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BACKGROUND

Population pharmacokinetics is the study of pharmacokinetics 
at the population level, in which data from all individuals in a pop-
ulation are evaluated simultaneously using a nonlinear mixed-
effects model. “Nonlinear” refers to the fact that the dependent 
variable (e.g., concentration) is nonlinearly related to the model 
parameters and independent variable(s). “Mixed-effects” refers 
to the parameterization: parameters that do not vary across 
individuals are referred to as “fixed effects,” parameters that 
vary across individuals are called “random effects.” There are 
five major aspects to developing a population pharmacokinetic 
model: (i) data, (ii) structural model, (iii) statistical model, (iv) 
covariate models, and (v) modeling software. Structural models 
describe the typical concentration time course within the popu-
lation. Statistical models account for “unexplainable” (random) 
variability in concentration within the population (e.g., between-
subject, between-occasion, residual, etc.). Covariate models 
explain variability predicted by subject characteristics (covari-
ates). Nonlinear mixed effects modeling software brings data 
and models together, implementing an estimation method for 
finding parameters for the structural, statistical, and covariate 
models that describe the data.1

A primary goal of most population pharmacokinetic model-
ing evaluations is finding population pharmacokinetic param-
eters and sources of variability in a population. Other goals 
include relating observed concentrations to administered 
doses through identification of predictive covariates in a tar-
get population. Population pharmacokinetics does not require 
“rich” data (many observations/subject), as required for anal-
ysis of single-subject data, nor is there a need for structured 
sampling time schedules. “Sparse” data (few observations/
subject), or a combination, can be used.

We examine the fundamentals of five key aspects of pop-
ulation pharmacokinetic modeling together with methods 
for comparing and evaluating population pharmacokinetic 
models.

DATA CONSIDERATIONS

Generating databases for population analysis is one of the 
most critical and time-consuming portions of the evaluation.2 
Data should be scrutinized to ensure accuracy. Graphical 
assessment of data before modeling can identify potential 
problems. During data cleaning and initial model evaluations, 
data records may be identified as erroneous (e.g., a sudden, 
transient decrease in concentration) and can be commented 
out if they can be justified as an outlier or error that impairs 
model development.

All assays have a lower concentration limit below which 
concentrations cannot be reliably measured that should 
be reported with the data. The lower limit of quantification 
(LLOQ) is defined as the lowest standard on the calibration 
curve with a precision of 20% and accuracy of 80–120%.3 
Data below LLOQ are designated below the limit of quantifi-
cation. Observed data near LLOQ are generally censored if 
any samples in the data set are below the limit of quantifica-
tion. One way to understand the influence of censoring is to 
include LLOQ as a horizontal line on concentration vs. time 
plots. Investigations4–7 into population-modeling strategies 
and methods to deal with data below the limit of quantification 
(Supplementary Data online) show that the impact of cen-
soring varies depending on circumstance; however, methods 
such as imputing below the limit of quantification concentra-
tions as 0 or LLOQ/2 have been shown to be inaccurate. As 
population-modeling methods are generally more robust to 
the influence of censoring via LLOQ than noncompartmental 
analysis methods, censoring may account for differences in 
the results when applied to the same data set.

It is worthwhile considering what the concentrations 
reported in the database represent in vivo. Three major con-
siderations of the data are of importance. First, the sampling 
matrix may influence the pharmacokinetic model and its 
interpretation. Plasma is the most common matrix, but the 
extent of distribution of drug into RBC dictates (i) whether 
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whole blood or plasma concentrations are more informative; 
(ii) whether measured clearance (CL) should be referenced 
to plasma or blood flow in an eliminating organ; or (iii) may 
imply hematocrit or RBC binding contributes to differences in 
observed kinetics between subjects.8 Second, whether the 
data are free (unbound) or total concentrations. When free 
concentrations are measured, these data can be modeled 
using conventional techniques (with the understanding that 
parameters relate to free drug). When free and total concen-
trations are available, plasma binding can be incorporated 
into the model.9 Third, determining whether the data must be 
parent drug or an active metabolite is important. If a drug has 
an active metabolite, describing metabolite formation may be 
crucial in understanding clinical properties of a drug.

SOFTWARE AND ESTIMATION METHODS

Numerous population modeling software packages are avail-
able. Choosing a package requires careful consideration 
including number of users in your location familiar with the 
package, support for the package, and how well established 
the package is with regulatory reviewers. For practical rea-
sons, most pharmacometricians are competent in only one 
or two packages.

Most packages share the concept of parameter estimation 
based on minimizing an objective function value (OFV), often 
using maximum likelihood estimation.2 The OFV, expressed 
for convenience as minus twice the log of the likelihood, is 
a single number that provides an overall summary of how 
closely the model predictions (given a set of parameter val-
ues) match the data (maximum likelihood = lowest OFV = 
best fit). In population modeling, calculation of the likelihood 
is more complicated than models with only fixed effects.2 
When fitting population data, predicted concentrations for 
each subject depend on the difference between each sub-
ject’s parameters (Pi) and the population parameters (Ppop) 
and the difference between each pair of observed (Cobs) and 
predicted (ĉ ) concentrations. A marginal likelihood needs to 
be calculated based on both the influence of the fixed effect 
(Ppop) and the random effect (η). The concept of a marginal 
likelihood is best illustrated for a model with a single popula-
tion parameter (Supplementary Data online).

Analytical solutions for the marginal likelihood do not exist; 
therefore, several methods were implemented approximat-
ing the marginal likelihood while searching for the maximum 
likelihood. How this is done differentiates the many estima-
tion methods available in population modeling software. 
Older approaches (e.g., FOCE, LAPLACE) approximate 
the true likelihood with another simplified function.10 Newer 
approaches (e.g., SAEM) include stochastic estimation, refin-
ing estimates partially by iterative “trial and error.” All estima-
tion methods have advantages and disadvantages (mostly 
related to speed, robustness to initial parameter estimates, 
and stability in overparameterized models and parameter 
precision).11,12 The only estimation method of concern is the 
original First Order method in nonlinear mixed-effects model, 
which can generate biased estimates of random effects. The 
differences between estimation methods can sometimes be 
substantial. Trying more than one method during the initial 

stages of model building (e.g., evaluating goodness of fit with 
observed or simulated data) is reasonable. Changing default 
values for optimization settings and convergence criteria 
should not be considered unless the impact of these changes 
is understood.

Comparing models
The minimum OFV determined via parameter estimation 
(OBJ) is important for comparing and ranking models. How-
ever, complex models with more parameters are generally 
better able to describe a given data set (there are more 
“degrees of freedom,” allowing the model to take differ-
ent shapes). When comparing several plausible models, it 
is necessary to compensate for improvements of fit due to 
increased model complexity. The Akaike information criterion 
(AIC) and Bayesian information criterion (BIC or Schwarz cri-
terion) are useful for comparing structural models:

AIC OBJ

BIC OBJ
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p
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= + ( )
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⋅
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n Ln N
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where np is the total number of parameters in the model, 
and N is the number of data observations. Both can be used 
to rank models based on goodness of fit. BIC penalizes the 
OBJ for model complexity more than AIC, and may be pref-
erable when data are limited. Comparisons of AIC or BIC 
cannot be given a statistical interpretation. Kass and Raf-
tery13 categorized differences in BIC between models of >10 
as “very strong” evidence in favor of the model with the lower 
BIC; 6–10 as “strong” evidence; 2–6 as “positive” evidence; 
and 0–2 as “weak” evidence. In practice, a drop in AIC or 
BIC of 2 is often a threshold for considering one model over 
another.

The likelihood ratio test (LRT) can be used to compare the 
OBJ of two models (reference and test with more parame-
ters), assigning a probability to the hypothesis that they pro-
vide the same description of the data. Unlike AIC and BIC, 
models must be nested (one model is a subset of another) 
and have different numbers of parameters. This makes LRT 
suitable to comparing covariate models to base models 
(Covariate models section).

As the OBJ depends on the data set and estimation 
method used, the OBJ and its derivations cannot be com-
pared across data sets or estimation methods. The lowest 
OBJ is not necessarily the best model. A higher order poly-
nomial can be a near perfect description of a data set with the 
lowest OBJ, but may be “overfitted” (describing noise rather 
than the underlying relationship) and of little value. Polyno-
mial parameters cannot be related to biological processes 
(e.g., drug elimination), and the model will have no predictive 
utility (either between data points or extrapolating outside the 
range of the data). Mechanistic plausibility and utility there-
fore take primacy over OBJ value.

STRUCTURAL MODEL DEVELOPMENT

The choice of the structural model has implications for 
covariate selection.14 Therefore, care should be taken when 
evaluating structural models.
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Systemic models
The structural model (Supplementary Data online) is analo-
gous to a systemic model (describing kinetics after i.v. dos-
ing) and an absorption model (describing the drug uptake into 
the blood for extravascular dosing). For the former, though 
physiologically based pharmacokinetic models have a useful 
and expanding role,15,16 mammillary compartment models are 
predominant in the literature. When data are available from 
only a single site in the body (e.g., venous plasma), concen-
trations usually show 1, 2, or 3 exponential phases17 which 
can be represented using a systemic model with one, two, 
or three compartments, respectively. Insight into the appro-
priate compartment numbers can be gained by plotting log 
concentration vs. time. Each distinct linear phase when log 
concentrations are declining (or rising to steady state during 
a constant-rate infusion) will generally need its own compart-
ment. However, the log concentration time course can appear 
curved when underlying half-lives are similar.

Mammillary compartment models can be parameterized 
as derived rate constants (e.g., V1, k12, k21, k10) or preferen-
tially as volumes and CL (e.g., V1, CL, V2, Q12 where Q12 is 
the intercompartmental CL between compartments one and 
two) and are interconvertible (Supplementary Data online). 
Rate constants have units of 1/time; intercompartmental CLs 
(e.g., Q12) have the units of flow (volume/time) and can be 
directly compared with elimination CL (e.g., CL, expressed 
as volume/time) and potentially blood flows. Volume and CL 
parameterization have the advantage of allowing the model 
to be visualized as a hydraulic analog18 (Supplementary 
Data online). Parameters can be expressed in terms of half-
lives, but the relationship between the apparent half-lives and 
model parameters is complex for models with more than one 
compartment (Supplementary Data online). For drugs with 
multicompartment kinetics, the time course of the exponen-
tial phases in the postinfusion period depends on infusion 
duration, a phenomenon giving rise to the concept of context 
sensitive half-time rather than half-life.19

When choosing the number of compartments for a model, 
note that models with too few compartments describe the 
data poorly (higher OBJ), showing bias in plots of residu-
als vs. time. Models with too many compartments show 
trivial improvement in OBJ for the addition of extra compart-
ments; parameters for the additional peripheral compartment 
will converge on values that have minimal influence on the 
plasma concentrations (e.g., high volume and low intercom-
partmental CL, or the reverse); or parameters may be esti-
mated with poor precision.

An important consideration is whether assuming first-order 
elimination is appropriate. In first-order systems, elimination 
rate is proportional to concentration, and CL is constant. 
Doubling the dose doubles the concentrations (the principle 
of superposition).2 Conversely, for zero-order systems, the 
elimination rate is independent of concentration. CL depends 
on dose; doubling the dose will increase the concentrations 
more than two-fold. Note that elimination moves progres-
sively from a first-order to a zero-order state as concentra-
tions increase, saturating elimination pathways.

Pharmacokinetic data collected in subjects given a sin-
gle dose of drug are rarely sufficient to reveal and quanti-
tate saturable elimination, a relatively wide range of doses 

may be needed. Data from both single- and multidose stud-
ies may reveal saturable elimination if steady-state kinetics 
cannot be predicted from single-dose data. Graphical and/
or noncompartmental analysis may show evidence of non-
linearity: dose-normalized concentrations that are not super-
imposable; dose-normalized area under the curve (AUC) (by 
trapezoidal integration) that are not independent of dose; 
multidose AUCτ or Css that is higher than predicted by single-
dose AUC and CL.

Classically, saturable elimination is represented using the 
Michaelis–Menten equation.2 For a one-compartment model 
with predefined dose rate:

C
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V
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d
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where dA/dt is the rate of change of the amount of drug, Vmax 
is maximum elimination rate and km is concentration asso-
ciated with half of Vmax. Note that when C << km, the rate 
becomes Vmax/km·C, where Vmax/km can be interpreted as the 
apparent first-order CL. When C >> km, rate becomes Vmax 
(apparent zero-order CL). Vmax and km can be highly corre-
lated, making it difficult to estimate both as random effects 
parameters (Between-subject variability section). Broadly, km 
can be considered a function of the structure of the drug and 
the eliminating enzyme (or transporter) whereas Vmax can be 
considered as a function of the available number of eliminat-
ing enzymes (or transporters).

The contribution of saturable elimination to plasma con-
centrations should be considered carefully in the context of 
the drug, the sites of elimination for the drug, and the route 
of administration. For drugs with active renal-tubular secre-
tion, saturation of this process will decrease renal CL and 
increase concentrations above that expected from superpo-
sition. For drugs with active tubular re-absorption, saturation 
of this process will increase renal CL and decrease concen-
trations below that expected from superposition.

Absorption models
Drugs administered via extravascular routes (e.g., p.o., 
s.c.) need a structural model component representing drug 
absorption (Supplementary Data online). The two key pro-
cesses are overall bioavailability (F) and the time course 
of the absorption rate (the rate the drug enters the blood 
stream).

F represents the fraction of the extravascular dose that 
enters the blood. Functionally, unabsorbed drug does not 
contribute to the blood concentrations, and the measured 
concentrations are lower as if the dose was a fraction (F) 
of the actual dose. The fate of “unabsorbed” dose depends 
on administration route and the drug, but could include: drug 
not physically entering the body (e.g., p.o. dose remaining in 
the gastrointestinal tract), conversion to a metabolite during 
absorption (e.g., p.o. dose and hepatically cleared drug), pre-
cipitation or aggregation at the site of injection (e.g., i.m., s.c.) 
or a component of absorption that is so slow that it cannot be 
detected using the study design (e.g., lymphatic uptake of 
large compounds given s.c.).
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Absolute bioavailability can only be estimated when con-
current extravascular and i.v. data are available (assuming 
the i.v. dose is completely available, F = 100%). Both CL and 
F are estimated parameters (designated as θ), with F only 
applying to extravascular data (Supplementary Data online). 
Although F can range between 0 (no dose absorbed) and 1 
(completely absorbed dose), models may be more stable if a 
logit transform is used to constrain F where LGTF can range 
between ±infinity.

LGTF

LGTF
LGTF

=

=
+( )

θ1

1
F

exp( )
exp( )

� (3)

In such models, the CL estimated for the i.v. route is the ref-
erence CL; the apparent CL for the extravascular route (that 
would be estimated from the AUC) is calculated as CLi.v./F.

When only extravascular data are available, it is impossible 
to estimate true CLs and volumes because F is unknown. For 
a two compartment model, e.g., estimated parameters are 
a ratio of the unknown value of F: CL/F, V1/F, Q/F, and V2/F 
(absorption parameters are not adjusted with bioavailability). 
Although F cannot be estimated, population variability in F 
can contribute to variability in CLs and volumes making them 
correlated (Supplementary Data online).

If the process dictating oral bioavailability has an active 
component in the blood to gut lumen direction, bioavailability 

may be dose dependent with higher doses associated with 
higher bioavailability. Conversely, if the active component is in 
the gut lumen to blood direction, higher doses may be associ-
ated with lower bioavailability. If the range of doses is insuf-
ficient to estimate parameters for a saturable uptake model 
(e.g., Vmax, km) using DOSE or log(DOSE) as a covariate on F 
may be an expedient alternative. In general, nonlinear uptake 
affecting bioavailability can be differentiated from nonlinear 
elimination as the former shows the same half-life across a 
range of doses, whereas the latter shows changes in half-life 
across a range of doses.

The representation of extravascular absorption is clas-
sically a first-order process described using an absorption 
rate constant (ka). This represents absorption as a passive 
process driven by the concentration gradient between the 
absorption site and blood (Figure 1a). The concentration 
gradient diminishes with time as drug in the absorption site 
is depleted in an exponential manner. An extension of this 
model is to add an absorption lag if the appearance of drug 
in the blood is delayed (Figure 1b). The delay can represent 
diverse phenomena from gastric emptying (p.o. route) to dif-
fusion delays (nasal doses). Because lags are discontinuous, 
numerical instability can arise and transit compartment mod-
els may be preferred.20

“Flip-flop” kinetics occurs when absorption is slower than 
elimination21 making terminal concentrations dependent on 
absorption, which becomes rate limiting. For example, for 

Figure 1  Models of extravascular absorption. The time profile of absorption rate for selected absorption models. (a) A first-order absorption 
model with different values of the absorption rate constant (ka). Absorption lag was 0.5 h in all cases. (b) A first-order absorption model with 
different values of the absorption lag (LAG). Absorption rate constant was 0.5/h in all cases. (c) A three-compartment transit chain model with 
different values of the transit chain rate constant (ktr). Note that decreasing the rate constant lowers the overall absorption rate and delays the 
time of its maximum value. (d) Transit chain models with different numbers of transit chain compartments (NCOMP). The transit chain rate 
constant was 1/h in all cases. Note that increasing the number of compartments introduces a delay before absorption, and functionally acts 
as a lag. The dose was 100 mg in all cases (hence the area under the curve should be 100 mg for all models).
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a one-compartment model, there are two parameter sets 
that provide identical descriptions of the data, one with fast 
absorption and slow elimination, the other with slow absorp-
tion and fast elimination. Prior knowledge on the relative 
values of absorption and elimination rates is needed to distin-
guish between these two possibilities. Drugs with rate-limiting 
absorption show terminal concentrations after an extravas-
cular dose with a longer half-life than i.v. data suggest. Flip-
flop kinetics can be problematic when fitting data if individual 
values of ka and k10 (e.g., CL/V) “overlap” in the population. 
It may be advantageous to constrain k10 to be faster than ka, 
(e.g., k10 = ka +θ1) where θ1 is >0 if prior evidence suggests 
flip-flop absorption.

Although first-order absorption has the advantage of being 
conceptually and mathematically simple, the time profile of 
absorption (Figure 1b) has “step” changes in rate that may be 
unrepresentative of in vivo processes, and this is a “change-
point” that presents difficulties for some estimation methods. 
For oral absorption in particular, transit compartment models 
may be superior.20 The models represent the absorbed drug 
as passing through a series of interconnected compartments 
linked by a common rate constant (ktr), providing a continu-
ous function that can depict absorption delays. The absorp-
tion time profile can be adjusted by altering the number of 
compartments and the rate constant (Figure 1c,d). As they 
are coded by differential equations (Supplementary Data 
online), transit compartment absorption models have lon-
ger run times than first-order models, which may outweigh 
their advantages in some situations. The transit compartment 
model can be approximated using an analytical solution in 
some cases.20

STATISTICAL MODELS

The statistical model describes variability around the struc-
tural model. There are two primary sources of variability in 
any population pharmacokinetic model: between-subject 
variability (BSV), which is the variance of a parameter across 
individuals; and residual variability, which is unexplained vari-
ability after controlling for other sources of variability. Some 
databases support estimation of between-occasion variabil-
ity (BOV), where a drug is administered on two or more occa-
sions in each subject that might be separated by a sufficient 
interval for the underlying kinetics to vary between occa-
sions. Developing an appropriate statistical model is impor-
tant for covariate evaluations and to determine the amount of 
remaining variability in the data, as well as for simulation, an 
inherent use of models.2

BSV
When describing BSV, parameterization is usually based on 
the type of data being evaluated. For some parameters that 
are transformed (e.g., LGTF), the distribution of η values may 
be normal, and BSV may be appropriately described using 
an additive function:

LGTFi i= +θ η1 1
� (4)

where θ1 is the population bioavailability and η1i is the devia-
tion from the population value for the ith subject. Taken 

across all individuals evaluated, the individual η1 values are 
assumed to be normally distributed with a mean of 0 and 
variance ω2. This assumption is not always correct, and the 
ramifications of skewed or kurtotic distributions for η1 will be 
described later. The different variances and covariances of η 
parameters are collected into an “Ω matrix.”

Pharmacokinetic data are often modeled assuming log-
normal distributions because parameters must be positive 
and often right-skewed.22,23 Therefore, the CL of the ith sub-
ject (CLi) would be written as:

CLi i= ( )θ η1 1⋅ exp� (5)

where θ1 is the population CL and η1i is the deviation from the 
population value for the ith subject. The log-normal function is 
a transformation of the distribution of η values, such that the 
distribution of CLi values may be log-normally distributed but 
the distribution of η1i values is normal.

When parameters are treated as arising from a log-normal 
distribution, the variance estimate (ω2) is the variance in the 
log-domain, which does not have the same magnitude as the 
θ values. The following equation converts the variance to a 
coefficient of variation (CV) in the original scale. For small ω2 
(e.g., <30%) the CV% can be approximated as the square 
root of ω2.

CV % exp %( ) = ( ) −ω2 1 100⋅� (6)

The use of OBJ (e.g., LRT) is not applicable for determin-
ing appropriateness of including variance components.24 
Variance terms cannot be negative, which places the null 
hypothesis (that the value of the variance term is 0) on 
the boundary of the parameter space. Under such circum-
stances, the LRT does not follow a χ2 distribution, a neces-
sary assumption for using this test. Using LRT to include or 
exclude random effects parameters is generally unreliable, 
as suggested by Wählby et al.25 For this reason, models with 
different numbers of variance parameters should also not 
be compared using LRT. Varying approaches to developing 
the Ω matrix have been recommended. Overall, it is best to 
include a variance term when the estimated value is neither 
very small nor very large suggesting sufficient information to 
appropriately estimate the term. Other diagnostics such as 
condition number (computed as the square root of the ratio 
of the largest eigenvalue to the smallest eigenvalue of the 
correlation matrix) can be calculated to evaluate collinearity 
which is the case where different variables (CL and V) tend 
to rise or fall together. A condition number ≤20 suggests that 
the degree of collinearity between the parameter estimates 
is acceptable. A condition number ≥100 indicates potential 
instability due to high collinearity26 because of difficulties with 
independent estimation of highly collinear parameters.

Skewness and kurtosis of the distributions of individual η 
values should be evaluated. Skewness measures lack of sym-
metry in a distribution arising from one side of the distribution 
having a longer tail than the other.27 Kurtosis measures whether 
the distribution is sharply peaked (leptokurtosis, heavy-tailed) 
or flat (platykurtosis, light-tailed) relative to a normal distribu-
tion. Leptokurtosis is fairly common in population modeling. 
Representative skewed and kurtotic distributions are shown 
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in Figure 2a,b, respectively. Metrics of skewness and kurtosis 
can be calculated in any statistical package. Although refer-
ence values for these metrics are somewhat dependent on the 
package, they are mostly defined as 0 for a normal distribution. 
Very skewed or kurtotic distributions can affect both type I and 
type II error rates27 making identification of covariates impracti-
cal, and can also impact the utility of the model for simulation. 
Although the assumption of normality is not required during 
the process of fitting data, it is important during simulation, at 
which random values of η are drawn from a normal distribu-
tion. Therefore, if the distributions of η values are skewed or 
kurtotic, transformation is necessary to ensure that the η dis-
tribution is normal. Numerous transforms are available,28 with 
the Manly transform29 being particularly useful for distributions 
that are both skewed and kurtotic. An example implementation 
is shown below:

LAM

LAM

LAM
CL

=

=
( ) −( )

=

θ

η

θ

1

1

2

1
1

1

ET

ET

exp

exp( )

⋅

⋅

� (7)

where “LAM” is a shape parameter and “ET1” is the trans-
formed variance allowing η1 to be normally distributed.

Initially, variance terms are incorporated such that cor-
relations between parameters are ignored (referred to as a 
“diagonal Ω matrix”):

Ω =




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= ( )
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θ η
θ η
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2

1 1

2 20
CL CL
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i i

i iV

⋅
⋅

exp

exp
� (8)

where ω2
CL is the variance for CL and ω2

v is the variance for dis-
tributional volume. Models evaluating random effects param-
eters on all parameters are frequently tested first, followed 
by serial reduction by removing poorly estimated parameters. 
Variance terms should be included on parameters for which 
information on influential covariates is expected and will be 
evaluated. When variance terms are not included (e.g., the 
parameter is a fixed effects parameter), that parameter can 
be considered to have complete shrinkage because only the 
median value is estimated (Between-subject variability sec-
tion). Thus, as with any covariate evaluation when shrinkage 
is high, the probability of type I and type II errors is high and 
covariate evaluations should be curtailed with few exceptions 
(e.g., incorporation of allometric or maturation models).

Within an individual, pharmacokinetic parameters (e.g., CL 
and volume) are not correlated.30 It is possible, for example, 
to alter an individual’s CL without affecting volume. How-
ever, across a patient population, correlation(s) between 

Figure 2  Skewed and kurtotic distributions. (a) Shows distributions with varying degrees of skewness. For a normal distribution, the mode, 
median, and mean should be (nearly) the same. As skewness becomes more pronounced, these summary metrics differ by increasing 
degrees. (b) A range of kurtotic distributions. The red line is very leptokurtotic, the pink line is very platykurtotic (a uniform distribution is the 
extreme of platykurtosis). (c) A frequency histogram of a leptokurtotic distribution. and (d) The quantile–quantile (q–q) plot of that distribution, 
where the quantiles deviate from the line of unity indicates the heavy tails in the leptokurtotic distribution. For a normal distribution, the 
quantiles should not deviate from the line of unity.
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parameters may be observed when a common covariate 
affects more than one parameter. Body size has been shown 
to affect both CL and volume of distribution.31 Overall, larger 
subjects generally have higher CLs as well as larger volumes 
than smaller subjects. If CL and volume are treated as cor-
related random effects, then the Ω matrix can be written as 
shown below:

Ω =












ω
ω ω

2

2
CL

CL,V V

� (9)

where ωCL,V is the covariance between CL and volume of dis-
tribution (V). Thus the correlation (defined as r) between CL 
and V, calculated as follows:

r V

V

=
ω

ω ω
CL

CL

,

⋅
� (10)

Extensive correlation between variance terms (e.g., an r 
value ≥ ±0.8) is similar to a high-condition number, in that it 
indicates that both variance terms cannot be independently 
estimated. Models with high-condition number or extensive 
correlation become unstable under evaluations such as boot-
strap32 and require alternative parameterizations such as the 
“shared η approach” shown below:

CL = ( )
= ( )

θ η

θ θ η
1 1

1 3 1

⋅

⋅ ⋅

exp

exp

i

iV
� (11)

where θ3 is the ratio of the SDs of the distributions for CL and 
volume (e.g., θ ω ω3 = V / CL

) and the variance of V (Var(V)) can 
be computed as:

Var 3 CL( )V = θ ω2 2⋅� (12)

The consequence of covariance structure misspecifica-
tion in mixed-effect population modeling is difficult to pre-
dict given the complex way in which random effects enter 
a nonlinear mixed-effect model. Because population based 
models are now more commonly used in simulation experi-
ments to explore study designs, attention to the importance 
of identifying such terms has increased. Under the extended 
least squares methods, the consequences of a misspecified 
covariance structure have been reported to result in biased 
estimates of variance terms.33 In general, efficient estimation 
of both fixed parameters and variance terms requires correct 
specification of both the covariance structure as well as the 
residual variance structure. However, for any specific case, 
the degree of resulting bias is difficult to predict. Although 
misspecification of the variance–covariance relationships 
can inflate type I and type II error rates (such that important 
covariates are not identified, or unimportant covariates are 
identified) specifying the correlations is generally less impor-
tant than correctly specifying the variance terms themselves. 
However, failure to include covariance terms can negatively 
impact simulations because the correlation between param-
eters that is inherent in the data is not captured in the result-
ing simulations. Thus, simulations of individuals with high CL 
and low volumes are likely (a situation unlikely to exist in the 
original data). Simulated data with inappropriate parameter 

combinations tend to show increased variability as a wider 
range of simulated data (referred to as “inflating the variabil-
ity”). For covariance terms, unlike variance terms, the use of 
the LRT can be implemented in decision making because 
covariance terms do not have the same limitations (e.g., 
covariance terms can be negative).

BOV
Individual pharmacokinetic parameters can change between 
study occasions (Supplementary Data online). The source 
of the variability can sometimes be identified (e.g., chang-
ing patient status or compliance). Karlsson and Sheiner34 
reported bias in both variance and structural parameters 
when BOV was omitted with the extent of bias being depen-
dent on magnitude of BOV and BSV. Failing to account for 
BOV can result in a high incidence of statistically significant 
spurious period effects. Ignoring BOV can lead to a falsely 
optimistic impression of the potential value of therapeutic 
drug monitoring. When BOV is high, the benefits of dose 
adjustment based on previous observations may not trans-
late to improved efficacy or safety.

BOV was first defined as a component of residual unex-
plained variability (RUV)34 and subsequently cited as a com-
ponent of BSV.35 BOV should be evaluated and included if 
appropriate. Parameterization of BOV can be accomplished 
as follows:

If Occasion BOV 

If Occasion BOV

BSV

CL B

=( ) =

=( ) =

=
=

1

2

1

2

3

1

η

η

η
θ ⋅ exp( SSV BOV+ )

� (13)

Variability between study or treatment arms (such as 
crossover studies), or between studies (such as when an 
individual participates in an acute treatment study and then 
continues into a maintenance study) can be handled using 
the same approach.

Shrinkage
The mixed-effect parameter estimation method (Software 
and estimation methods) returns population parameters (and 
population-predicted concentrations and residuals). Individ-
ual-parameter values, individual-predicted concentrations, 
and residuals are often estimated using a second “Bayes” 
estimation step using a different objective function (also 
called the post hoc, empirical Bayes or conditional estimation 
step). This step is more understandable for a weighted least 
squares2 Bayes objective function36 where for one individual 
in a population with j observations and a model with k param-
eters, OFV is represented as follows:

�

(14)

A Bayes objective function can be used to estimate the 
best model parameters for each individual in the population 
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by balancing the deviation of the individual’s model-predicted 
concentrations (Ĉ ) from observed concentrations (Cobs) and 
the deviation of the individual’s estimated parameter val-
ues (θk) from the population parameter value (θk,pop). Eq. 14 
shows that for individuals with little data, the posterior term of 
the equation is smaller and the estimates of the individual’s 
parameters are weighted more by the population parameters 
values than the influence of their data. Individual parameters 
therefore “shrink” toward the population values (Figure 3). 
The extent of shrinkage has consequences for individual-pre-
dicted parameters (and individual-predicted concentrations).

When shrinkage is high (e.g., above 20–30%),37 plotting 
individual-predicted parameters or η values vs. a covariate 
may obscure true relationships, show a distorted shape, 
or indicate relationships that do not exist.37 In exposure–
response models, individual exposure (e.g., AUC from Dose/
CL) may be poorly estimated when shrinkage in CL is high, 
thereby lowering power to detect an exposure–response 
relationship. Diagnostic plots based on individual-predicted 
concentrations or residuals may also be misleading.37 Model 
comparisons based on OBJ and population predictions are 
largely unaffected by shrinkage and should dominate model 
evaluation when shrinkage is high.

Shrinkage should be evaluated in key models. The shrink-
age can be summarized as follows:37

Shrinkage
SD EBE

η
η

ω
( ) = −

( )
1� (15)

where ω is the estimated variability for the population and SD 
is the SD of the individual values of the empirical Bayesian 
estimates (EBE) of η.

Residual variability
RUV arises from multiple sources, including assay variability, 
errors in sample time collection, and model misspecification. 
Similar to BSV, selection of the RUV model is usually depen-
dent on the type of data being evaluated.

Common functions used to describe RUV are listed in 
Table 1. For dense pharmacokinetic data, the combined 
additive and proportional error models are often utilized 
because it broadly reflects assay variability, whereas for 

Figure 3  The concept of shrinkage. A population of nine subjects 
was created in which kinetics were one compartment with first-order 
absorption and the population clearance was 2 (Ω was 14% and 
σ was 0.31 concentration units). The subjects were divided into 
three groups with true clearances of 0.5, 2, or 4. Each subgroup 
was further divided into subjects with 1, 3, or 8 pharmacokinetic 
samples per subject. The individual-clearances and individual-
predicted concentrations for each subject were estimated using 
Bayes estimation in NONMEM (post hoc step). (a) Post hoc 
individual clearances vs. true clearance. Note that individual-
predicted clearances “shrink” towards population values as less 
data are available per subject and the true clearance is further from 
the population value. (b) Observed (symbols), population-predicted 
(dashed line, based on population clearance), and individual-
predicted concentrations (solid line, based on individual-predicted 
clearance). Note also that individual-predicted concentrations 
“shrink” toward population-predicted concentrations values as less 
data are available per subject and the true clearance is further from 
the population value. NONMEM, nonlinear mixed-effects modeling.
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Table 1  Common forms for residual error models

Residual error  
function

Formula

Untransformed data

Additive Y f= ( ) +θ ε,Time

Proportional Y f= ( ) +( )θ ε,Time ⋅ 1

Exponential Y f= ( ) ( )θ ε, expTime ⋅

Combined additive 
and proportional

Y f= ( ) +( ) +θ ε ε,Time ⋅ 1 1 2

Combined additive 
and exponential

Y f= ( ) ( ) +θ ε ε, expTime ⋅ 1 2

Ln-transformed data

Additive

 

Y f
f

y= ( )( ) +
( )













Log Time
Time

θ
θ

θ
ε,

,

2

2 1⋅

where 
the variance of ε1 is fixed to 1 and θy is the addi-
tive component of residual error

Exponential
 
Y f x= ( )( ) + ( )Log Timeθ θ ε, 2

1⋅
where the vari-

ance of ε1 is fixed to 1 and θx is the proportional 
component of residual error

Combined additive 
and exponential  

Y f
f

x
y= ( )( ) + +

( )












Log Time
Time

θ θ
θ

θ
ε,

,
2

2

2 1⋅

where the variance of ε1 is fixed to 1 and θx is the 
proportional component and θy is the additive 
component of residual error
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pharmacodynamic data (which often have uniform variabil-
ity across the range of possible values), an additive residual 
error may be sufficient. Exponential and proportional mod-
els are generally avoided because of the tendency to “over-
weight” low concentrations. This happens because RUV is 
proportional to the observation; low values have a corre-
spondingly low error. For small σ2, the proportional model is 
approximately equal to the exponential model.

Under all these models, the term describing RUV (ε) is 
assumed to be normally distributed, independent, with a mean 
of zero, and a variance σ2. Collectively, the RUV components 
(σ2) are referred to as the residual variance or “Σ” matrix. As 
with BSV, RUV components can be correlated. Furthermore, 
although ε and η are assumed independent, this is not always 
the case, leading to an η–ε interaction, (discussed later).

RUV can depend on covariates, such as when assays 
change between studies, study conduct varies (e.g., out-
patient vs. inpatient), or involve different patient populations 
requiring different RUV models.38 This can be implemented 
in the residual error using an indicator or “FLAG” variable, 
FLAG, defined such that every sample is either a 0 or 1, 
depending on the assignment. In such cases, an exponential 
residual error can be described for each case as follows:�

(16)

Because assay error is often a minor component of RUV, 
other sources, with different properties should be considered. 
Karlsson et al.39 proposed alternative RUV models describ-
ing serially correlated errors (e.g., autocorrelation), which 
can arise from structural model misspecification, and time-
dependent errors arising from inaccurate sample timing.

As mentioned earlier, η and ε are generally assumed 
independent, which is often incorrect. For example, with 
proportional error model, it can be seen that ε is not inde-
pendent of η:

Y f= ( ) +( )θ η ε, ,Time ⋅ 1� (17)

With most current software packages, this interaction can 
be accounted for in the estimation of the likelihood. It should 
be noted that interaction is not an issue with an additive RUV 
model, and evaluation of interaction is not feasible with large 
RUV (e.g., model misspecification) or the amount of data per 
individual is small (e.g., BSV shrinkage or inability to distin-
guish RUV from BSV).

As with BSV, it may be appropriate to implement a trans-
form when the residual distribution is not normally distrib-
uted, but is kurtotic or right-skewed. Failing to address these 
issues can result in biased estimates of RUV and simulations 
that do not reflect observed data. Because RUV is dependent 
on the data being evaluated, both sides of the equation must 
be transformed in the same manner. A common transform is 
the “log transform both sides” (LTBS) approach.

Y f

Ln Y Ln f

Ln Y Ln f

= ( ) ( )
( ) = ( ) ( )( )
( ) =

θ η ε

θ η ε

θ

, , exp

, , exp

Time

Time

⋅

⋅

,, ,η εTime( )( ) +

� (18)

Note that the data must be ln-transformed before evaluation 
and the resulting model-based predictions are also ln-trans-
formed. The parameters, however, are not transformed. Using 
LTBS, the exponential residual error now enters the model 
using an additive type residual error function, removing the 
potential for η–ε interactions. The transform of the exponential 
error model removes the tendency for the exponential error 
model to overweight the lowest concentrations as well. If addi-
tive or combined exponential and additive errors are needed 
with LTBS, forms for these models are provided in Table 1.

The use of LTBS has some additional benefits: simulations 
from models implementing this transform are always positive, 
which is useful for simulations of pharmacokinetic data over 
extended periods of time. LTBS can improve numerical sta-
bility particularly when the range of observed values is wide. 
It should be noted that the OBJ from LTBS cannot be com-
pared with OBJ arising from the untransformed data. If the 
LTBS approach does not adequately address skewness or 
kurtosis in the residual distribution, then dynamic transforms 
should be considered.40

COVARIATE MODELS

Identification of covariates that are predictive of pharmaco-
kinetic variability is important in population pharmacokinetic 
evaluations. A general approach is outlined below:

1.	Selection of potential covariates: This is usually based 
on known properties of the drug, drug class, or physiolo-
gy. For example, highly metabolized drugs will frequently 
include covariates such as weight, liver enzymes, and 
genotype (if available and relevant).

2.	Preliminary evaluation of covariates: Because run times 
can sometimes be extensive, it is often necessary to limit 
the number of covariates evaluated in the model. Covari-
ate screening using regression-based techniques, gen-
eralized additive models, or correlation analysis evaluat-
ing the importance of selected covariates can reduce the 
number of evaluations. Graphical evaluations of data are 
often utilized under the assumption that if a relationship is 
significant, it should be visibly evident. Example plots are 
provided in Figure 4, however, once covariates are in-
cluded in the model, visual trends should not be present.

3.	Build the covariate model: Without covariate screen-
ing, covariates are tested separately and all covariates 
meeting inclusion criteria are included (full model). With 
screening, only covariates identified during screening 
are evaluated separately and all relevant covariates are 
included. Covariate selection is usually based on OBJ 
using the LRT for nested models. Thus, statistical sig-
nificance can be attributed to covariate effects and pre-
specified significance levels (usually P < 0.01 or more) 
are set prior to model-based evaluations. Covariates 
are then dropped (backwards deletion) and changes to 
the model goodness of fit is tested using LRT at stricter 
OBJ criteria (e.g., P < 0.001) than was used for inclu-
sion (or another approach). This process continues until 
all covariates have been tested and the reduced or final 
model cannot be further simplified.

Y f t= ( ) ( ) + −( ) ( )( )θ ε ε, exp exp⋅ ⋅ ⋅FLAG FLAG1 21
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Models built using stepwise approaches can suffer from 
selection bias if only statistically significant covariates are 
accepted into the model. Such models can also overesti-
mate the importance of retained covariates. Wählby et al.41 
evaluated a generalized additive models based approach vs. 
forward addition/backwards deletion. The authors reported 
selection bias in the estimates which was small relative to the 
overall variability in the estimates.

Evaluating multiple covariates that are moderately or highly 
correlated (e.g., creatinine CL and weight) may also contrib-
ute to selection bias, resulting in a loss of power to find the 
true covariates. Ribbing and Jonsson42 investigated this using 
simulated data, and showed that selection bias was very 
high for small databases (≤50 subjects) with weak covariate 
effects. Under these circumstances, the covariate coefficient 
was estimated to be more than twice its true value. For the 
same reason, low-powered covariates may falsely appear to 
be clinically relevant. They also reported that bias was negli-
gible if statistical significance was a requirement for covariate 
selection. Thus stepwise selection or significance testing of 
covariates is not recommended with small databases.

Tunblad et al.43 evaluated clinical relevance (e.g., a change 
of at least 20% in the parameter value at the extremes of the 
covariate range) to test for covariate inclusion. This approach 
resulted in final models containing fewer covariates with a 
minor loss in predictive power. The use of relevance may be 

a practical approach because only covariates important for 
predictive performance are included.

Covariate functions
Covariates are continuous if values are uninterrupted in 
sequence, substance, or extent. Conversely, covariates are 
discrete if values constitute individually distinct classes or 
consist of distinct, unconnected values. Discrete covariates 
must be handled differently, but it is important for both types 
of data to ensure that the parameterization of the covariate 
models returns physiologically reasonable results.

Continuous covariate effects can be introduced into the 
population model using a variety of functions, including a 
linear function:

CL Weight= + ( )( )θ θ η1 2 1⋅ ⋅ exp( )
�

(19)

Figure 4  Graphical evaluations of covariates. Note that the 
variance term is used to evaluate the effect of the covariate 
and that normalized covariate values (designated with an 
“N” preceding the covariate type) are used. For continuous 
covariates, a Loess smooth (red) line is used to help visualize 
trends. For discrete covariates, box and whisker plots with the 
medians designated as a black symbol are used. (a) A box and 
whisker plot evaluating sex; (b) evaluates the effect of normalized 
creatinine clearance; (c) evaluates the effect of normalized 
weight, and (d) evaluates the effect of normalized age. It should 
be noted that there is a high degree of collinearity in these 
covariates. CrCL, creatinine clearance; IIVCL, interindividual 
variability in CL; WT, weight.
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Figure 5  Residual plots. Selected residual plots for an hypothetical 
model and data set for a fentanyl given by two routes (i.v., s.c.) 
and two doses (50 and 200 μg) in 20 patients. (a) Distribution 
density (which can be considered of a continuous histogram) of the 
conditional weighted residuals (CWRES) conditioned with color on 
treatment group. The distribution should be approximately normally 
distributed (symmetrical, centered on zero with most values between 
−2 and +2). (b) A Q–Q plot of the CWRES conditioned with color on 
treatment group. These lines should follow the line of identity if the 
CWRES is normally distributed. In both plots, deviations from the 
expected behavior may suggest an inappropriate structural model 
or residual error model. Q–Q, quantile–quantile.
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This function constitutes a nested model against a base 
model for CL because θ2 can be estimated as 0, reducing the 
covariate model to the base model. However, this parameter-
ization suffers from several shortcomings, the first is that the 
function assumes a linear relationship between the parame-
ter (e.g., CL) and covariate (e.g., weight) such that when the 
covariate value is low, the associated parameter is correspond-
ingly low, which rarely exists. Such models have limited utility 
for extrapolation. The use of functions such as a power function 
(shown below) or exponential functions are common. Another 
liability of this parameterization is that the covariate value is 
not normalized, which can create an “imbalance”: if the param-
eter being estimated is small (such as CL for drugs with long 
half-lives) and weight is large, it becomes numerically difficult 
to estimate covariate effects. Covariates are often centered or 
normalized as shown below. Centering should be used cau-
tiously; if an individual covariate value is low, the parameter can 
become negative, compromising the usefulness of the model 
for extrapolation and can cause numerical difficulties during 
estimation. Normalizing covariate values avoids these issues. 

Covariates can be normalized to the mean value in the data-
base, or more commonly to a reference value (such as 70 kg 
for weight). This parameterization also has the advantage that 
θ

1 (CL) is the typical value for the reference patient.

CL Weight Centered
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Weight

= −( )

= 



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2

⋅ ⋅

⋅ ⋅

exp( )

eexp( )η1 Normalized
� (20)

Holford31 provided rationale for using allometric functions with 
fixed covariate effects to account for changes in CL in pediat-
rics as they mature based on weight (the “allometric function”).
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Figure 6  Key diagnostic plots. Key diagnostic plots for an hypothetical data set for fentanyl given by two routes (i.v., s.c.) and two doses 
(50 and 200 µg) in 20 patients. In each plot, symbols are data points, the solid black line is a line with slope 1 or 0 and the solid red line is a 
Loess smoothed line. The LLOQ of the assay (0.05 ng/ml) is shown where appropriate by a dashed black line. (a) Observed concentration 
(OBS) vs. population-predicted concentration (PRED). Data are evenly distributed about the line of identity, indicating no major bias in the 
population component of the model. (b) OBS vs. individual-predicted concentration. Data are evenly distributed about the line of identity, 
indicating an appropriate structural model could be found for most individuals. (c) Conditional weighted residuals (CWRES) vs. time after 
dose (TAD). Data are evenly distributed about zero, indicating no major bias in the structural model. Conditioning the plots with color on group 
helps detect systematic differences in model fit between the groups (that may require revision to the structural model or a covariate). (d) 
CWRES vs. population-predicted concentration. Data are evenly distributed about zero, indicating no major bias in the residual error model. 
CWERS, conditional weighted residuals; IPRED, individual-predicted concentration; LLOQ, lower limit of quantification; OBS, observed; 
PRED, predicted; TAD, time after dose.
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Similarly, Tod et al.44 identified a maturation function (MF) 
based on postconception age describing CL changes of acy-
clovir in infants relative to adults.

MF
Postconception age

13.4 Postconception age

CL

6.17

6.17 6.17
=

+

iinfant 1 MF= θ η⋅ ⋅ exp( )1

� (22)

For both functions, covariate effects are commonly fixed to 
published values. This can be valuable if the database being 
evaluated does not include a large number of very young 
patients. However, such models are not nested and cannot 
be compared with other models using LRT; AIC or BIC are 
more appropriate.

For discrete data, there are two broad classes: dichoto-
mous (e.g., taking one of two possible values such as sex) 
and polychotomous (e.g., taking one of several possible val-
ues such as race or metabolizer status). For dichotomous 
data, the values of the covariate are usually set to 0 for the 
reference classification and 1 for the other classification. 
Common functions used to describe dichotomous covariate 
effects are shown below:

CL

CL Covariate

Covariate= ( )
= +( )
θ θ η

θ θ η
1 2 1

1 2 11

⋅ ⋅

⋅ ⋅ ⋅

exp( )

exp( )
� (23)

Polychotomous covariates such as race (which have no 
inherent ordering) can be evaluated using a different factor 
for each classification against a reference value or may be 

grouped into two categories depending on results of visual 
examination of the covariates. When polychotomous covari-
ates have an inherent order such as the East Coast Oncol-
ogy Group (ECOG) status where disease is normal at ECOG 
= 0 and most severe at ECOG = 4, then alternative functions 
can be useful:

CL Covariate= −( )( )θ θ η1 2 12⋅ ⋅ ⋅exp exp( )� (24)

MODEL EVALUATIONS

There are many aspects to the evaluation of a population 
pharmacokinetic model. The OBJ is generally used to dis-
criminate between models during early stages of model 
development, allowing elimination of unsatisfactory models. 
In later stages when a few candidate models are being con-
sidered for the final model, simulation-based methods such 
as the visual predictive check (VPC)45 may be more useful. 
For complex models, evaluations (e.g., bootstrap) may be 
time consuming and are applied only to the final model, if at 
all. Karlsson and Savic46 have provided an excellent critique 
of model diagnostics. Model evaluations should be selected 
to ensure the model is appropriate for intended use.

Graphical evaluations
The concept of a residual (RES, Cobs−Ĉ ) is straightforward 
and fundamental to modeling. However, the magnitude of the 
residual depends on the magnitude of the data. Weighted 

Figure 7  Goodness of fit plots. Goodness of fit plots for an hypothetical data set for fentanyl given by two routes (i.v., s.c.) and two doses 
(50 and 200 µg) in 20 patients. Each panel is data for one patient. Symbols are observed drug concentrations, solid lines are the individual-
predicted drug concentrations and dashed lines are the population-predicted drug concentrations. The LLOQ of the assay (0.05 ng/ml) is 
shown as a dashed black line. Each data set and model will require careful consideration of the suite of goodness of fit plots that are most 
informative. When plots are not able to be conditioned on individual subjects, caution is needed in pooling subjects so that information is not 
obscured and to ensure “like is compared with like”. LLOQ, lower limit of quantification.
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residuals (WRES) normalize the residuals so that the SD is 
1 allowing informative residual plots. WRES is analogous to 
a Z-score for the deviation between the model prediction and 
the data. The method for weighting is complex and depends 
on the estimation method,47 and hence a variety of WRES 
have been proposed. WRES should be normally distributed, 
centered around zero, and not biased by explanatory vari-
ables (Figure 5), which can be evaluated using histograms 
and q–q plots of WRES conditioned on key explanatory 
variables. Plots of WRES against time (Figure 6) should be 
evenly centered around zero, without systematic bias, and 
most values within −2 to +2 SDs (marking the ~5th and 95th 
percentiles of a normal distribution). Systematic deviations 
may imply deficiencies in the structural model. Plots of WRES 
against population-predicted concentration (Figure 6) should 
be evenly centered around zero, without systematic bias, with 
most values within −2 to +2 SDs. Systematic deviations may 
imply deficiencies in the RUV model. Plots of observed vs. 
population and individual-predicted concentration are also 
shown in Figure 6.

A fundamental plot is a plot of observed, population-pre-
dicted and individual-predicted concentrations against time. 
These plots should be structured using combinations log-
scales, faceting, and/or conditioning on explanatory variables 
to be as informative as possible. Plots of individual subjects 
may be possible if the number of subjects is low (Figure 7), 
or subjects may be randomly selected. Individual-predicted 
concentrations should provide an acceptable representation 
of the observed data, whereas the population-predicted con-
centrations should represent the “typical” patient (reflecting 
the center of pooled observed data).

Parameters: SE and confidence intervals
Most modeling packages report the precision of parameter 
estimates, which is derived from the shape of the likelihood 
surface near the best parameter estimates.2 Precision can 
be expressed as SE or confidence intervals (CI) and are 
interconvertible:

CI Parameter_Value SE= ± 1 96. ⋅� (25)

Precise parameter estimates are important (models with 
poor parameter precision are often overparameterized), but 
the level of precision that is acceptable depends on the size 
of the database. For most pharmacokinetic databases, <30% 
SE for fixed effects and <50% SE for random effects are usu-
ally achievable (SE for random effects are generally higher 
than for fixed effects). It is important to quantify the precision 
of parameters describing covariate effects, as these reflect 
the precision with which the covariate effect has been esti-
mated. CIs that include the null value for a covariate may 
imply the estimate of the covariate effect are unreliable.

Bootstrap methods are resampling techniques that provide 
an alternative for estimating parameter precision.48 They are 
useful to verify the robustness of standard approximations 
for parameter uncertainty in parametric models.49 Although 
asymptotic normality is a property of large-sample analy-
ses, in population pharmacometrics, the sample size is usu-
ally not large enough to justify this assumption. Therefore, 
CIs based on SE of the parameter estimates sometimes 

underestimate parameter uncertainty. Bootstrapping avoids 
parametric assumptions made when computing CIs using 
other methods.

Bootstrapping involves generating replicate data sets 
where individuals are randomly drawn from the original data-
base and can be drawn multiple times or not drawn for each 
replicate. In order to adequately reflect the parameter dis-
tributions, many replicates (e.g., ≥1,000) are generated and 
evaluated using the final model, and replicate parameter 
estimates are tabulated. The percentile bootstrap CI are con-
structed by taking the lower 2.5% and the upper 97.5% value 
of each parameter estimate from runs regardless of conver-
gence status (with exceptions for abnormal terminations), as 
this interval should cover the true value of the parameter esti-
mate ~ 95% of the time without imposing an assumption of 
symmetry on the distribution.

Bootstrap replicates can be used to generate the CI for 
model predictions. For example, when modeling concentra-
tions vs. time in adults and pediatrics, it may be necessary 
to show precision for average predictions within specific age 
and weight ranges in pediatrics. In this case, the bootstrap 
parameters can be used to construct a family of curves rep-
resenting the likely range of concentrations for patients with 
a given set of covariates.

VPC
VPCs generally involve simulation of data from the original or 
new database50 and offer benefits over standard diagnostic 
plots.45 The final model is used to simulate new data sets 
using the selected database design, and prediction intervals 
(usually 95%) are constructed from simulated concentra-
tion time profiles and compared with observed data. VPC 
can ensure that simulated data are consistent with observed 
data. VPC plots stratified for relevant covariates (such as 
age or weight groups), doses, or routes of administration are 
commonly constructed to demonstrate model performance 
in these subsets. Numerous VPC approaches are available, 
including the prediction-corrected VPC51 or a VPC utilizing 
adaptive dosing during simulation to reflect clinical study 
conduct.52

A related evaluation is the numerical predictive check 
which compares summary metrics from the database (e.g., 
a peak or trough concentration) with the same metric from 
simulated output.

CONCLUSION

There is no “correct” method for developing and evaluat-
ing population pharmacokinetic models. We have outlined 
a framework that may be useful to those new to this area. 
Population pharmacokinetic modeling can appear complex, 
but the methodology is easily tested. When initially assessing 
a method or equation, simplified test runs and plots using test 
data (whether simulated or subsets of real data) should be 
considered to ensure the method behaves as expected before 
use. For formal analyses, a systematic approach to model 
building, evaluation, and documentation where each compo-
nent is fully understood maximizes the chances of developing 
models that are “fit for purpose.”2 A good pharmacometrician 
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will see their role as extending beyond developing models 
for pharmacokinetic data. The model should translate phar-
macokinetic data into knowledge about a drug and suggest 
further evaluations. Population pharmacokinetic models not 
only provide answers, but should also generate questions.
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