AMIDD Lecture 7: Cellular and omics modelling
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Omics data are projections of high-
dimensional biological space. Itis an
inverse problem to infer a high-
dimensional space from its projections.
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Recapture of the previous lecture
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Drug-target interaction map whole-molecule similarity

Overview of molecular-level modelling techniques
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Drug-induced phospholipidosis is correlated with amphiphilicity

* Phospholipidosis is a lysosomal storage disorder N\
Cc

characterized by the excess accumulation of Catio"ic\
phospholipids in tissues. N
<€ Hydrophobi
* Drug-induced phospholipidosis is caused by

cationic amphiphilic drugs and some cationic
hydrophilic drugs. Perhexiline /

Lillmann et al., Drug Induced Phospholipidosis,

* Clinical pharmacokinetic characteristics of drug-  cy¢ Rev, Toxicol, 4, 185, 1975 Phospholipidosis,. FEBS Letters 580, Nr.
induced phospholipidosis include (1) very long 23 (2006): 5533-40.
terminal half lives, (2) high volumn of distribution,
(3) tissue accumulation upon frequent dosing, and - N
(4) deficit in drug metabolism. A — d . “i
L

A: Caculated amphiphilic moment
Fischer et al. (Chimia 2000) discovered that it is

possible to predict the amphiphilicity property of d: distance between the center of gravity of the charged part of a molecule
moment using a simple equation. a;: the hydrophobic/hydrophilic contribution of atom/fragment /

In silico calculation of amphiphilicity property may be used to predict phospholipidosis induction potential
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In silico Phospholipidosis prediction
Model Validation from 1999-2004
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e ®
= -124 _ . i e
g | in vitro/in silico m
g -14J Accuracy Sensitivity Specificity Precision
® [CTP+TN)/ [True Positive [True Negative [TP/(TP+FP)]
164 ® (P+N)] Rate] Rate]
® ® 86% 80% 90% 84%
5 6 7 8 9 0 M
Calculated Basic pK,
Plot of amphiphilicity (AAG ) versus calculated basic pK, for the training Fischer et al., J. Med. Chem, 55 (1), 2012

set of 24 compounds. The red area defines the region where a positive PLD
response is expected, and the green area defines where a negative
response is expected according to the tool.

We gained mechanistic insights of phospholipidosis induction by cationic amphiphilic drugs with the model



Phospholipidosis: lessons learned
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Cationic amphiphilic properties of a molecule is an early
marker for safety in drug discovery and early development.

.. .. . . . A B
- PhOSphOleldOSIS In dOSG range flndmg StUdleS 3D protein structure-based approaches Ligand-based approaches
- Cardiac ion channel interactions (hERG, natrium
(0}
channel, ...)

S NG

HN =z

— Receptor binding promiscuity

- P-gp inhibition
- Mitochondrial toxicity in case of safety relevant Molecular features * aatity -
findings, e.g. in dose range finding studies I QSAR
Extreme basic amphiphilic properties should be avoided D - Q!

because of a higher risk of PLD, QT-prolongation,
mitochondrial toxicity. However, basic compounds with
moderate amphiphilic properties are still a preferred

scaffold for many therapeutic areas (especially CNS). T e e Viatched molecular pars ang /e8I neural network

Drug-target interactio-n map whole-molecule similarity

Generally, some safety liabilities, despite complex

underlying biological and chemical mechanisms, can Overview of molecular-level modelling techniques
be predicted by molecular modelling well, sometimes

with surprisingly elegant models!



Topics

* Gene expression profiling: a case study of omics and cellular modelling
« Applications for drug safety: TG-GATEs

* Applications for drug mechanism: molecular phenotyping



Omics data are projections of high-dimensional biological space
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One challenge in drug discovery: non-clinical safety assessment

animal in vivo

human in vivo

 Limited /n vitro-in vivo and cross-
species translatability

* Conflict between black-box
prediction methods and the need
to understand the mode of action

human in vitro animal in vitro

We need better (and interpretable) tools to predict safety profiles of drug candidates




Principles of gene expression profiling
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Figures: Wikimedia Commons/Thomas Shafee, CC/Adapted
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TG-GATEs: Toxicogenomics Project-
Genomics Assisted Toxicity Evaluation system

Compounds

- Japanese Consortium 2002-2011

* National Institute of Biomedical Innovation, National Institute of Health Sciences, and 15
pharmaceutical companies, including Roche Chugai. >

- Data fully released in 2012 to the public: Time-series and dose-dependent experiments Cellular assays
using 170 bioactive compounds

» Invitro & in vivo gene expression profiling, each containing gene expression data of
about 20,000 genes > 1 2 O O O

» In vitro PicoGreen DNA quantification assay

Pathology records
* In vivo histopathology in liver and kidney

* In vivo clinical chemistry > 2 4 O O O
 Total raw data size >2 TB

Expression profiles

TG-GATEs is a valuable data source to study drug-induced toxicity in vitro and in vivo




We built a computational pipeline to identify early signatures of
toxicity

(a) Preprocessing and DEG analysis of
human primary hepatocyte data
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Expression

Time

We integrate unsupervised learning, regression analysis, and network modelling to reach the goal
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We built a computational pipeline to identify early signatures of

toxicity (without animation)

(a) Preprocessing and DEG analysis of
human primary hepatocyte data

(b) Classify samples by integrating differential

> expression with DNA quantification assay results

g £ :
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We integrate unsupervised learning, regression analysis, and network modelling to reach the goal

(c) Build
cytotoxicity matrices
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It is worth observing early

We found that early-response genes induced 2h after
compound administration are more generic (less specific) than
late-induced genes: they are more likely to be induced by
multiple compounds.

- We hypothesize that diverse signalling pathways «back-
converge» to a few early-response genes, which can be
toxicity signatures.
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Contrary to common wisdom (at the time), we argue that toxicogenomics should focus on early time points




The bow-tie structure of signalling networks as a model
that explains the power of early time point
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We hypothesize that signalling pathways that mediate toxicity «back-converge» to a few early-response genes



Compound-induced cytotoxicity can be classified into
three levels by molecular phenotypes

logFC

-2 0 2

Pico-Green fluorescence

e —— T R DNA quantification assay
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Unsupervised clustering identified groups of compounds associated with cytotoxicity




Cytotoxicity matrix and early signatures identified from progressive
profiles in vitro

Vitamin A nitrofurantoin

High —

RN a

L'

Low —

| | | | I I
2h  8h 24h 2h 8h 24h

For predictive signatures, we focused on
progressive cytotoxicity profiles (such as
the one in the red box) and identified
genes commonly regulated at 2h in such
profiles.

Unsupervised clustering allowed us to identify progressive cytotoxicity profiles




Expression patterns of early signatures in human

EGR1 GDF15 ATF3

LogFC compared to control

T T
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FGF21 IL8 TOB2

LogFC compared to control

T T T T T T T T T

T
oh 2h  8h  24h oh 2h  8h  24h oh 2h 8h 24h
Time Time Time

Genes which were consistently and significantly up- or down-regulated at 2h in progressive profiles were chosen as signatures
(llogFC|>0.25 & p<0.05). Purely data-driven: no biological knowledge was used for prioritization.

Each thin line represents one treatment, and the thick line represents the average.

Six early gene signatures of cytotoxicity were identified from human in vitro data
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A consensus signature set of cytotoxicity emerges
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Egr1 Gdf15

LogFC compared to control

Out of six early signatures in human, four are early
signatures of progressive profiles in rat: Egr1, Atf3, Gdf15,

and Fgi21. AtF3 Fgf21
. g ]
IL-8 does not have rat orthologue; Tob2 shows a similar €4 4
pattern, but statistically was not significant. o
8]
g
£
8
©]
T
(=2}
S -2
Olh 2|h 8|h 24|1h Olh 2|h 81h Ztllh
Time Time

Early-response signatures in rat. Each thin line represents
one treatment, and the thick line represents the average.
The identification was driven by rat data only.

Out of six human signatures, four were also found in rat in vitro data




Conserved dynamics of the early signatures in human and rat primary
hepatocytes

Human Rat
EGR1 —— GDF15 —— Egr1 Gdf15——
FGF21 ATF3 — Fgf21 Atf3 ——

LogFC compared to control
LogFC compared to control

| | | | | | | |
Oh 2h 8h 24h Oh 2h 8h 24h

Time Time

Lines represent average inductions, and error bars indicate 95% confidence interval of the
average induction.

Almost identical regulation profiles in human and rat suggest evolutionary conservation
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The genes form a functional network of early stress response with
conserved structure and conserved dynamics

Stress response ’

‘Immune response’

The early-response signature network, with downstream effects
described in literature and annotated in functional databases

Literature search and functional annotation helped us realize the genes form a functional network




Boolean network modelling

{Immune response}

» Boolean network simulation results (Nikolaos Berntenis and Martin Ebeling, BMC
Genomics 2013) support the hypothesis that the conserved dynamics of the
network in human and rat is encoded in the conserved structure of the
network.

* Permutation results suggest that ATF3 is an important node to maintain the
network dynamics.

Boolean network modelling revealed that the dynamics is intrinsic to the network
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The network finding was translated from in vitro to in vivo, and
from liver to kidney
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» Support Vector Machines (SVMs)
were trained to predict /in vivo
pathology between 3h and 29d 10+

using gene expression changes of L S
Egri, Atf3, Gdf15, and Fgf21 at 3h.  %°7

Liver SVMs Kidney SVMs

g 0.6 Network Network ——
* Profiles were randomly splitinto § F---2------- -4 o ot
o —0.4- o 9 T
training samples (80%) and test ._ Atf3 ALf3
samples (20%). 09 Fgf21 Fgf21 ——
' Gdf15 Gdflts ~——
 SVMs are trained by 10-fold o0 000\ 0.0-
. . . - I I I | | I I |
cross-validation in training R R WP S R S S SRy
5 o gh P &P o & o (& B B P P
samples. Then they are tested on v T"j P v Tbj T P
ime ime

test samples, which mimic new,
unseen data.

The predictive power of the network is translated from in vitro to in vivo, and from liver to kidney
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* A novel computational pipeline identified four genes -
EGRT1, ATF3, GDF15, and FGF21 - that are induced as early e The Phamacogenorics Jourmal 201d) 14, 206-216 OPEN
© 2014 Macmillan Publishers Limited All rights reserved 1470-269X/14

as 2h after drug administration in human and rat primary o aturecomie
hepatocytes poised to eventually undergo cell death.

ORIGINAL ARTICLE
Data mining reveals a network of early-response genes as a
consensus signature of drug-induced in vitro and in vivo toxicity

JD Zhang, N Berntenis, A Roth and M Ebeling

« Boolean network simulation reveals that the genes form a
functional network with evolutionarily conserved structure
and dynamics.

Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point
experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression,

° H H ’ ’ 1 1 H H cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
Confl rm Ing In Vltro fl n d I n gS! early Ind UCtIO n Of the n etwork system) database. Data mining highlights four genes—EGR1, ATF3, GDF15 and FGF21—that are induced 2 h after drug
. . . . - - administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and
p red ICtS d rug_ I nd U Ced I |Ver a nd kld ney path OIOgy In VIVO simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and
. . intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney
W|th h |g h accu racy_ pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and

understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of
safety evaluation.

° The flndlngs are not Only userI for Safety assessment’ but The Pharmacogenomics Journal (2014) 14, 208-216; doi:10.1038/tpj.2013.39; published online 12 November 2013
aISO |nsp|red the mo|ecu|ar—phenotyp|ng platform_ Keywords: compound-induced toxicity; early-response genes; gene signature; TG-GATEs; toxicogenomics

Zhang et al., J Pharmacogenomics, 2014

Computational biology and bioinformatics help identifying safer drugs




Looking around and looking forward
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Selected further work by external groups

Sutherland et al. (Lily), PLOS Comp Biol 2016, confirmed the difficulty to directly translate between different systems

El-Hachem et al. (U Montreal), Environ Health Perspect 2016, confirmed that early toxicological response occurring in
animals is recapitulated in human and rat primary hepatocyte cultures at the molecular level

Thiel et al,, (RWTH Aachen), PLOS Comp Biol 2017, used physiologically-based pharmacokinetic modeling to characterize
the transition from efficacious to toxic doses.

Shimada & Mitchison (Harvard), Mol Sys Bio 2019, used machine learning to characterize system-level response to drugs
and toxicants in TG-GATEs, and pinpointing underlying molecular mechanisms.

What we are doing

Gain molecule-level understanding of drug-induced histopathology
Apply the knowledge to accelerate development and reduce attrition rate of new drugs
Leveraging stem-cell technology and omics for drug discovery & personalized safety

The four-gene network is not the end, but a start, for the community and for us




Molecular Phenotyping

A workflow to quantify expression of pre-defined pathway reporter genes at early time points

after perturbation to infer pathway activities, which may predict late-onset cellular phenotypes

_ ~1000 pathway Next-generation
SmaII molecule Antibodies Antlsense oligos reporter genes sequencing
L €=
Therapeutic candidates ] \ —
Early time point (3-12h) Molecular phenotyping
/ ﬂ What pathways are perturbed
Human in vitro disease models ] by each compound?
: Applications as screening tool:
- Cluster compounds based on pathway profiles
- R I? .es . :
SN @0 4 _ » Detect false-positive hits in a phenotypic screen
Celllines/  iPS-derived cells  Advanced « Correlate pathway activity with phenotypic readouts

primary cells (opt. genome editing) models
1/10



Pathway Reporter Genes

Public
databases

Commercial
assays
Manual
curation

(a) Knowledge integration

Pathway-gene bipartite graph

Biological ‘
Pathways processes ‘ i. /‘
- Ny N\ N

Zhang et al. BMC Genomics (2015) 16:342
DOI 10.1186/512864-015-1532-2

(omc

Genomics

METHODOLOGY ARTICLE

Open Access

Pathway reporter genes define molecular

phenotypes of human cells

Jitao David Zhang, Erich Kiing, Franziska Boess, Ulrich Certa and Martin Ebeling”

‘.\ N

(b) Network construction

L—Gene3 \/— "V
(Co-)expression by COXPRESSdb

(c) Gene prioritisation
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Pathway Reporter Genes
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(d) Panel customisation



Hormone and
neuropeptide signaling
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Difference in statistical modelling of microarray data and next-

generation sequencing count data

Microarray data: log-normal distributed, for 0.40

instance implemented in the /imma package of 0.35}

R/Bioconductor. 0.30}

= 0.25

NGS data: Negative-Binomial distributed (or 1 0.20!

Poisson with overdispersion), for instance & 01sl

implemented in both edgeR and DESeq2 package 0.10l
of R/Bioconductor.
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Poisson distribution with three
rate parameters, from

Wikimedia, reused with the CC
Attribution 3.0 license



https://commons.wikimedia.org/wiki/File:Poisson_pmf.svg

From Poisson distribution to Negative Binomial Distribution

Two definitions of Negative-Binomial distribution

1.

The number of failures seen before getting n successes
(the inverse of Binomial Distribution, which the number of
successes in n independent trials)

Poisson-Gamma mixture distribution, weighted mixture of
Poisson distributions, where the rate parameter has an
uncertainty modelled by a Gamma distribution.

NN
0N

>/|\/|\/
AN

Nl

=}
»C
w2
m—
-

M Poisson
B Negative Binomial
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Pooled gene-level variance (log10 scale)
1le+04

Mean gene expression level (log10 scale)

Credit of Jesse Lipp, bioramble.wordpress.com



Commonly used dimensionality reduction techniques

* Principal component analysis (PCA)
« t-SNE (t-distributed Stochastic Neighbor Embedding)

« UMAP (Uniform Manifold Approximation and Projection) [A great talk by Leland Mclnnes, the
developer of UMAP, a mathematician, Ph.D. In Profinite Lie Rings]

* For a recent overview of dimensionality reduction techniques and their applications in biology, see
Nguyen, Lan Huong, und Susan Holmes. ,, Ten Quick Tips for Effective Dimensionality Reduction®.
PLOS Computational Biology 15, Nr. 6 (20. Juni 2019): €1006907.
https://doi.org/10.1371/journal.pchbi.1006907.



https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://doi.org/10.1371/journal.pcbi.1006907

Data Analysis

1. Global gene
expression profiles

2. Differential gene

expression

3. Pathway analysis

4. Integrative
analysis with other
data
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0.2

0.0

Principal component 2 (23.1%)
-0.2

-0.4

Pathway Reporter Genes PCA plot

Principal component 1 (54.5%)

Pathway reporter genes faithfully capture global gene
expression patterns
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Data Analysis
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1. Global gene
expression profiles
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2. Differential gene T T T T T T T T 1

Molecular Phenotyping [counts]

: 8 10 12 14 10°-2 101 10°0 10 10°2 103
expression Microarray [log2(signal)] Full-transcriptome RNAseq [RPKM]

" —
° 4 GLI1
5 2°M0 . E}
- (1]

3. Pathway analysis S 2r5- ’_\\\‘ _10%
£ » L S -
— -
g 2r0- 5 O
7]
8 o AmpliSeq-RNA | ©
8 A5 — + Microarray Lo %

4. Integrative DO D10 D20 D60

analysis with other

data AmpliSeq, like RNA-seq, shows higher dynamic range than

hybridization-based platforms
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Data Analysis

1. Global gene
expression profiles

2. Differential gene
expression

3. Pathway analysis

4. Integrative
analysis with other
data
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Stem-cell specific
pathways

Activity patterns of 154 human
metabolic and signaling networks

—eeee Auring differentiation of induced

pluripotent stem-cells (iPS) into
cardiomyocytes.

Cyan: Pathway is activated

l Black: Pathway is suppressed

Pathway reporter genes inform about pathway activity
patterns
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Data Analysis

1. Global gene
expression profiles

2. Differential gene
expression

3. Pathway analysis

4. Integrative
analysis with other
data

In vitro
assay readouts

High-content
microscopy

Histopathology
records

Gene signatures
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Molecular phenotyping allows data integration
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Cell-based model of diabetic cardiomyopathy for phenotypic screening

Metabolic dysfunction promotes cardiomyopathy
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Determining the optimal timepoint for molecular phenotyping TR
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Integration of molecular and phenotypic information
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Integration of molecular and phenotypic information

CMscore
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Hierarchical clustering separates compounds and pathway responses

Pathway activity score
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Beneficial compounds generate specific pathway signatures

CMscore
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Pathway signatures can be monitored during screening

campaigns for maintained beneficial mechanistic effects i



Molecular phenotyping allows filtering of undesirable molecules

Camptothecin

HO o

\

HO O

—

Topoisomerase inhibitors

Produced high CMscore in
the phenotypic assay

Identified as ‘hits’

Cluster with beneficial
compounds

Induce target genes of apoptosis

Camptothecin
10-hydroxycamptothecin

95% CI of remaining compounds @
CDKN1A =
DAB2 Ho—————
BTG2 V"
AGQP1 | -—o—|
AHR
i —
IL6R HO-
MAP2K3 HO—
MDM2 B 4
SLCOA1
SRXN1
EPHX1
PML
ERBB3
TGFB3
ENO2
F11R
AKR1B1
ALAD o
IKBKE qﬁ:}
—6.5 0.0 0!5 1.IO

log2 (fold change)

Compounds with undesirable signatures can be eliminated from further testing



Beneficial compound signatures are downregulated in cardiomyopathy

samples

Data Mining of GEO

20 datasets from human and
murine cardiomyopathy

¥

Generate surrogate
molecular phenotype by
analyzing panel expression

¥

Pathway analysis of
surrogate MP data

¥

Correlation with beneficial
and deleterious compound
pathway responses

Human and animal
cardiomyopathy studies
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Beneficial compound signatures are downregulated in cardiomyopathy 7<;

samples

Data Mining of GEO

20 datasets from human and Favorable pathways are downregulated
murine cardiomyopathy

’ . Naormalised
Generate surrogate pathway acivation score Bt —— )
molecular phenotype by Lathoye ey
analyzing panel expression " .I. ). = = - " gg
; lII. . .T.-..l.ll é%
Pathway analysis of = . =38
surrogate MP data Cardiomvopathy-associated pathwavs
Cormelation with beneficial Unfavorable pathways are enriched

and deleterious compound
pathway responses

Molecular phenotyping can enrich screening campaigns to select
compounds with profiles with biological relevance to patients 44



X
Molecular Phenotyping can enrich Phenotypic Drug Discovery 7%{%

Patient Molecular
Phenotype

Hit In vivo Patient
ox . Lead .
pansion testing * -
U
Obtain disease Assay biological ég
molecular information relevance Optimization
Integrate with Hits Bring biologically relevant
disease models therapies to patients

High-throughput/
high-content screening

Q. M,

L

%

1. MP provides mechanistic validation of hits in successive screening campaigns

2. MP enables undesirable and false-positive hits to be eliminated

3. MP brings biological relevance to screening assays by integrating patient information
45



Summary

* Gene expression profiling: a case
study of omics and cellular modelling

» Applications for drug safety: TG-
GATEs

* Applications for drug mechanism:
molecular phenotyping

* Current research topics
- Single-cell sequencing
- Genome editting
- Microbiome
- High-content cellular imaging
- Integrative modelling
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