Offline activities of Lecture 5&6

UNI BASEL

Q1. What is the method commonly used to benchmark performance of different techniques of computer-aided drug design (CADD)? (Receiver Operating Characteristic curves)

Q2: What do we mean by molecular dynamics? (A computer simulation method to analyze the movements of atoms and molecules using Newtonian mechanistics)

Q3: What are the three basic methods to represent target and ligand structures in silico? (atomic, surface, and grid representations)

Q4: What sampling algorithms are there for protein-ligand docking? Can you explain one of them using your words? (systematic algorithms, molecular dynamics simulations, Monte Carlo search with Metropolis Criterion and genetic algorithms)

Q5: What are the key steps in structure-based virtual high-throughput screenings (SB-vHTS)? (preparing structures, posing, scoring)

Q6: What is the usual starting point of structure-based CADD campaign? (Experimentally determined protein structures, preferably in complex with ligands)

Q7: What do we mean by 'pharmacophore'? (model of the target binding site which summarizes steric and electronic features needed for optimal interaction of a ligand with a target, a "subgraph" of a molecule with interesting properties for drug design/protein binding)

Q8: In QSAR analysis, why it is important to select optimal descriptors/features? (to reduce noise, to increase generalized performance, and for hypothesis generation)

Q9: What do we mean by the acronyms *DMPK* and *ADMET*? (DMPK=drug metabolism and pharmacokinetics; ADMET= absorption, distribution, metabolism, excretion, and the potential for toxicity)

Q10: Why common CADD methods have difficulties handling protein-protein interaction and protein-DNA interactions? (large interaction size, lack of user-friendly tools, and comparably little training data)

Questions

- Is there a way that you could show us one of the CADD methods? (just a quick screen-share or something similar?) I think it would be interesting to see an actual programme and how it's used. (The Nature Protocol paper provides a reproducible example, and <u>check out</u> <u>TeachOpenCADD</u>)
- 2. How do you usually decide which CADD to use? Do you use several CADDs(structure-based and ligand-based) at the same time usually? (experience + critical, 'local' examination)
- 3. And if I may ask, what is your experience with these different methods David? Do you use all of them equally often? And how useful are the results of these prediction compared with experimental results? (limited personal experience, from interactions from colleagues, the degree of predictivity varies a lot depending on the question)
- 4. Follow up Question of Q9): When on the time scale of drug discovery are those DMPK and ADMET properties evaluated/tested? (do you mean by phase? Preclinical development, but sometimes also as early as lead identification)
- 5. In an other paper i found this statement: "DMPK minimizes the attrition rate of drug candidates." What is meant by attrition exactly? (failure to bring a molecule to a product, decision not to pursue further activity about a molecule in R&D)
- Would it be possible to set up a small toy example for some of the key methods? Maybe a small QSAR model (MD is out of scope)? (see Q1)
- 7. Not really, although I'm really looking forward to the lectures on Computational methods in drug design, since it is my main interest! Have a nice week.
- 8. I have a question regarding drugs, that are supposed to act in the brain. As I understand there is a barrier in the brain, preventing a lot of molecules to enter (acting as protection). So it must be difficult to design drugs that can overcome this barrier. Can you and if so, how take this into account, when doing CADD, meaning is there a way to score a molecule on how likely it is to be able to surpass this barrier computationally? (different ways, from classical methods of adjusting PhyChem properties to new ways such as 'brain shuttles').

AMIDD Lecture 7: From network to cellular modelling

Omics data are projections of high-dimensional biological space. It is an *inverse problem* to infer a high-dimensional space from its projections.

Multiscale Modelling of Drug Mechanism and Safety by Zhang, Sach-Peltason, Kramer, Wang and Ebeling, Drug Discovery Today, 2020

Dr. Jitao David Zhang, Computational Biologist

¹ Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche ² Department of Mathematics and Informatics, University of Basel

Topics

- Gene expression profiling: a case study of omics and cellular modelling
- Applications for drug safety: TG-GATEs
- Applications for drug mechanism of action: molecular phenotyping

Simulation of biological networks with ordinary differential expression: the simplest case

Given the reaction

$$\mathrm{S} + \mathrm{E} \rightleftharpoons \mathrm{C} \xrightarrow{\kappa_3} \mathrm{P} + \mathrm{E}$$
 k_2

La.

ka

Given the initial values and rate constants

According to the law of mass action

$$egin{aligned} &rac{d[S]}{dt} = -k_1[E][S] + k_2[C], \ &rac{d[E]}{dt} = -k_1[E][S] + (k_2 + k_3)[C], \ &rac{d[C]}{dt} = k_1[E][S] - (k_2 + k_3)[C], \ &rac{d[P]}{dt} = k_3[C], \end{aligned}$$

It is possible to simulate the concentration changes by time *deterministically*.

See <u>Systems Engineering Wiki (tue.nl)</u> for MATLAB/COPASI codes and *Stochastic Modelling for Systems Biology* by Darren J. Wilkinson UNI BASEL

Chemical Master Equations (CME): a particle model of chemical reaction

Given the reaction
$$A + B \rightleftharpoons_{k_2}^{k_1} C + D$$
 and the initial condition $X(0) = \begin{bmatrix} K \\ K \\ 0 \\ 0 \end{bmatrix}$ (*K* molecules of species A and of species B respectively)
The state vector $X(t)$ can take at any time point *one* of the values $\begin{bmatrix} K \\ K \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K-1 \\ K-1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} K-2 \\ K-2 \\ 2 \\ 2 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ K \\ K \end{bmatrix},$

Theoretically we can build an ODE system with *K*+1 equations to model *every state of the reaction*, down to every particle. In reality, the dimension is so high so that a simulation is not feasible.

CME is a set of ODEs, with each ODE representing one possible state of the system. Solution of the *k*th equation at time *t* is a real number giving the probability of system being in that particular state at that time.

Reaction Rate Equations (RRE): a compartment model

RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the *j*th equation at time *t* is a real number representing the concentration of species *j* at time *t*.

UNI BASEL

The Gillespie's algorithm and the chemical Langevin equation allow stochastic simulation of biological networks

- The *stochastic simulation algorithm* (exact SSA), also called *Gillespie's algorithm*, allows stochastic simulation of a reaction.
- It is performed in four steps
 - Initialize the system with initial conditions
 - Given a state at time *t*, we can define a probability *p* that reaction *j* takes place in the time interval [*t*+*τ*, *t*+*τ*+d*τ*). It is the product of two density functions of two random variables: the probability of reaction *j* happens (proportional to the number of substrate molecules), multiplied by the time until next reaction, which is exponentially distributed. This is known as the *Monte Carlo* step.
 - Let the randomly selected reaction happen and update the time.
 - Iterate until substrates are exhausted or simulation time is over.
- Further computation tricks such as 'tau-leaping' by lumping together reactions are possible. The chemical Langevin equation (CLE) replaces further accelerates stochastic simulation by approximating the Poisson distribution with the normal distribution.

Figure source and further reading: Higham, Desmond J. 2008. "Modeling and Simulating Chemical Reactions." *SIAM Review* 50 (2): 347–68. <u>https://doi.org/10.1137/060666457</u>.

Why stochastic modelling?

- Stochastic modelling can reveal individual trajectories that are otherwise 'averaged' by ODE models.
- Small systems and single-molecule studies show stochastic behaviour.
- It is possible to consider both extrinsic and intrinsic factors and take them into the model.

Székely and Burrage. 2014. "<u>Stochastic Simulation in Systems Biology.</u>" *Computational and Structural Biotechnology Journal* 12 (20–21): 14–25. Also see *Stochastic Modelling for Systems Biology* by Darren J. Wilkinson.

Advantages and disadvantages of several modelling/simulation methods.

Simulation method	Cat.	Advantages	Disadvantages	References	Software	
Master equation	4	Exact	Very computationally intensive	[85,143]		
SSA	4	Statistically exact	Very computationally intensive	[82,109]	COPASI [144] StochKit [145] STOCKS [146] BioNetS [147]	
Tau-leap	4	Relatively fast	Approximate; too slow for large systems or frequent/multiscale reactions	[83,113,118]	StochKit [145]	
Higher-order	4	Relatively fast; accurate	Approximate; too slow for large systems or frequent/multiscale reactions	[83,121,122,124,125]		
Multiscale/hybrid 4		Fast; good for systems with disparate reaction scales	Approximate; problems with coupling different scales	[131,132,137,139,148]	COPASI [144] BioNetS [147]	
Brownian dynamics	2	Tracks individual molecules	Slow; molecule size must be artificially added	[149,150]	Smoldyn [149,151] MCell [152]	
Compartment-based	3	Accounts for diffusion between homogeneous compartments	Slow; compartment size must be set manually; each compartment is homogeneous	[150,153,154]	MesoRD [153] URDME [155]	
SDE	5	Fast	Continuous; Gaussian noise	[76]	BioNetS [147]	
PDE (R-D)	6	Very fast; spatial	Continous; no noise	[156]		
ODE	6	Very fast	Continuous; no noise	[157]		

Cat. represents Category from Fig. 2. Abbreviations: SSA, stochastic simulation algorithm; SDE, stochastic differential equation; PDE (R-D), partial differential equation (classical reactiondiffusion equations); ODE, ordinary differential equation.

Biochemical system simulator COPASI

- Freely available at http://COPASI.org/
- COPASI supports two types of simulation
 - Ordinary differential equation (ODE) based simulation
 - Stochastic kinetic simulation, among others using the <u>stochastic Runge–Kutta</u> <u>method</u> (RI5) and <u>Gillespie's algorithm</u>
 - Resources to learn more about stochastic modelling: <u>MIT</u> <u>OpenCourseWare</u> by Jeff Gore, and <u>Stochastic Processes: An</u> <u>Introduction, Third Edition</u> by Jones and Smith
- Tutorials also available on <u>the website of</u> <u>European Bioinformatics Institute (EBI)</u>
- The mathematical concept and software tools are important for detailed analysis of enzymatic reactions, especially in the presence of drugs and/or disease-relevant mutation

Huang and Ferrell, PNAS, 2006

ODE-based simulation of dynamics

10

UNI BASEI

Modelling biological networks

Stéphane CHÉDIN & Jean LABARRE, www-dsv.cea.fr

Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and Ioannis Xenarios. 2012. "<u>Implicit Methods for</u> <u>Qualitative Modeling of Gene Regulatory Networks</u>." In *Gene Regulatory Networks: Methods and Protocols*, edited by Bart Deplancke and Nele Gheldof, 397–443. Methods in Molecular Biology. Totowa, NJ: Humana Press.

Time

Omics data are projections of high-dimensional biological space

One challenge in drug discovery: non-clinical safety assessment

We need better (and interpretable) tools to predict safety profiles of drug candidates

Principles of gene expression profiling

U N I B A S E L

TG-GATEs: <u>Toxicogenomics</u> Project-<u>Genomics</u> <u>Assisted</u> <u>Toxicity</u> <u>Evaluation</u> <u>system</u>

- Japanese Consortium 2002-2011
 - National Institute of Biomedical Innovation, National Institute of Health Sciences, and 15 pharmaceutical companies, including Roche Chugai.
- Data fully released in 2012 to the public: Time-series and dose-dependent experiments using 170 bioactive compounds
 - <u>In vitro & in vivo</u> gene expression profiling, each containing gene expression data of about 20,000 genes
 - In vitro PicoGreen DNA quantification assay
 - In vivo histopathology in liver and kidney
 - <u>In vivo</u> clinical chemistry
- Total raw data size >2 TB

170 Compounds >2000 Cellular assays >12000 Pathology records

>24000

Expression profiles

TG-GATEs is a valuable data source to study drug-induced toxicity *in vitro* and *in vivo*

We built a computational pipeline to identify early signatures of toxicity

(a) Preprocessing and DEG analysis of human primary hepatocyte data

We integrate unsupervised learning, regression analysis, and network modelling to reach the goal

We built a computational pipeline to identify early signatures of toxicity (without animation)

We integrate unsupervised learning, regression analysis, and network modelling to reach the goal

It is worth observing early

- We found that early-response genes induced 2h after compound administration are more generic (less specific) than late-induced genes: they are more likely to be induced by multiple compounds.
- We hypothesize that diverse signalling pathways «back-converge» to a few early-response genes, which can be toxicity signatures.

Normalized likelihood of generality

Contrary to common wisdom (at the time), we argue that toxicogenomics should focus on early time points

The bow-tie structure of signalling networks as a model that explains the power of early time point

Adapted from Ami Citri and Yosef Yarden, Nature Reviews Molecular Cell Biology (2005)

9

Compound-induced cytotoxicity can be classified into three levels by molecular phenotypes

Unsupervised clustering identified groups of compounds associated with cytotoxicity

20

Cytotoxicity matrix and early signatures identified from progressive profiles *in vitro*

Unsupervised clustering allowed us to identify progressive cytotoxicity profiles

UNI BASEL

Expression patterns of early signatures in human

Genes which were consistently and significantly up- or down-regulated at 2h in progressive profiles were chosen as signatures (|logFC|>0.25 & p<0.05). Purely data-driven: no biological knowledge was used for prioritization.

Each thin line represents one treatment, and the thick line represents the average.

Six early gene signatures of cytotoxicity were identified from human in vitro data

U N I B A S E L

A consensus signature set of cytotoxicity emerges

Out of six early signatures in human, four are early signatures of progressive profiles in rat: Egr1, Atf3, Gdf15, and Fgf21.

IL-8 does not have rat orthologue; Tob2 shows a similar pattern, but statistically was not significant.

Early-response signatures in rat. Each thin line represents one treatment, and the thick line represents the average. The identification was driven by rat data only.

Out of six human signatures, four were also found in rat in vitro data

Conserved dynamics of the early signatures in human and rat primary hepatocytes

Lines represent average inductions, and error bars indicate 95% confidence interval of the average induction.

The genes form a functional network of early stress response with conserved structure and conserved dynamics

The early-response signature network, with downstream effects described in literature and annotated in functional databases

Literature search and functional annotation helped us realize the genes form a functional network

Boolean network modelling

- Boolean network simulation results (Nikolaos Berntenis and Martin Ebeling, BMC Genomics 2013) support the hypothesis that the conserved dynamics of the network in human and rat is encoded in the conserved structure of the network.
- Permutation results suggest that ATF3 is an important node to maintain the network dynamics.

Boolean network modelling revealed that the dynamics is intrinsic to the network

The network finding was translated from *in vitro* to *in vivo*, and from liver to kidney

- Support Vector Machines

 (SVMs) were trained to predict *in vivo* pathology between 3h and 29d using gene expression changes of Egr1, Atf3, Gdf15, and Fgf21 at 3h.
- Profiles were randomly split into training samples (80%) and test samples (20%).
- SVMs are trained by 10-fold cross-validation in training samples. Then they are tested on test samples, which mimic new, unseen data.

The predictive power of the network is translated from *in vitro* to *in vivo*, and from liver to kidney

Summary of the work with TG-GATEs

- A novel computational pipeline identified four genes -EGR1, ATF3, GDF15, and FGF21 - that are induced as early as 2h after drug administration in human and rat primary hepatocytes poised to eventually undergo cell death.
- Boolean network simulation reveals that the genes form a functional network with evolutionarily conserved structure and dynamics.
- Confirming *in vitro* findings, early induction of the network predicts drug-induced liver and kidney pathology *in vivo* with high accuracy.
- The findings are not only useful for safety assessment, but also inspired the molecular-phenotyping platform.

The Pharmacogenomics Journal (2014) 14, 208–216 © 2014 Macmillan Publishers Limited All rights reserved 1470-269X/14 www.nature.com/tpj

OPEN

ORIGINAL ARTICLE

Data mining reveals a network of early-response genes as a consensus signature of drug-induced *in vitro* and *in vivo* toxicity JD Zhang, N Berntenis, A Roth and M Ebeling

Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression, cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) database. Data mining highlights four genes—*EGR1*, *ATF3*, *GDF15* and *FGF21*—that are induced 2 h after drug administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and intrinsic dynamics. This is underlined by the fact that early induction of this network *in vivo* predicts drug-induced liver and kidney pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of safety evaluation.

The Pharmacogenomics Journal (2014) 14, 208-216; doi:10.1038/tpj.2013.39; published online 12 November 2013

Keywords: compound-induced toxicity; early-response genes; gene signature; TG-GATEs; toxicogenomics

Zhang et al., J Pharmacogenomics, 2014

Looking around and looking forward

Selected further work by external groups

- Sutherland *et al.* (Lily), PLOS Comp Biol 2016, confirmed the difficulty to directly translate between different systems
- EI-Hachem et al. (U Montreal), Environ Health Perspect 2016, confirmed that early toxicological response occurring in animals is recapitulated in human and rat primary hepatocyte cultures at the molecular level
- Thiel *et al.*, (RWTH Aachen), PLOS Comp Biol 2017, used physiologically-based pharmacokinetic modeling to characterize the transition from efficacious to toxic doses.
- Shimada & Mitchison (Harvard), Mol Sys Bio 2019, used machine learning to characterize system-level response to drugs and toxicants in TG-GATEs, and pinpointing underlying molecular mechanisms.

• What we are doing

- Gain molecule-level understanding of drug-induced histopathology
- Apply the knowledge to accelerate development and reduce attrition rate of new drugs
- Leveraging stem-cell technology and omics for drug discovery & personalized safety

The four-gene network is not the end, but a start, for the community and for us

An application of supervised machine learning for drug-induced liver histopathology prediction

Performance of different machine learning algorithms in the task of drug-induced liver histopathology prediction using differential gene expression data. ISMB (2019) Poster by Fang *et al.* F₁ score is the harmonic mean of precision and recall.

U N I B A S E L

Molecular Phenotyping

A workflow to quantify expression of pre-defined pathway reporter genes at early time points after perturbation to infer pathway activities, which may predict late-onset cellular phenotypes

Pathway Reporter Genes

Difference in statistical modelling of microarray data and next-generation sequencing count data

- Microarray data: log-normal distributed, for instance implemented in the *limma* package of R/Bioconductor.
- Bulk RNA-sequencing data: Negative-Binomial distributed (or Poisson with overdispersion), for instance implemented in both *edgeR* and *DESeq2* package of R/Bioconductor.
- Single-cell data: some authors recently suggest that negative-binomial or Poisson distribution suffices if the cell population is homogenous (Kim, Tae Hyun, Xiang Zhou, and Mengjie Chen. 2020. "<u>Demystifying 'Drop-Outs' in</u> <u>Single-Cell UMI Data.</u>" Genome Biology 21 (1): 196), though many tools assume zero-inflated negative-binomial model.

Poisson distribution with three rate parameters, from <u>Wikimedia</u>, reused with the CC Attribution 3.0 license

From Poisson distribution to Negative Binomial Distribution

Two definitions of Negative-Binomial distribution

- 1. The number of failures seen before getting *n* successes (the inverse of *Binomial Distribution*, which the number of successes in *n* independent trials)
- 2. Poisson-Gamma mixture distribution, weighted mixture of *Poisson* distributions, where the rate parameter has an uncertainty modelled by a *Gamma* distribution.

Mean gene expression level (log10 scale)

Credit of Jesse Lipp, bioramble.wordpress.com

Commonly used dimensionality reduction techniques

- Principal component analysis (PCA)
- <u>t-SNE</u> (t-distributed Stochastic Neighbor Embedding)
- <u>UMAP</u> (Uniform Manifold Approximation and Projection) [A great talk by Leland McInnes, the developer of UMAP, a mathematician, Ph.D. In Profinite Lie Rings]
- For a recent overview of dimensionality reduction techniques and their applications in biology, see Nguyen, Lan Huong, und Susan Holmes. "<u>Ten Quick</u> <u>Tips for Effective Dimensionality</u> <u>Reduction</u>". *PLOS Computational Biology* 15, Nr. 6 (20. Juni 2019): e1006907.

The Tabula Muris Consortium. 2018. "<u>Single-Cell</u> <u>Transcriptomics of 20 Mouse Organs Creates a Tabula</u> <u>Muris.</u>" *Nature* 562 (7727): 367. Schulte-Schrepping, Jonas, Nico Reusch, Daniela Paclik, Kevin Baßler, Stephan Schlickeiser, Bowen Zhang, Benjamin Krämer, et al. 2020. "<u>Severe COVID-19 Is Marked by a</u> <u>Dysregulated Myeloid Cell Compartment.</u>" *Cell* 182 (6): 1419-1440.e23.

UNI BASEL

Data Analysis

4. Integrative analysis with other

data

Pathway reporter genes faithfully capture global gene expression patterns UNI BASEL

Data Analysis

Activity patterns of 154 human metabolic and signaling networks during differentiation of induced pluripotent stem-cells (iPS) into cardiomyocytes.

Cyan: Pathway is activated Black: Pathway is suppressed

Pathway reporter genes inform about pathway activity patterns

Data Analysis

Cell-based model of diabetic cardiomyopathy for phenotypic screening

Metabolic dysfunction promotes cardiomyopathy

Diabetic cardiomyocyte metabolism

Determining the optimal time-point for molecular phenotyping

Phenotypic screening performed after 48 hours

Mechanistic enrichment of screening data

Time

Integration of molecular and phenotypic information

Integration of molecular and phenotypic information

Lycorine: Protein synthesis inhibitor

Nigericin: Potassium ionophore

Clustering analysis of compounds and pathway responses

Beneficial compounds regulate **favorable** pathways positively and **unfavorable** pathways negatively

Beneficial compounds have higher CMscore

Deleterious compounds regulate **unfavorable** pathways positively and **favorable** pathways negatively

Deleterious compounds have **lower** CMscore

Beneficial compounds generate specific pathway signatures

Beneficial compounds negatively regulate

Pathway activity score

Pathway signatures can be monitored during screening campaigns for maintained beneficial mechanistic effects

UNI BASEL

Molecular phenotyping allows filtering of undesirable molecules

Compounds with undesirable pathway profiles can be eliminated from further testing

Beneficial compound signatures are downregulated in cardiomyopathy samples

BĂŚĖL

Beneficial compound signatures are downregulated in cardiomyopathy samples

Favorable pathways tend to be down-regulated in patients/animal models

Unfavorable pathways tend to be up-regulated in patients/animal models

Molecular phenotyping can enrich screening campaigns to select compounds with profiles with biological relevance to patients

Molecular Phenotyping empowers Phenotypic Drug Discovery

Molecular phenotyping

- (a) provides mechanistic validation of hits in successive screening campaigns,
- (b) enables undesirable and false-positive hits to be eliminated, and
- (c) brings biological relevance to screening assays by integrating patient information

Summary

- Gene expression profiling: a case study of omics and cellular modelling
- Applications for drug safety: TG-GATEs
- Applications for drug mechanism: molecular phenotyping
- Current research topics
 - Single-cell sequencing
 - Spatial-transcriptomics
 - Genome editing
 - Microbiome
 - High-content cellular imaging
 - Integrative modelling

Offline activities

- 1. Required reading (please submit your results to the Google Form, the link of which will be sent via a separate email)
 - a. *Rudin, Markus, and Ralph Weissleder*. 2003. "Molecular Imaging in Drug Discovery and Development." Nature Reviews Drug Discovery 2 (2): 123–31. <u>https://doi.org/10.1038/nrd1007</u>.
 - b. Google AI blog: https://ai.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
 - c. Meijering, Erik, and Gert van Cappellen. 2006. "Biological Image Analysis Primer." https://imagescience.org/meijering/publications/1009/.
- 2. Think of further questions for the AMA session
 - Would you suggest a PhD for people who would like to work as a data scientist/bioinformaticians in industry?
 - Would it be possible to join a pharma company such as Roche or Novartis directly after completing a MSc?
 - What kind of different positions are there e.g. at Roche for people with a background in Bioinformatics/Computational Biology?
 - Where do you see the advantages/disadvantages of working in industry/academia?
 - Best advice for a successful career in industry
 - I would be interested in hearing a little bit more about how and where machine learning is used in drug discovery.
 - How do you experience the work-life balance in your job?

From single-cell analysis to spatial-transcriptomics

Visualization Controls

Use the sliders under the tissue image to adjust how you visualize and combine the tissue image and the gene expression data. Colors represent clusters identified by differentially expressed genes.

Gene Identification

By placing the pointer above a gene name within the table, spots in the tissue image will be colored based on the expression of that gene. Alternatively, by placing the pointer above a value within the table, you can observe the expression of a specific gene with the spots from an individual cluster highlighted.

Cluster	1	2	3	4	5	6	7	8	9
Nptxr	3.5	1.1	2.2	4.7	1.8	4.1	1.6	1.2	3.1
Agt	0.59	2.0	3.6	1.2	0.78	0.42	3.2	2.6	0.61
Ttr	3.5	4.9	3.0	4.8	3.1	2.6	2.7	2.8	3.8
Pmch	0.77	1.8	4.5	1.5	0.56	0.79	1.3	0.63	0.66
Camk2n1	5.7	3.7	3.9	5.8	3.9	6.8	4.3	4.2	5.1
Olfm1	5.6	2.8	3.5	5.9	3.1	5.5	3.2	3.6	4.5
Pcp4	4.9	2.8	4.2	4.4	2.0	2.5	3.3	6.2	3.0
Prkcd	0.50	0.81	0.72	0.51	0.48	0.31	1.6	4.7	0.43
Cck	5.5	2.4	2.3	4.8	3.0	5.2	2.3	4.4	4.2
Nnat	2.2	2.7	5.2	3.8	1.6	1.2	3.0	1.8	2.4
Plp1	4.8	7.9	4.8	3.9	3.6	3.1	6.0	6.2	3.7
6330403K07Rik	3.5	2.0	5.3	3.6	1.4	3.3	3.4	1.5	2.2
Ctxn1	4.5	1.7	3.2	4.7	1.6	3.9	1.3	1.1	3.0
Atp1a1	4.2	2.7	3.1	4.2	1.8	4.9	2.3	2.0	3.0

Left:Mädler, Sophia Clara, Alice Julien-Laferriere, Luis Wyss, Miroslav Phan, Albert S. W. Kang, Eric Ulrich, Roland Schmucki, et al. 2020. "Besca, a Single-Cell Transcriptomics Analysis Toolkit to Accelerate Translational Research." BioRxiv, September, 2020.08.11.245795.

Top: Spatial resolution of gene expression, which can be important for future digital pathology, source: https://www.10xgenomics.com/spatial-transcriptomics/

UNI BASEL

Summary and Q&A