
Offline activities of Lecture 5&6 
Q1. What is the method commonly used to benchmark performance of different techniques of computer-aided drug design (CADD)? (Receiver 
Operating Characteristic curves)

Q2: What do we mean by molecular dynamics? (A computer simulation method to analyze the movements of atoms and molecules using 
Newtonian mechanistics)

Q3: What are the three basic methods to represent target and ligand structures in silico? (atomic, surface, and grid representations)

Q4: What sampling algorithms are there for protein-ligand docking? Can you explain one of them using your words? (systematic algorithms, 
molecular dynamics simulations, Monte Carlo search with Metropolis Criterion and genetic algorithms)

Q5: What are the key steps in structure-based virtual high-throughput screenings (SB-vHTS)? (preparing structures, posing, scoring)

Q6: What is the usual starting point of structure-based CADD campaign? (Experimentally determined protein structures, preferably in complex 
with ligands)

Q7: What do we mean by 'pharmacophore'? (model of the target binding site which summarizes steric and electronic features needed for 
optimal interaction of a ligand with a target,  a "subgraph" of a molecule with interesting properties for drug design/protein binding)

Q8: In QSAR analysis, why it is important to select optimal descriptors/features? (to reduce noise, to increase generalized performance, and 
for hypothesis generation)

Q9: What do we mean by the acronyms DMPK and ADMET? (DMPK=drug metabolism and pharmacokinetics; ADMET= absorption, 
distribution, metabolism, excretion, and the potential for toxicity)

Q10: Why common CADD methods have difficulties handling protein-protein interaction and protein-DNA interactions? (large interaction size, 
lack of user-friendly tools, and comparably little training data)
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Questions

1. Is there a way that you could show us one of the CADD methods? (just a quick screen-share or something similar?) I think it would be 
interesting to see an actual programme and how it's used. (The Nature Protocol paper provides a reproducible example, and check out 
TeachOpenCADD)

2. How do you usually decide which CADD to use? Do you use several CADDs(structure-based and ligand-based) at the same time 
usually? (experience + critical, ‘local’ examination)

3. And if I may ask, what is your experience with these different methods David? Do you use all of them equally often? And how useful are 
the results of these prediction compared with experimental results? (limited personal experience, from interactions from colleagues, the 
degree of predictivity varies a lot depending on the question)

4. Follow up Question of Q9): When on the time scale of drug discovery are those DMPK and ADMET properties evaluated/tested? (do 
you mean by phase? Preclinical development, but sometimes also as early as lead identification)

5. In an other paper i found this statement: "DMPK minimizes the attrition rate of drug candidates." What is meant by attrition exactly? 
(failure to bring a molecule to a product, decision not to pursue further activity about a molecule in R&D)

6. Would it be possible to set up a small toy example for some of the key methods? Maybe a small QSAR model (MD is out of scope)? 
(see Q1)

7. Not really, although I'm really looking forward to the lectures on Computational methods in drug design, since it is my main interest! 
Have a nice week.

8. I have a question regarding drugs, that are supposed to act in the brain. As I understand there is a barrier in the brain, preventing a lot 
of molecules to enter (acting as protection). So it must be difficult to design drugs that can overcome this barrier. Can you and if so, how 
take this into account, when doing CADD, meaning is there a way to score a molecule on how likely it is to be able to surpass this 
barrier computationally? (different ways, from classical methods of adjusting PhyChem properties to new ways such as ‘brain shuttles’).
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https://github.com/volkamerlab/teachopencadd
https://github.com/volkamerlab/teachopencadd


AMIDD Lecture 7: From network to cellular modelling

Omics data are projections of 
high-dimensional biological space. It is an 
inverse problem to infer a 
high-dimensional space from its 
projections.

Multiscale Modelling of Drug Mechanism 
and Safety by Zhang, Sach-Peltason, 
Kramer, Wang and Ebeling, Drug 
Discovery Today, 2020

Dr. Jitao David Zhang, Computational Biologist
1 Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche
2 Department of Mathematics and Informatics, University of Basel



Topics

• Gene expression profiling: a case study of omics and cellular modelling

• Applications for drug safety: TG-GATEs

• Applications for drug mechanism of action: molecular phenotyping
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Simulation of biological networks with ordinary differential 
expression: the simplest case
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Given the reaction

According to the law 
of mass action

Given the initial values 
and rate constants

It is possible to 
simulate the 
concentration 
changes by time 
deterministically.

See Systems Engineering Wiki (tue.nl) for MATLAB/COPASI codes and 
Stochastic Modelling for Systems Biology by Darren J. Wilkinson

http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example


Chemical Master Equations (CME): a particle model of 
chemical reaction
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Given the reaction and the initial condition  (K molecules of species A and of species B respectively)

The state vector can take at any time point one of the values

Theoretically we can build an ODE system with K+1 equations to model every state of the reaction, down to every particle. In reality, the 
dimension is so high so that a simulation is not feasible.

CME is a set of ODEs, with each ODE representing one possible state of the system. Solution of the kth equation 
at time t is a real number giving the probability of system being in that particular state at that time.



Reaction Rate Equations (RRE): a compartment model 

Source:   Systems Engineering Wiki (tue.nl) 
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RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time t is 
a real number representing the concentration of species j at time t.

RRE simulation of the 
Michaelis-Menten model

http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example


The Gillespie’s algorithm and the chemical Langevin equation 
allow stochastic simulation of biological networks

• The stochastic simulation algorithm (exact SSA), also called Gillespie’s algorithm, allows 
stochastic simulation of a reaction.

• It is performed in four steps

– Initialize the system with initial conditions
– Given a state at time t, we can define a probability p that reaction j takes place in 

the time interval [t+τ, t+τ+dτ). It is the product of two density functions of two 
random variables: the probability of reaction j happens (proportional to the number 
of substrate molecules), multiplied by the time until next reaction, which is 
exponentially distributed. This is known as the Monte Carlo step.

– Let the randomly selected reaction happen and update the time.
– Iterate until substrates are exhausted or simulation time is over.

• Further computation tricks such as ‘tau-leaping’ by lumping together reactions are 
possible. The chemical Langevin equation (CLE) replaces further accelerates stochastic 
simulation by approximating the Poisson distribution with the normal distribution.
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Figure source and further reading: Higham, Desmond J. 2008. “Modeling and Simulating Chemical 
Reactions.” SIAM Review 50 (2): 347–68. https://doi.org/10.1137/060666457.

https://doi.org/10.1137/060666457


Why stochastic modelling?

• Stochastic modelling can reveal individual trajectories 
that are otherwise ‘averaged’ by ODE models.

• Small systems and single-molecule studies show 
stochastic behaviour.

• It is possible to consider both extrinsic and intrinsic 
factors and take them into the model.
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Székely and Burrage. 2014. “Stochastic Simulation in Systems Biology.” 
Computational and Structural Biotechnology Journal 12 (20–21): 14–25. 
Also see Stochastic Modelling for Systems Biology by Darren J. Wilkinson.

https://doi.org/10.1016/j.csbj.2014.10.003
https://doi.org/10.1016/j.csbj.2014.10.003


Biochemical system simulator COPASI

• Freely available at http://COPASI.org/

• COPASI supports two types of simulation
– Ordinary differential equation (ODE) 

based simulation
– Stochastic kinetic simulation, among 

others using the stochastic Runge–Kutta 
method (RI5) and Gillespie’s algorithm

• Resources to learn more about 
stochastic modelling: MIT 
OpenCourseWare by Jeff Gore, and 
Stochastic Processes: An 
Introduction, Third Edition by Jones 
and Smith

• Tutorials also available on the website of 
European Bioinformatics Institute (EBI)

• The mathematical concept and software tools 
are important for detailed analysis of enzymatic 
reactions, especially in the presence of drugs 
and/or disease-relevant mutation
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Huang and Ferrell, PNAS, 2006

ODE-based simulation of 
dynamics

http://copasi.org/
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Gillespie_algorithm
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses
http://www.ebi.ac.uk/biomodels-main/courses


Modelling biological networks
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Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and Ioannis Xenarios. 2012. “Implicit Methods for 
Qualitative Modeling of Gene Regulatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited 
by Bart Deplancke and Nele Gheldof, 397–443. Methods in Molecular Biology. Totowa, NJ: Humana Press. 

https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22


Omics data are projections of high-dimensional biological space
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One challenge in drug discovery: non-clinical safety assessment

• Limited in vitro-in vivo and 
cross-species translatability

• Conflict between black-box 
prediction methods and the need to 
understand the mode of action

animal in vivo

animal in vitrohuman in vitro

human in vivo

We need better (and interpretable) tools to predict safety profiles of drug candidates
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Principles of gene expression profiling

DNA RNA Protein

DNA replication

Transcription

Reverse
transcription

Translation

Figures: Wikimedia Commons/Thomas Shafee, CC/Adapted

Gene expression 
profiling

Differential Gene 
Expression

Pathway/network 
analysis
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TG-GATEs: Toxicogenomics 
Project-Genomics Assisted Toxicity Evaluation system

• Japanese Consortium 2002-2011
• National Institute of Biomedical Innovation, National Institute of Health Sciences, 

and 15 pharmaceutical companies, including Roche Chugai.

• Data fully released in 2012 to the public: Time-series and dose-dependent 
experiments using 170 bioactive compounds

• In vitro & in vivo gene expression profiling, each containing gene expression data of 
about 20,000 genes

• In vitro PicoGreen DNA quantification assay
• In vivo histopathology in liver and kidney
• In vivo clinical chemistry 

• Total raw data size >2 TB

170
Compounds

>2000
Cellular assays

>12000
Pathology records

>24000
Expression profiles

TG-GATEs is a valuable data source to study drug-induced toxicity in vitro and in vivo
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We built a computational pipeline to identify early signatures of 
toxicity

We integrate unsupervised learning, regression analysis, and network modelling to reach the goal
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We built a computational pipeline to identify early signatures of 
toxicity (without animation)

We integrate unsupervised learning, regression analysis, and network modelling to reach the goal
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It is worth observing early

• We found that early-response genes induced 2h after 
compound administration are more generic (less specific) 
than late-induced genes: they are more likely to be induced 
by multiple compounds.

• 🡪 We hypothesize that diverse signalling pathways 
«back-converge» to a few early-response genes, which can 
be toxicity signatures.
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Contrary to common wisdom (at the time), we argue that toxicogenomics should focus on early time points



The bow-tie structure of signalling networks as a model 
that explains the power of early time point
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Adapted from Ami Citri and Yosef Yarden,
Nature Reviews Molecular Cell Biology (2005)

 

Input layer

Signal 
processing 
layers

Output layer

We hypothesize that signalling pathways that mediate toxicity «back-converge» to a few early-response genes



Compound-induced cytotoxicity can be classified into 
three levels by molecular phenotypes
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Genes

S
am

pl
es

Pico-Green fluorescence 
DNA quantification assay

Unsupervised clustering identified groups of compounds associated with cytotoxicity



Cytotoxicity matrix and early signatures identified from progressive 
profiles in vitro

For predictive signatures, we focused 
on progressive cytotoxicity profiles (such 
as the one in the red box) and identified 
genes commonly regulated at 2h in such 
profiles. 

Unsupervised clustering allowed us to identify progressive cytotoxicity profiles 21



Expression patterns of early signatures in human

Genes which were consistently and significantly up- or down-regulated at 2h in progressive profiles were chosen as 
signatures (|logFC|>0.25 & p<0.05). Purely data-driven: no biological knowledge was used for prioritization.

Each thin line represents one treatment, and the thick line represents the average.

Six early gene signatures of cytotoxicity were identified from human in vitro data 22



A consensus signature set of cytotoxicity emerges

Out of six early signatures in human, four are early 
signatures of progressive profiles in rat: Egr1, Atf3, 
Gdf15, and Fgf21. 

IL-8 does not have rat orthologue; Tob2 shows a similar 
pattern, but statistically was not significant.

Early-response signatures in rat. Each thin line represents 
one treatment, and the thick line represents the average. 
The identification was driven by rat data only.

Out of six human signatures, four were also found in rat in vitro data 23



Conserved dynamics of the early signatures in human and rat 
primary hepatocytes

Lines represent average inductions, and error bars indicate 95% confidence interval of 
the average induction.

Human Rat

Almost identical regulation profiles in human and rat suggest evolutionary conservation 24



The genes form a functional network of early stress response with 
conserved structure and conserved dynamics

The early-response signature network, with downstream effects 
described in literature and annotated in functional databases

Literature search and functional annotation helped us realize the genes form a functional network
25



Boolean network modelling 
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• Boolean network simulation results (Nikolaos Berntenis and Martin Ebeling, BMC 
Genomics 2013) support the hypothesis that the conserved dynamics of the 
network in human and rat is encoded in the conserved structure of the 
network.

• Permutation results suggest that ATF3 is an important node to maintain the 
network dynamics.

Boolean network modelling revealed that the dynamics is intrinsic to the network



The network finding was translated from in vitro to in vivo, 
and from liver to kidney

• Support Vector Machines 
(SVMs) were trained to predict in 
vivo pathology between 3h and 
29d using gene expression 
changes of Egr1, Atf3, Gdf15, 
and Fgf21 at 3h.

• Profiles were randomly split into 
training samples (80%) and test 
samples (20%).

• SVMs are trained by 10-fold 
cross-validation in training 
samples. Then they are tested 
on test samples, which mimic 
new, unseen data.

The predictive power of the network is translated from in vitro to in vivo, and from liver to kidney
27



Summary of the work with TG-GATEs

• A novel computational pipeline identified four genes - 
EGR1, ATF3, GDF15, and FGF21 - that are induced as 
early as 2h after drug administration in human and rat 
primary hepatocytes poised to eventually undergo cell 
death. 

• Boolean network simulation reveals that the genes form 
a functional network with evolutionarily conserved 
structure and dynamics. 

• Confirming in vitro findings, early induction of the 
network predicts drug-induced liver and kidney pathology 
in vivo with high accuracy. 

• The findings are not only useful for safety assessment, 
but also inspired the molecular-phenotyping platform.

Zhang et al., J Pharmacogenomics, 2014

Computational biology and bioinformatics help identifying safer drugs
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Looking around and looking forward

• Selected further work by external groups
– Sutherland et al. (Lily), PLOS Comp Biol 2016, confirmed the difficulty to directly translate between different 

systems
– El-Hachem et al. (U Montreal), Environ Health Perspect 2016, confirmed that early toxicological response occurring 

in animals is recapitulated in human and rat primary hepatocyte cultures at the molecular level
– Thiel et al., (RWTH Aachen), PLOS Comp Biol 2017, used physiologically-based pharmacokinetic modeling to 

characterize the transition from efficacious to toxic doses.
– Shimada & Mitchison (Harvard), Mol Sys Bio 2019, used machine learning to characterize system-level response to 

drugs and toxicants in TG-GATEs, and pinpointing underlying molecular mechanisms.

• What we are doing
– Gain molecule-level understanding of drug-induced histopathology
– Apply the knowledge to accelerate development and reduce attrition rate of new drugs
– Leveraging stem-cell technology and omics for drug discovery & personalized safety

The four-gene network is not the end, but a start, for the community and for us
29



An application of supervised machine learning for 
drug-induced liver histopathology prediction
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Performance of different machine learning algorithms in the task of drug-induced liver histopathology prediction using differential gene 
expression data. ISMB (2019) Poster by Fang et al. F1 score is the harmonic mean of precision and recall.



Molecular Phenotyping

1/10

Applications as screening tool:
• Cluster compounds based on pathway profiles
• Detect false-positive hits in a phenotypic screen
• Correlate pathway activity with phenotypic readouts

A workflow to quantify expression of pre-defined pathway reporter genes at early time points 
after perturbation to infer pathway activities, which may predict late-onset cellular phenotypes

Human in vitro disease models

Micro-phy
siological 
systems

iPS-derived cells
(opt. genome 

editing)

Cell lines/
primary 

cells

Small 
molecule

Antibodies Oligonucleotides

Therapeutic candidates

Early time point  (3-12h)
What pathways are perturbed 
by each compound?

Molecular phenotyping

~1000 pathway 
reporter genes

Next-generation
sequencing



Pathway Reporter Genes
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154 human metabolic and signaling pathways captured by molecular 
phenotyping
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Difference in statistical modelling of microarray data and 
next-generation sequencing count data

• Microarray data: log-normal distributed, for 
instance implemented in the limma package of 
R/Bioconductor.

• Bulk RNA-sequencing data: Negative-Binomial 
distributed (or Poisson with overdispersion), for 
instance implemented in both edgeR and 
DESeq2 package of R/Bioconductor.

• Single-cell data: some authors recently suggest 
that negative-binomial or Poisson distribution 
suffices if the cell population is homogenous 
(Kim, Tae Hyun, Xiang Zhou, and Mengjie 
Chen. 2020. “Demystifying ‘Drop-Outs’ in 
Single-Cell UMI Data.” Genome Biology 21 (1): 
196), though many tools assume zero-inflated 
negative-binomial model.
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Poisson distribution with three 
rate parameters, from 
Wikimedia, reused with the CC 
Attribution 3.0 license

https://doi.org/10.1186/s13059-020-02096-y
https://doi.org/10.1186/s13059-020-02096-y
https://commons.wikimedia.org/wiki/File:Poisson_pmf.svg


From Poisson distribution to Negative Binomial Distribution

Two definitions of Negative-Binomial distribution

1. The number of failures seen before getting n successes 
(the inverse of Binomial Distribution, which the number 
of successes in n independent trials)

2. Poisson-Gamma mixture distribution, weighted mixture 
of Poisson distributions, where the rate parameter has 
an uncertainty modelled by a Gamma distribution.

35

Credit of Jesse Lipp, 
bioramble.wordpress.com



Commonly used dimensionality reduction techniques

• Principal component analysis (PCA)

• t-SNE (t-distributed Stochastic Neighbor 
Embedding)

• UMAP (Uniform Manifold Approximation 
and Projection) [A great talk by Leland 
McInnes, the developer of UMAP, a 
mathematician, Ph.D. In Profinite Lie 
Rings]

• For a recent overview of dimensionality 
reduction techniques and their 
applications in biology, see Nguyen, Lan 
Huong, und Susan Holmes. “Ten Quick 
Tips for Effective Dimensionality 
Reduction“. PLOS Computational Biology 
15, Nr. 6 (20. Juni 2019): e1006907. 
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The Tabula Muris Consortium. 2018. “Single-Cell 
Transcriptomics of 20 Mouse Organs Creates a Tabula 
Muris.” Nature 562 (7727): 367.

Schulte-Schrepping, Jonas, Nico Reusch, 
Daniela Paclik, Kevin Baßler, Stephan 
Schlickeiser, Bowen Zhang, Benjamin Krämer, et 
al. 2020. “Severe COVID-19 Is Marked by a 
Dysregulated Myeloid Cell Compartment.” Cell 
182 (6): 1419-1440.e23.

https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.08.001


Data Analysis

1. Global gene 
expression profiles

2. Differential gene 
expression

3. Pathway 
analysis

4. Integrative 
analysis with other 

data
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Pathway reporter genes faithfully capture global gene 
expression patterns



Data Analysis

1. Global gene 
expression profiles

2. Differential gene 
expression

3. Pathway 
analysis

4. Integrative 
analysis with other 

data
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AmpliSeq, like RNA-seq, shows higher dynamic range than 
hybridization-based platforms



Data Analysis

1. Global gene 
expression profiles

2. Differential gene 
expression

3. Pathway 
analysis

4. Integrative 
analysis with other 

data
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Activity patterns of 154 human 
metabolic and signaling networks 
during differentiation of induced 
pluripotent stem-cells (iPS) into 
cardiomyocytes.

Cyan: Pathway is activated

Black: Pathway is suppressed

Pathway reporter genes inform about pathway activity 
patterns



Data Analysis

1. Global gene 
expression profiles

2. Differential gene 
expression

3. Pathway 
analysis

4. Integrative 
analysis with other 

data
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High-content 
microscopy

In vitro 
assay readouts

Histopathology 
records

Gene signatures

Molecular phenotyping allows data integration



Cell-based model of diabetic cardiomyopathy for phenotypic screening 

Diabetic 
Cardiomyopathy

Normal

?
Can the effect of diabetes on cardiomyocytes be 

modelled in vitro?

Metabolic dysfunction promotes cardiomyopathy

Diabetic cardiomyocyte metabolism

Diabetic 
medium

iPS-derived cardiomyocyte model

Glucose, Insulin, Fatty Acids
Cortisol, Endothelin-1

α-
ac
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, D
A

PI

Decreased CM 
score

High-cont
ent 

analysis
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Determining the optimal time-point for molecular phenotyping

Maximal dynamic range at 12 hours

Phenotypic screening performed after 48 hours

Lycorine and positive control manipulate similar pathways

Mechanistic enrichment of screening data 42



Integration of molecular and phenotypic information
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Integration of molecular and phenotypic information

Lycorine: Protein synthesis 
inhibitor

Nigericin: Potassium 
ionophore
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Clustering analysis of compounds and pathway responses

Pathways associated with CM score 

Beneficial compounds regulate favorable 
pathways positively and unfavorable 
pathways negatively

Beneficial compounds have higher CMscore

Deleterious compounds regulate 
unfavorable pathways positively and 
favorable pathways negatively

Deleterious compounds have lower 
CMscore
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Beneficial compounds generate specific pathway signatures

C
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Beneficial compound Deleterious compound

Beneficial compounds 
negatively regulate

Beneficial compounds 
positively regulate

Pathway activity score

46

Pathway signatures can be monitored during screening
campaigns for maintained beneficial mechanistic effects



Molecular phenotyping allows filtering of undesirable molecules

Camptothecin

10-hydroxycamptotheci
n

• Topoisomerase inhibitors

• Produced high CMscore in 
the  phenotypic assay

• Identified as ‘hits’ 

• Cluster with beneficial 
compounds 

Induce target genes of apoptosis 
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Compounds with undesirable pathway profiles can be eliminated from further testing



Beneficial compound signatures are downregulated in 
cardiomyopathy samples
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Negative correlation 
with beneficial 
compound pathway 
responses

Data Mining of GEO
20 datasets from human 

and murine cardiomyopathy

Generate surrogate 
molecular phenotype by 

analyzing panel expression

Pathway analysis of 
surrogate MP data

Correlation with beneficial 
and deleterious compound 

pathway responses
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GEO=NCBI Gene Expression Omnibus

https://www.ncbi.nlm.nih.gov/geo/


Beneficial compound signatures are downregulated in cardiomyopathy 
samples

Data Mining of GEO
20 datasets from human 

and murine cardiomyopathy

Generate surrogate 
molecular phenotype by 

analyzing panel expression

Pathway analysis of 
surrogate MP data

Correlation with beneficial 
and deleterious compound 

pathway responses
Unfavorable pathways tend to be 
up-regulated in patients/animal models

Favorable pathways tend to be 
down-regulated in patients/animal models
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Molecular phenotyping can enrich screening campaigns to select compounds with profiles with biological 
relevance to patients



Molecular Phenotyping empowers Phenotypic Drug Discovery
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Molecular phenotyping 
● (a) provides mechanistic validation of hits in successive screening campaigns,
● (b) enables undesirable and false-positive hits to be eliminated, and
●  (c) brings biological relevance to screening assays by integrating patient information



Summary

• Gene expression profiling: a case 
study of omics and cellular 
modelling

• Applications for drug safety: 
TG-GATEs

• Applications for drug mechanism: 
molecular phenotyping

• Current research topics
– Single-cell sequencing
– Spatial-transcriptomics
– Genome editing
– Microbiome
– High-content cellular imaging
– Integrative modelling
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Offline activities

1. Required reading (please submit your results to the Google Form, the link of which will be sent via a separate email)
a. Rudin, Markus, and Ralph Weissleder. 2003. “Molecular Imaging in Drug Discovery and Development.” Nature Reviews Drug 

Discovery 2 (2): 123–31. https://doi.org/10.1038/nrd1007.
b. Google AI blog: https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
c. Meijering, Erik, and Gert van Cappellen. 2006. “Biological Image Analysis Primer.” 

https://imagescience.org/meijering/publications/1009/.
2. Think of further questions for the AMA session

• Would you suggest a PhD for people who would like to work as a data scientist/bioinformaticians in industry?
• Would it be possible to join a pharma company such as Roche or Novartis directly after completing a MSc?
• What kind of different positions are there e.g. at Roche for people with a background in Bioinformatics/Computational Biology?
• Where do you see the advantages/disadvantages of working in industry/academia?
• Best advice for a successful career in industry
• I would be interested in hearing a little bit more about how and where machine learning is used in drug discovery.
• How do you experience the work-life balance in your job?
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https://doi.org/10.1038/nrd1007
https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://imagescience.org/meijering/publications/1009/


From single-cell analysis to spatial-transcriptomics

Left:Mädler, Sophia Clara, Alice Julien-Laferriere, Luis Wyss, Miroslav Phan, Albert S. 
W. Kang, Eric Ulrich, Roland Schmucki, et al. 2020. “Besca, a Single-Cell 
Transcriptomics Analysis Toolkit to Accelerate Translational Research.” BioRxiv, 
September, 2020.08.11.245795.

Top: Spatial resolution of gene expression, which can be important for future digital 
pathology, source: https://www.10xgenomics.com/spatial-transcriptomics/
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https://doi.org/10.1101/2020.08.11.245795
https://doi.org/10.1101/2020.08.11.245795


Summary and Q&A


