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Q1. What is the method commonly used to benchmark performance of different techniques of computer-aided drug design (CADD)? (Receiver
Operating Characteristic curves)

Q2: What do we mean by molecular dynamics? (A computer simulation method to analyze the movements of atoms and molecules using
Newtonian mechanistics)

Q3: What are the three basic methods to represent target and ligand structures in silico? (atomic, surface, and grid representations)

Q4: What sampling algorithms are there for protein-ligand docking? Can you explain one of them using your words? (systematic algorithms,
molecular dynamics simulations, Monte Carlo search with Metropolis Criterion and genetic algorithms)

Q5: What are the key steps in structure-based virtual high-throughput screenings (SB-vHTS)? (preparing structures, posing, scoring)

Q6: What is the usual starting point of structure-based CADD campaign? (Experimentally determined protein structures, preferably in complex
with ligands)

Q7: What do we mean by 'pharmacophore'? (model of the target binding site which summarizes steric and electronic features needed for
optimal interaction of a ligand with a target, a "subgraph" of a molecule with interesting properties for drug design/protein binding)

Q8: In QSAR analysis, why it is important to select optimal descriptors/features? (to reduce noise, to increase generalized performance, and
for hypothesis generation)

Q9: What do we mean by the acronyms DMPK and ADMET? (DMPK=drug metabolism and pharmacokinetics; ADMET= absorption,
distribution, metabolism, excretion, and the potential for toxicity)

Q10: Why common CADD methods have difficulties handling protein-protein interaction and protein-DNA interactions? (large interaction size,
lack of user-friendly tools, and comparably little training data)



NIX|/
NN
0N

>/|\/|\/

Questions

©
»C
wZ

1. s there a way that you could show us one of the CADD methods? (just a quick screen-share or something similar?) | think it would be
interesting to see an actual programme and how it's used. (The Nature Protocol paper provides a reproducible example, and check out
TeachOpenCADD)

2. How do you usually decide which CADD to use? Do you use several CADDs(structure-based and ligand-based) at the same time
usually? (experience + critical, ‘local’ examination)

3. And if | may ask, what is your experience with these different methods David? Do you use all of them equally often? And how useful are
the results of these prediction compared with experimental results? (limited personal experience, from interactions from colleagues, the
degree of predictivity varies a lot depending on the question)

4. Follow up Question of Q9): When on the time scale of drug discovery are those DMPK and ADMET properties evaluated/tested? (do
you mean by phase? Preclinical development, but sometimes also as early as lead identification)

5. In an other paper i found this statement: "DMPK minimizes the attrition rate of drug candidates." What is meant by attrition exactly?
(failure to bring a molecule to a product, decision not to pursue further activity about a molecule in R&D)

6. Would it be possible to set up a small toy example for some of the key methods? Maybe a small QSAR model (MD is out of scope)?
(see Q1)

7. Not really, although I'm really looking forward to the lectures on Computational methods in drug design, since it is my main interest!
Have a nice week.

8. | have a question regarding drugs, that are supposed to act in the brain. As | understand there is a barrier in the brain, preventing a lot
of molecules to enter (acting as protection). So it must be difficult to design drugs that can overcome this barrier. Can you and if so, how
take this into account, when doing CADD, meaning is there a way to score a molecule on how likely it is to be able to surpass this
barrier computationally? (different ways, from classical methods of adjusting PhyChem properties to new ways such as ‘brain shuttles’).



https://github.com/volkamerlab/teachopencadd
https://github.com/volkamerlab/teachopencadd

AMIDD Lecture 7: From network to cellular modelling
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Transcriptomics

Proteomics

Metabolomics

Omics data are projections of
high-dimensional biological space. It is an
inverse problem to infer a
high-dimensional space from its
projections.

Multiscale Modelling of Drug Mechanism
and Safety by Zhang, Sach-Peltason,
Kramer, Wang and Ebeling, Drug
Discovery Today, 2020



Topics

 Gene expression profiling: a case study of omics and cellular modelling
e Applications for drug safety: TG-GATEs

e Applications for drug mechanism of action: molecular phenotyping



Simulation of biological networks with ordinary differential

expression: the simplest case

Given the reaction

According to the law
of mass action

kl k‘

S+E=C—SP+E
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d[$]

— = —ki[E][S] + k2[C],

_C[gl = —ky[E)[S] + (ky + ks)[C,
% = ki [E][S] — (k2 + k3)[C],
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— = ks[C,

See Systems Enagineering Wiki (tue.nl) for MATLAB/COPASI codes and

Stochastic Modelling for Systems Biology by Darren J. Wilkinson

Given the initial values
and rate constants

It is possible to
simulate the
concentration
changes by time
deterministically.
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http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example
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Chemical Master Equations (CME): a particle model of
chemical reaction
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Giventhereacton A + B = C + D and the initial condition X(O) — G (K molecules of species A and of species B respectively)
ke
[0 |
M| =1 =2 it N
— — 0
The state vector X ()  can take at any time point one of the values i : 1 : 2 F—— .
0 2 K
BN | T | I |

Theoretically we can build an ODE system with K+7 equations to model every state of the reaction, down to every particle. In reality, the
dimension is so high so that a simulation is not feasible.

CME is a set of ODEs, with each ODE representing one possible state of the system. Solution of the kth equation

at time t is a real number giving the probability of system being in that particular state at that time.
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Reaction Rate Equations (RRE): a compartment model ey
RRE simulation of the
d[E] Michaelis-Menten model
— = —k;[BIIS] + k. [BS] + kel ES),
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B8] = k¢[E]o[S] Source: Systems Engineering Wiki (tue.nl)
ki (e + [S))

RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time tis

a real number representing the concentration of species j at time t.



http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

The Gillespie’s algorithm and the chemical Langevin equation

allow stochastic simulation of biological networks

30!

» The stochastic simulation algorithm (exact SSA), also called Gillespie’s algorithm, allows
stochastic simulation of a reaction.

200

* ltis performed in four steps

Molecules
P
N
=]

Initialize the system with initial conditions

Given a state at time ¢, we can define a probability p that reaction j takes place in
the time interval [t+71, t+7+d7). It is the product of two density functions of two
random variables: the probability of reaction j happens (proportional to the number

100

50

of substrate molecules), multiplied by the time until next reaction, which is
exponentially distributed. This is known as the Monte Carlo step.

Let the randomly selected reaction happen and update the time.

Iterate until substrates are exhausted or simulation time is over.

* Further computation tricks such as ‘tau-leaping’ by lumping together reactions are
possible. The chemical Langevin equation (CLE) replaces further accelerates stochastic
simulation by approximating the Poisson distribution with the normal distribution.

Molecules

Figure source and further reading: Higham, Desmond J. 2008. “Modeling and Simulating Chemical
Reactions.” SIAM Review 50 (2): 347-68. htips://doi.org/10.1137/060666457.
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https://doi.org/10.1137/060666457

Why stochastic modelling?

800

600¢t
X 400¢

200¢

+ Stochastic modelling can reveal individual trajectories
that are otherwise ‘averaged’ by ODE models.

+ Small systems and single-molecule studies show
stochastic behaviour.

« ltis possible to consider both extrinsic and intrinsic
factors and take them into the model.

Székely and Burrage. 2014. “Stochastic Simulation in Systems Biology.”

Computational and Structural Biotechnology Journal 12 (20-21): 14-25.

Also see Stochastic Modelling for Systems Biology by Darren J. Wilkinson.
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1. Molecular dynamics
4.1a Master equation*® 2. Individual-based
4.1b SSA*
4.2 Tau-leap/higherorder
4. Discrete stochastic
Advantages and disadvantages of several modelling/simulation methods.

Simulation method Cat. Advantages Disadvantages References Software

Master equation 4 Exact Very computationally intensive [85,143]

SSA 4 Statistically exact Very computationally intensive [82,109] COPASI [144]
StochKit [145]
STOCKS [146]
BioNetS [147]

Tau-leap 4 Relatively fast Approximate; too slow for large systems [83,113,118] StochKit [145]

or frequent/multiscale reactions
Higher-order 4 Relatively fast; accurate Approximate; too slow for large systems or [83,121,122,124,125]
frequent/multiscale reactions
Multiscale/hybrid 4 Fast; good for systems with disparate Approximate; problems with coupling [131,132,137,139,148] COPASI [144]
reaction scales different scales BioNetS [147]

Brownian dynamics 2 Tracks individual molecules Slow; molecule size must be artificially added [149,150] Smoldyn [149,151]
MCell [152]

Compartment-based 3 Accounts for diffusion between Slow; compartment size must be set manually; [150,153,154] MesoRD [153]

homogeneous compartments each compartment is homogeneous URDME [155]

SDE 5 Fast Continuous; Gaussian noise [76] BioNetS [147]

PDE (R-D) 6 Very fast; spatial Continous; no noise [156]

ODE 6 Very fast Continuous; no noise [157]

Cat. represents Category from Fig. 2. Abbreviations: SSA, stochastic simulation algorithm; SDE, stochastic differential equation; PDE (R-D), partial differential equation (classical reaction-
diffusion equations); ODE, ordinary differential equation.
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https://doi.org/10.1016/j.csbj.2014.10.003
https://doi.org/10.1016/j.csbj.2014.10.003

Biochemical system simulator COPASI

Freely available at http://COPASI|.ora/

COPASI supports two types of simulation

— Ordinary differential equation (ODE)
based simulation

— Stochastic kinetic simulation, among
others using the stochastic Runge—Kutta
method (RI5) and Gillespie’s algorithm

* Resources to learn more about
stochastic modelling: MIT
OpenCourseWare by Jeff Gore, and
Stochastic Processes: An
Introduction, Third Edition by Jones
and Smith

Tutorials also available on the website of
European Bioinformatics Institute (EBI)

The mathematical concept and software tools
are important for detailed analysis of enzymatic
reactions, especially in the presence of drugs
and/or disease-relevant mutation
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Huang and Ferrell, PNAS, 2006
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Concentrations, Volumes, and Global
Quantity Values 1

I« Values[MAPKKK_phosphorylation_ratio] I— [E1] =
[~ E21 [~ IMAPK-Pase]

I [MAPK-Pase_P-MAPK] | [MAPK-Pase_PP-MAPK]

[~ (MAPKK-Pase] | - [MAPKK-Pase_P-MAPKK]

[~ MAPKK-Pase_PP-MAPKK] | - [MAPKKK]

[~ tMAPKKK E11 [ tmaPkk]

[~ tmapk1 [ = P-mMAPKKK]

ODE-based simulation of
dynamics
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http://copasi.org/
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Gillespie_algorithm
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses
http://www.ebi.ac.uk/biomodels-main/courses
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Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and loannis Xenarios. 2012. “Implicit Methods for
Stéphane CHEDIN & Jean LABARRE, www-dsv.cea fr Qualitative Modeling of Gene Requlatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited
by Bart Deplancke and Nele Gheldof, 397-443. Methods in Molecular Biology. Totowa, NJ: Humana Press.
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https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22

Omics data are projections of high-dimensional biological space
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One challenge in drug discovery: non-clinical safety assessment
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human in vivo animal in vivo

* Limited in vitro-in vivo and
cross-species translatability

» Conflict between black-box
prediction methods and the need to
understand the mode of action

human in vitro animal in vitro

We need better (and interpretable) tools to predict safety profiles of drug candidates

13



Principles of gene expression profiling

=
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TG-GATEs: Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation system

170

Compounds

e Japanese Consortium 2002-2011
* National Institute of Biomedical Innovation, National Institute of Health Sciences, > 2 O O O
and 15 pharmaceutical companies, including Roche Chugai.

* Data fully released in 2012 to the public: Time-series and dose-dependent Cellular assays
experiments using 170 bioactive compounds

» Invitro & in vivo gene expression profiling, each containing gene expression data of > 1 2 O O O
about 20,000 genes

« In vitro PicoGreen DNA quantification assay Pathology records

 In vivo histopathology in liver and kidney

* In vivo clinical chemistry > 24 O O O

 Total raw data size >2 TB : _
Expression profiles

TG-GATEs is a valuable data source to study drug-induced toxicity in vitro and in vivo




We built a computational pipeline to identify early signatures of
toxicity

(a) Preprocessing and DEG analysis of
human primary hepatocyte data

'R High
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We integrate unsupervised learning, regression analysis, and network modelling to reach the goal
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We built a computational pipeline to identify early signatures of

toxicity (without animation)

(a) Preprocessing and DEG analysis of

human primary hepatocyte data >
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We integrate unsupervised learning, regression analysis, and network modelling to reach the goal

Genes

DNA content change (%)

(g) Boolean network
modelling & simulation

(b) Classify samples by integrating differential
expression with DNA quantification assay results

Sample groups

(c) Build
cytotoxicity matrices
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It is worth observing early

We found that early-response genes induced 2h after
compound administration are more generic (less specific)
than late-induced genes: they are more likely to be induced

by multiple compounds.

1 We hypothesize that diverse signalling pathways

«back-converge» to a few early-response genes, which can

be toxicity signatures.

Contrary to common wisdom (at the time), we argue that toxicogenomics should focus on early time points

5000 —
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The bow-tie structure of signalling networks as a model
that explains the power of early time point

Input layer

Receptors

Signal
processing
layers

Core
machineries

Transcription
factors

Output layer

Cellular r
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Adapted from Ami Citri and Yosef Yarden,
Nature Reviews Molecular Cell Biology (2005)
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We hypothesize that signalling pathways that mediate toxicity «back-converge» to a few early-response genes



Compound-induced cytotoxicity can be classified into
three levels by molecular phenotypes

ﬁ:—j Pico-Green fluorescence
2'0 2 ———— DNA quantification assay

N=601 N=264 N=76

DNA content
0
l

g —

5 1T
== O ° 5 =4
S - o

weak moderate strong

Unsupervised clustering identified groups of compounds associated with cytotoxicity



Cytotoxicity matrix and early signatures identified from progressive
profiles in vitro

g | toopidse | et

Vitamin A nitrofurantoin

: High -
T~ iddle —

Low —

I | | | | |
2h  8h 24h  2h 8h 24h

For predictive signatures, we focused
-1 on progressive cytotoxicity profiles (such
as the one in the red box) and identified
S - genes commonly regulated at 2h in such
profiles.
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i
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Unsupervised clustering allowed us to identify progressive cytotoxicity profiles



Expression patterns of early signatures in human

EGR1 GDF15 ATF3

LogFC compared to control

T T T
Oh 2h 8h  24h Oh 2h 8h  24h Oh 2h 8h  24h
FGF21 IL8 TOB2

LogFC compared to control

T T T
Oh 2h 8h 24h Oh 2h 8h 24h Oh 2h 8h 24h
Time Time Time

Genes which were consistently and significantly up- or down-regulated at 2h in progressive profiles were chosen as
signatures (]logFC|>0.25 & p<0.05). Purely data-driven: no biological knowledge was used for prioritization.

Each thin line represents one treatment, and the thick line represents the average.

Six early gene signatures of cytotoxicity were identified from human in vitro data
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A consensus signature set of cytotoxicity emerges
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Egr1 Gdf15

LogFC compared to control

Out of six early signatures in human, four are early
signatures of progressive profiles in rat: Egr1, Atf3,
Gdf15, and Fgf21. Atf3 Fgf21

IL-8 does not have rat orthologue; Tob2 shows a similar
pattern, but statistically was not significant.

LogFC compared to control

T
Oh 2h 8h 24h Oh 2h 8h 24h

Time Time
Early-response signatures in rat. Each thin line represents
one treatment, and the thick line represents the average.
The identification was driven by rat data only.

Out of six human signatures, four were also found in rat in vitro data
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Conserved dynamics of the early signatures in human and rat
primary hepatocytes
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Human Rat
EGR1 —— GDF15 —— Egr1 Gdf15——
FGF21 ATF3 — Fgf21 Atf3 ——

LogFC compared to control
LogFC compared to control

| | | | | | | |
Oh 2h 8h 24h Oh 2h 8h 24h
Time Time

Lines represent average inductions, and error bars indicate 95% confidence interval of
the average induction.

Almost identical regulation profiles in human and rat suggest evolutionary conservation

-



The genes form a functional network of early stress response with
conserved structure and conserved dynamics

Stress response J

llmmune responseJ

The early-response signature network, with downstream effects
described in literature and annotated in functional databases

Literature search and functional annotation helped us realize the genes form a functional network




EGR1 —— GDF15

FGF21 —— ATF3
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The network finding was translated from in vitro to in vivo,
and from liver to kidney
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» Support Vector Machines
(SVMS) were trained to predict in T ST Kidnoy SVMS
vivo pathology between 3hand 1,4 1.04
29d using gene expression M N o \_‘\‘\._//
changes of Egr1, Atf3, Gdf15, 87 087
and Fgf21 at 3h. 2 06 Network
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cross-validation in training v

0.6 Network
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samples. Then they are tested Time Time

on test samples, which mimic
new, unseen data.

The predictive power of the network is translated from in vitro to in vivo, and from liver to kidney




Summary of the work with TG-GATEs

A novel computational pipeline identified four genes -

EGR1, ATF3, GDF15, and FGF21 - that are induced as &
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The Pharmacogenomics Journal (2014) 14, 208-216

OPEN
© 2014 Macmillan Publishers Limited Al rights reserved 1470-269X/14

early as 2h after drug administration in human and rat
primary hepatocytes poised to eventually undergo cell
death.

Boolean network simulation reveals that the genes form
a functional network with evolutionarily conserved
structure and dynamics.

Confirming in vitro findings, early induction of the
network predicts drug-induced liver and kidney pathology
in vivo with high accuracy.

The findings are not only useful for safety assessment,
but also inspired the molecular-phenotyping platform.

www.nature.com/tpj

ORIGINAL ARTICLE
Data mining reveals a network of early-response genes as a
consensus signature of drug-induced in vitro and in vivo toxicity

JD Zhang, N Berntenis, A Roth and M Ebeling

Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point
experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression,
cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
system) database. Data mining highlights four genes—EGR1, ATF3, GDF15 and FGF21—that are induced 2 h after drug
administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and
simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and
intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney
pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and
understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of
safety evaluation.

The Pharmacogenomics Journal (2014) 14, 208-216; doi:10.1038/tpj.2013.39; published online 12 November 2013

Keywords: compound-induced toxicity; early-response genes; gene signature; TG-GATEs; toxicogenomics

Zhang et al., J Pharmacogenomics, 2014

Computational biology and bioinformatics help identifying safer drugs




Looking around and looking forward

Selected further work by external groups

Sutherland et al. (Lily), PLOS Comp Biol 2016, confirmed the difficulty to directly translate between different
systems

El-Hachem et al. (U Montreal), Environ Health Perspect 2016, confirmed that early toxicological response occurring
in animals is recapitulated in human and rat primary hepatocyte cultures at the molecular level

Thiel et al., (RWTH Aachen), PLOS Comp Biol 2017, used physiologically-based pharmacokinetic modeling to
characterize the transition from efficacious to toxic doses.

Shimada & Mitchison (Harvard), Mol Sys Bio 2019, used machine learning to characterize system-level response to
drugs and toxicants in TG-GATEs, and pinpointing underlying molecular mechanisms.

What we are doing

Gain molecule-level understanding of drug-induced histopathology

— Apply the knowledge to accelerate development and reduce attrition rate of new drugs

Leveraging stem-cell technology and omics for drug discovery & personalized safety

The four-gene network is not the end, but a start, for the community and for us
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An application of supervised machine learning for BL,\
drug-induced liver histopathology prediction
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Performance of different machine learning algorithms in the task of drug-induced liver histopathology prediction using differential gene
expression data. ISMB (2019) Poster by Fang et al. F, score is the harmonic mean of precision and recall.
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Molecular Phenotyping

A workflow to quantify expression of pre-defined pathway reporter genes at early time points

after perturbation to infer pathway activities, which may predict late-onset cellular phenotypes

Small Antibodies Oligonucleotides ~1000 pathway Next-generation
molecule , reporter genes sequencing
Therapeutic candidates ] \ —
Early time point (3-12h) | Molecular phenotyping ]
/ What pathways are perturbed
Human in vitro disease models ] by each compound?

Applications as screening tool.:

e Cluster compounds based on pathway profiles

* Detect false-positive hits in a phenotypic screen

» Correlate pathway activity with phenotypic readouts

Cell lines/  iPS-derived cells  Micro-p
primary (opt. genome S|olog|ca)(
cells editing) systems o



Pathway Reporter Genes

Public
databases

Commercial
assays
Manual
curation

(a) Knowledge integration

Pathway-gene bipartite graph

Biological
processes

. _S

Pathways

2 _s

Zhang et al. BMC Genomics (2015) 16:342
DOI 10.1186/512864-015-1532-2

BMC
Genomics

METHODOLOGY ARTICLE

Open Access

Pathway reporter genes define molecular

phenotypes of human cells

Jitao David Zhang, Erich Kiing, Franziska Boess, Ulrich Certa and Martin Ebeling’

Al

(b) Network construction

L—Gene3 TV
(Co-)expression by COXPRESSdb

(c) Gene prioritisation
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Pathway Reporter Genes
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(d) Panel customisation
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Difference in statistical modelling of microarray data and 2
next-generation sequencing count data

Microarray data: log-normal distributed, for
instance implemented in the limma package of
R/Bioconductor.

Bulk RNA-sequencing data: Negative-Binomial
distributed (or Poisson with overdispersion), for
instance implemented in both edgeR and
DESeq?2 package of R/Bioconductor.

Single-cell data: some authors recently suggest
that negative-binomial or Poisson distribution
suffices if the cell population is homogenous
(Kim, Tae Hyun, Xiang Zhou, and Mengjie
Chen. 2020. “Demystifying ‘Drop-Outs’ in
Single-Cell UMI Data.” Genome Biology 21 (1):
196), though many tools assume zero-inflated
negative-binomial model.

0.35
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_0.25/
4
3 0.20}
=
0.15/
0.10}

0.05

0.00!
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Poisson distribution with three
rate parameters, from
Wikimedia, reused with the CC
Attribution 3.0 license



https://doi.org/10.1186/s13059-020-02096-y
https://doi.org/10.1186/s13059-020-02096-y
https://commons.wikimedia.org/wiki/File:Poisson_pmf.svg

Two definitions of Negative-Binomial distribution

1.

The number of failures seen before getting n successes
(the inverse of Binomial Distribution, which the number
of successes in n independent trials)

Poisson-Gamma mixture distribution, weighted mixture
of Poisson distributions, where the rate parameter has
an uncertainty modelled by a Gamma distribution.

From Poisson distribution to Negative Binomial Distribution

M Poisson
B Negative Binomial

I

1e+08

Pooled gene-level variance (log10 scale)
1e+00 1e+04

5 50 500 5000

Mean gene expression level (log10 scale)

Credit of Jesse Lipp,
bioramble.wordpress.com
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Commonly used dimensionality reduction techniques

Principal component analysis (PCA)

t-SNE (t-distributed Stochastic Neighbor
Embedding)

UMAP (Uniform Manifold Approximation
and Projection) [A great talk by Leland
Mclnnes, the developer of UMAP, a
mathematician, Ph.D. In Profinite Lie
Rings]

For a recent overview of dimensionality
reduction techniques and their
applications in biology, see Nguyen, Lan
Huong, und Susan Holmes. “Ten Quick
Tips for Effective Dimensionality
Reduction®. PLOS Computational Biology
15, Nr. 6 (20. Juni 2019): e1006907.
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The Tabula Muris Consortium. 2018. “Single-Cell
Transcriptomics of 20 Mouse Organs Creates a Tabula
Muris.” Nature 562 (7727): 367.
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Cell distribution CyTOF (Panel 2)

e Patient group
. Ctrl
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v . Severe
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Major cell types

Class. monocytes
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- Eosinophils & Eo-like

NK cells & ILCs
\ T cells

& . B cells
Plasmablasts

Schulte-Schrepping, Jonas, Nico Reusch,

UMAP 2

UMAP 1

Daniela Paclik, Kevin Bal¥ler, Stephan
Schlickeiser, Bowen Zhang, Benjamin Kramer, et
al. 2020. “Severe COVID-19 Is Marked by a
Dysrequlated Myeloid Cell Compartment.” Cell
182 (6): 1419-1440.e23.
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https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.08.001

Data Analysis

1. Global gene
expression profiles

2. Differential gene

expression

3. Pathway
analysis

4. Integrative
analysis with other
data
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Pathway reporter genes faithfully capture global gene

expression patterns
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Data Analysis
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Molecular Phenotyping [counts]
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4. Integrative
analysis with other
data

AmpliSeq, like RNA-seq, shows higher dynamic range than

hybridization-based platforms
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Data Analysis

Stem-cell specific
pathways

Activity patterns of 154 human

metabolic and signaling networks
e AUring differentiation of induced
pluripotent stem-cells (iPS) into
cardiomyocytes.

1. Global gene
expression profiles

2. Differential gene
expression

- - Cyan: Pathway is activated

specific pathways

3. Pathway Black: Pathway is suppressed

analysis

4. Integrative
analysis with other

data Pathway reporter genes inform about pathway activity

patterns
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Data Analysis

1. Global gene
expression profiles

2. Differential gene
expression

3. Pathway
analysis

4. Integrative
analysis with other
data

In vitro
assay readouts

High-content
microscopy

Histopathology
records

Gene signatures
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Molecular phenotyping allows data integration
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iPS-derived cardiomyocyte model

<
Cell-based model of diabetic cardiomyopathy for phenotypic screening i}i
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Metabolic dysfunction promotes cardiomyopathy
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Integration of molecular and phenotypic information
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Integration of molecular and phenotypic information

Phenotypic readout (CMscore)

CMscore
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Clustering analysis of compounds and pathway responses

Pathway activity score
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Beneficial compounds generate specific pathway signatures

CMscor

CMscor
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Molecular phenotyping allows filtering of undesirable molecules

Camptothecin

n
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Compounds with undesirable pathway profiles can be eliminated from further testing
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Beneficial compound signatures are downregulated in

cardiomyopathy samples
Data Mining of GEO

20 datasets from human
and murine cardiomyopathy

¥

Generate surrogate
molecular phenotype by
analyzing panel expression

¥

Pathway analysis of
surrogate MP data

¥

Correlation with beneficial
and deleterious compound
pathway responses

GEO=NCBI Gene Expression Omnibus

Human and animal
cardiomyopathy studies

GSE29819.ARVC_left
GSE3586.DCM
GSEB82188.CalreticulinDCM
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GSE52601.ICM
GSE54681.Tamoxifen_d10
GSE63759.CoupTFII_OE
GSE54681.Tamoxifen_d3
GSE16909.EP4_KO
GSE71613.DCM

GSE54893 MCATwWithAZT_vs_MCAT

GSE67492.IDC
GSE16909.EF
GSE68857.PRKCEtransgen
GSE67492.BMPR2mut_PAH
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Negative correlation
with beneficial

— compound pathway
responses
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Pathway regulation by beneficial compounds

and in cardiomyopathy: the correlation


https://www.ncbi.nlm.nih.gov/geo/
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20 datasets from human down-regulated in patients/animal models

and murine cardiomyopathy
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Molecular phenotyping can enrich screening campaigns to select compounds with profiles with biological

relevance to patients




Molecular Phenotyping empowers Phenotypic Drug Discovery

Patient Molecular
Phenotype

| Hit i _Invivo Patient
=¥ ox o0 Lead— - ,
expansion testing % -
Obtain disease  / Assay biological r = Q
molecular informatioq rele\{gnce Optimization
lntegraté with Hits Bring biologically relevant

disease models therapies to patients

L

High-throughput/
high-content screening

Q™

@{\7\#‘«@ ¢

Molecular phenotyping
e (a) provides mechanistic validation of hits in successive screening campaigns,

e (b) enables undesirable and false-positive hits to be eliminated, and
e (c) brings biological relevance to screening assays by integrating patient information
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Summary

* Gene expression profiling: a case
study of omics and cellular
modelling

» Applications for drug safety:
TG-GATEs

» Applications for drug mechanism:

molecular phenotyping

 Current research topics
— Single-cell sequencing
— Spatial-transcriptomics
— Genome editing
— Microbiome
— High-content cellular imaging
— Integrative modelling
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Transcriptomics

Proteomics

Metabolomics
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1. Required reading (please submit your results to the Google Form, the link of which will be sent via a separate email)
a. Rudin, Markus, and Ralph Weissleder. 2003. “Molecular Imaging in Drug Discovery and Development.” Nature Reviews Drug
Discovery 2 (2): 123-31. htips://doi.org/10.1038/nrd1007.
b. Google Al blog: https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
c. Meijering, Erik, and Gert van Cappellen. 2006. “Biological Image Analysis Primer.”
https://imagescience.org/meijering/publications/1009/.
2. Think of further questions for the AMA session
+ Would you suggest a PhD for people who would like to work as a data scientist/bioinformaticians in industry?
* Would it be possible to join a pharma company such as Roche or Novartis directly after completing a MSc?
* What kind of different positions are there e.g. at Roche for people with a background in Bioinformatics/Computational Biology?
*  Where do you see the advantages/disadvantages of working in industry/academia?
» Best advice for a successful career in industry
* | would be interested in hearing a little bit more about how and where machine learning is used in drug discovery.
+ How do you experience the work-life balance in your job?



https://doi.org/10.1038/nrd1007
https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://imagescience.org/meijering/publications/1009/
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From single-cell analysis to spatial-transcriptomics BL,\

a FAIR data b Standard workflow
; A
- Count matrix AnnData object Filtering BawAnnDat Visualization Controls Gene Identification
- Genes data import g =
- Barcodes ey é g ’ M} Dotostod colls Use the sliders under the tissue image to adjust how you visualize and By placing the pointer above a gene name within the table, spots in the
- Metadata § 2 pRELLS combine the tissue image and the gene expression data. Colors represent tissue image will be colored based on the expression of that gene.
4 g clusters identified by differentially expressed genes. Alternatively, by placing the pointer above a value within the table, you can
bl ookad e e Lot observe the expression of a specific gene with the spots from an individual
o . — cluster highlighted.
Clmrrors Pocesan v [ B
- Average gene expression Highly variatle genes Leiden clustering = Cluster 1 2 3 4 5 6 7 8 9
- Fraction positive data export S < -
Leiden clustering . o Nptxr 35 11 22 47 18 41 16 12 31
clustert el
custor? Agt 059 20 36 12 078 042 32 26 0.61
QCreport ¢ g Ttr 35 49 30 48 31 26 27 28 38
ﬂuw; S s Pmch 077 18 45 15 056 079 13 063 066
Processed AnnData \_ ) Camk2n1 57 37 39 58 39 68 43 42 5.1
olfm1 56 28 35 59 31 55 32 36 45
hSad data obiect ¢ Sig-annot d Auto-annot Pcpl 49 28 42 A 20 25 33 62 30
v ~\ [ ~
S ot ype herarch Classifier fitling Prikcd 050 081 072 051 048 031 16 47 043
load ot o Cck 55 24 23 48 3.0 52 23 44 42
GeMS P> cignature2 coltypel — celtyped 1%
signatured —
signaturs storage s <mw?<:|.:: Nnat 22 27 52 38 16 12 30 18 24
- § § g g e Training data New data Plp1 48 79 48 39 36 31 60 62 37
st o st
- Nomenclatire Pracivted coll pé 6330403K07Rik 35 20 53 36 14 33 34 15 232
- Cpnﬂguratlon Cell g{?e Cell OmObLP annotation Ctxn1 45 17 32 47 16 39 13 11 30
- Signatures annotation nomenclature ety Leaict
'ﬁ.‘ Integrated data w7 e Atplal 42 27 31 42 18 49 23 20 30
ﬂ;.l;ﬁ.ﬂ e
dblabels
Annotated AnnData . wnk | ) \. J
Left:Madler, Sophia Clara, Alice Julien-Laferriere, Luis Wyss, Miroslav Phan, Albert S.
. . . “ H
Veed dma et e Bescape W. Kang, Eric Ulrich, Roland Schmucki, et al. 2020. “Besca, a Single-Cell
- . . . . P .
il P ey h Transcriptomics Analysis Toolkit to Accelerate Translational Research.” BioRxiv,
nnotated single- ata i % 2
Bulk RNA-ceq iR , , September, 2020.08.11.245795.
—— e Estimated cell type proportions
read | , =T — .
Bk AR 2= === - e e o Top: Spatial resolution of gene expression, which can be important for future digital
Gene Expression Profile . . . . . .
= pathology, source: https://www.10xgenomics.com/spatial-transcriptomics/
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https://doi.org/10.1101/2020.08.11.245795
https://doi.org/10.1101/2020.08.11.245795
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Summary and Q&A



