Applied Mathematics and Informatics In Drug Discovery

134 tonth	→ /:I.	25 0.3 ml	WAL	Pind	3/5	1-2	2 %	99%	15 32 454 th 32	
185 12 4 8 1:4	80H → [: 2	0.62	ч	ч	4/5	480		-4%	品化-次前 4/5代-12 花30	
186 185	→ /: I	0.39	.,	· ••	1/5	640 590 540 640	602 %	-30%	*6:*1:200ml	23
187-76 76 8 Bec + 14	→/:2	0.49	1,	47	2/5	330 340	357/2	22%	\$6 x 12 0.4 ml	
188 - 187	→ 1:1	0.259	"	4	%5	500 410 41, 420 370	⁶ 416 <u>%</u>	97.	\$6:24 0.5-1	4.12
189. Tats & Alc + 420		0.58 0.2 ml		1	0/5	480 400 22 420 600 22	⁸ 4267	7 %	\$6-x12 0.3 ml	161.20
190 ± 189	-> /:/2	0.318	a	*	0/5	550 260 290 600 400	420%	97.	#4 x 1/2 0.3 ml	191
191.青青 6000		0.89 0.2ml	۹	-1	4/5	0 (写/4 張浩)		100%	其你的5次. 3/5 3次, 155次的到	E.
192. 2191	->/:2	0.69 0.3ml	*1	•1	2/5	(1-2/4) 205 (1-2/4)	68 /00	857.	\$6 \$12 0 Amil 2/5 5 1 2 4 32	1JC
193 7 - 1:4	1410 pz.	1.29 0.3 ml			1/5	293 0 132 0	106%	77%	\$6x812 0.4ml 15 6x8 th 30	X
194 £193		0.88 3.2 ml	1		0/3	511 509 10	343/00	26%	\$6x 1/2 0.) m1	TH XX
195 土沃奈 1:10	H → 1:2.5	0.8758	ч	7	1/5	400 F60 \$60	455%	1.3%	45.6 × 1/2 0.4ml	14 BV
196. 2195	→ /:2.5	0.6219 0.25ml	4	•	%	58° 386 38° 395 520	452%	2%	第5次1203ml 第6次12035ml	A
197. 翰龙葵 1.8	-> 1:2	0.69	ч	и	2/5	450 480 490	473/~	-3%	\$6 x 1/2 0. Am 1 2/5 6 th th Bl.	
198 15/2 Bec 1=2		089 0.4ml	•	-	1/5	510 500	499%	-87.	1, 22 44	
199 2198		0.69	۳		0/1	560 620 500 4	5637	-227		

Copy of the original laboratory notebook record showing 100% inhibition of malaria parasites by the Qinghao neutral extract when tested on a rodent malaria model.

Artemisinin — A Gift from Traditional Chinese Medicine to the World, Youyou Tu, Nobel Lecture 2015.

Dr. Jitao David Zhang, Computational Biologist

¹ Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche ² Department of Mathematics and Informatics, University of Basel

This work is licensed at <u>AMIDD.ch</u> under a Creative Commons Attribution-ShareAlike 4.0 International License.

Contact the author

Disclaimer

 Teaching is my personal engagement. My opinions and views do not necessarily reflect those by F. Hoffmann-La Roche, my employer.

• Please be aware of my biases and limitations.

- I am neither a mathematician nor a computer scientist by training. I am a computational biologist working in drug discovery.
- I see my task is to share with you the mathematical concepts and computational approaches used in drug discovery that I find beautiful and useful.
- I look forward to learning from you mathematics and other expertise that I did not know.

- Now is the best time in human history to fight diseases
- Applied mathematics and informatics approaches are indispensable to modern drug discovery
- Applied mathematics and informatics will join interdisciplinary efforts to transform drug discovery in the coming decades

The history of *Homo sapiens* is a history of living with, understanding, and fighting diseases

Trypanosomes

Plasmodium

Tropical diseases

~500,000 years ago

A young patient of smallpox, the first eradicated infectious disease

Hygiene, vaccination, and antibiotics

~250 years ago

Chloral hydrate, the first synthesized drug

OH

Cl

OH

Pharmaceutical drugs

~150 years ago

Nobel prize laureates 2018, immune checkpoints, and drugs targeting the pathways

Personalized precise healthcare

~20 years ago

UNI BASEL

Now is the best time in human history to fight diseases

and imaging

UNI BASEL

How Do You Make A Drug?

It sounds simple, but...

Increasing cost and decreasing return of investment in drug discovery

Modified from Smietana *et al.* "Improving R&D Productivity." Nature Reviews Drug Discovery, 2015

Finding new drugs has become more challenging and expensive

U N I B A S E L

Danger + Opportunity

Introduction to Applied Mathematics and Informatics in Drug Discovery (*iAMIDD*)

A new course series at DMI, Uni Basel

- Introduction to drug discovery
- Bioinformatics and computational biology
 - Biological sequence analysis
 - Omics data analysis
 - Protein sequence and structure
- Cheminformatics and computer-aided drug design
 - Chemical structure representation and search
 - Molecular modelling
 - Molecular descriptors and QSAR

- Mathematical modelling
 - Principles and applications of modelling in pharmacology
 - Pharmacokinetics (PK) and pharmacodynamics (PD) modelling
 - Clinical pharmacology and pharmacometrics
- Statistics and machine learning
 - Emerging biomarkers: imaging and digital biomarker
 - Clinical trials
 - From real-world data to causal analysis and inference

It is hoped that iAMIDD builds a bridge between students and quantitative aspects of drug discovery

Applied mathematics empowers drug discovery by many ways

Applied mathematics *in drug discovery* is not a definable scientific field but a human attitude.

I am glad to share my expertise in drug discovery, and to learn from you!

Course information

- Lecturer: Jitao David Zhang
 - jitao-david.zhang@unibas.ch (Email)
- Website: amidd.ch
- Thirteen lectures this semester
 - Introduction to drug discovery (1 session)
 - Molecular level modelling (2 sessions)
 - Omics- and cellular level modelling (2 sessions)
 - Organ- and system-level modelling (1.5 sessions)
 - Populational level modelling (1.5 sessions)
 - Case studies (1 session)
 - Invited guest speakers (2 sessions)
 - Dies Academicus
 - Near-end-term presentations (2 sessions)

- Fridays 12:15–14:00, two sessions of \sim 45 min each.
- No exercise hour yet; pre-reading and post-reading articles, as well as videos, are shared and recommended.
- We focus on interdisciplinary research with mathematics as the language and informatics as the tool.
- Both slides and board are used. Slides and notes are shared.
- The final note is given by participation (20%), presentation (30%), and an oral examination (50%).
- The oral examination will be about concepts that we learned together, and about explaining mathematical concepts (or concepts in your domain of experts) to a layman.
- Questions?

Questions on the video on Herceptin by Susan Desmond-Hellmann

- 1. What is the indication of *Herceptin*? What is its generic (USAN, or United States Adopted Name) name?
- 2. What is the **gene target** of Herceptin?
- 3. In which year was the target of Herceptin described? When was Herceptin approved?
- 4. What was the improvement of Herceptin compared with earlier antibodies?
- 5. Why does a **biomarker** matter besides developing drugs?
- 6. In the clinical trial of *Herceptin* for **metastatic breast cancer**, how much improvement in the **median survival** did Herceptin achieve? And how much improvement is in the **adjuvant setting** (Herceptin applied directly after operation)?

Questions for further thinking

- Susan Desmond-Hellmann summarizes great drug development in four key concepts: (1) Having a deep understanding of the basic science and the characteristics of the drug. (2) Target the right patients. (3) Set a high bar in the clinic. (4) Work effectively with key regulatory decision markers. Where do you think mathematics and informatics play a crucial role?
- She emphasized the importance of collaboration. What skillsets do we need for that?
- How do you like her presentation? Anything that you can learn from her about presentation and story telling?

Please introduce yourself!

- Name?
- Background?
- Which part of mathematics (or other background) are you mostly interested in? Why?
- What do you want to take away from this course?

Questions on the package insert info

- 1. What is the **indication** of *ZYRTEC*? What is its generic name?
- 2. What is the gene target of ZYRTEC?
- 3. How much time does ZYRTEC reaches **maximum concentration** following oral administration?
- 4. How long do normal vonlunteers have to **wait** until the skin wheal and flare caused by the intradermal injection of histamine is inhibited after taking 10mg ZYRTEC?
- 5. What types of **adverse reactions** are observed in volunteers taking ZYRTEC?
- 6. Is there a **biomarker** for ZYRTEC?

Questions for further thinking

• What are the commonalities between Herceptin and Zyrtec, and what are the differences?

Acknowledgements

F. Hoffmann-La Roche Ltd							
Clemens Broger ⁺	Faye Drawnel						
Martin Ebeling	Markus Britschgi						
Manfred Kansy	Roland Schmucki						
Fabian Birzele	Martin Stahl						
Kurt Amrein	Isabelle Wells						
Annie Moisan	Lu Gao						
Luca Piali	Lue Dai						
John Young	Ravi Jagasia						
Lisa Sach-Peltason	Marco Prunotto						
Mark Burcin	John Moffat						
Christoph Patsch	Gang Mu						
Michael Reutlinger	Jianxun Jack Xie						
Matthias Nettekoven	Filip Roudnicky						
Andreas Dieckmann	Holger Fischer						
Klas Hatje	lakov Davydov						
Laura Badi	Ulrich Certa						
Tony Kam-Thong	Detlef Wolf						
Corinne Solier	Ken Wang						
Thomas Singer	Nikolaos Berntenis						

External to Roche

Jung Kyu Canci

Verdon Taylor

Maria Anisimova

Lorenzo Gatti

Erhard van der Vries

Ab Osterhaus

Nevan Krogan

Oliv Eidam

Summary and Q&A

BACKUP