on-2018-human

Mathies

Mathies
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Protein half-life can be integrated into PK/PD models

Example: target degradation PK/PD model of covalent binding by Andrés Olivares (mentioned before by Neil)

Modelling and simulation suggests that 100
the PD effect of target degradationbya & Target
covalent binder is sensitive to target’s g 75 half-life [h]
turnover. cé -1

2 50 .

2 — 10

L 100
Bayer colleagues also reported that S 25 — 1000
half-life is a key parameter affecting the @

o

predictions of mechanistic PD models for I — = o 1% o B
targeted protein degraders. Time [h]

Acknowledgement: Martin Ebeling, Kenichi Umehara, Holger Fischer, Roland Schmucki, Andrés Olivares,
Uwe Grether, Marcus Bantscheff, Miro Eigenmann, Bjorn Bartels, Joachim Rudolph, Lothar Lindemann, Sarah
Morillo Leonardo, Lizzie Gill and Arne Rufer
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https://rsconnect-pred.roche.com/covalent-sim/
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.3273

Summary & Conclusions

1. PK/PD modelling contributed to the selection and development of a covalent
inhibitor.

2. Invitro data, in vivo animal data and physiologically based PK and PD modelling
were used to predict a human dose.

5. Target protein turnover affects potency and efficacy of drugs.
4. Protein turnover varies among proteins and by physiological contexts.

5. Integrating parameters of protein turnover into PK/PD modelling bears the potential
to empower covalent drug discovery.
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