APPLICATIONS OF MACHINE LEARNING IN DRUG DISCOVERY AND DEVELOPMENT

Presentation by:
- Carina Luchsinger Salinas
- Joshua Kanters
- Samuel Börlin
USES OF MACHINE LEARNING IN DRUG DISCOVERY

• Identify novel targets
• Improve compound design and optimization
• Developing new biomarkers
• Improving analysis of biometric data
• And more…

⇒ Employed in nearly all stages of drug discovery and development
HOW IS MACHINE LEARNING (ML) USED?

1. Choose suitable ML algorithm
2. Feed it a lot of data to make it learn e.g. statistical distributions or decision boundaries
3. Run trained ML algorithm on new data to make classifications or predictions
4. If results are not satisfactory, go back to 1. and try again with a different algorithm or parameters

→ ML algorithm learns from training data, instead of hand-crafting some classifier or predictor
CHOOSING THE RIGHT ML ALGORITHM

Goals:

• Good generalization, prevent overfitting (e.g. with dropout)
• Good classification or prediction accuracy

Two main categories: Supervised and Unsupervised

Source of figures: https://towardsdatascience.com/ and Pattern Recognition (10907) lecture exercise
How can we classify these points accurately using just hyperplanes (in 2D: lines)?
Calculate distances from hyperplanes and run distances through activation function:

- \(P_1' = (1, -1) \)
- \(P_2' = (1, 1) \)
- \(P_3' = (-1, -1) \)
- \(P_4' = (1, -1) \)

Class 1 (\(P_{1/4} \))
Class 2 (\(P_{2/3} \))
Now we can classify by checking on which side of the line the dots are!

These columns are called «layers» in machine learning terminology. Circles are called «neurons».
NEURAL NETWORKS

Fully connected neural network

Convolutional neural network

And many more: Deep NNs, Recurrent NNs, Long-short-term-memory NNs, etc...

Application in Drug discovery

Target Identification and Validation

<table>
<thead>
<tr>
<th>Stage:</th>
<th>Target Discovery</th>
<th>Lead Discovery</th>
<th>Lead Optimization</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Registration</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Success</td>
<td>63%</td>
<td>61%</td>
<td>64%</td>
<td>57%</td>
<td>56%</td>
<td>44%</td>
<td>60%</td>
<td>83%</td>
<td></td>
</tr>
</tbody>
</table>

Overall 1.8%

Source of figures: doi.org/10.1038/s41573-019-0024-5
Application in Drug discovery

Small-molecule design and optimization

Source of figure: doi.org/10.1038/s41573-019-0024-5
ML-BASED BIOMARKER DISCOVERY

• To improve clinical success rates
 • Identify the right drug for the right patient

• Using ML on preclinical data sets for biomarker prediction

• Why is biomarker prediction not applied for clinical trials?
Predictive Biomarkers

Drug discovery (preclinical)
- Molecular profiling
- Imaging
- IHC, etc.

Machine learning (SVM, EN, RF, etc.) to build drug sensitivity predictive models and identify biomarkers

Drug development (clinical trials)
- Disease category
- Drug response, etc.

Patient stratification, MOA and disease indication selection

Apply the model to patients and globally normalized internal or external data

Drug sensitivity predictive model and corresponding biomarker validated by independent testing data set(s) and preclinical or early-stage clinical trials

Source of figure: doi.org/10.1038/s41573-019-0024-5
MicroArray Quality Control II initiative

Computational Pathology

Source of figure: doi.org/10.1038/s41573-019-0024-5
CONCLUSION

Positive

• ML and DL can increase efficiency across drug discovery and development

• ML applications: target identification & validation, drug design, biomarkers, pathology and prognosis in the clinic

• ML already applied in pharmaceutical companies

Negative

• Lack of interpretability

• Repeatability is not ensured

• Patent application problems

• Underestimation of ML results?

• Availability of high-quality, accurate data