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Goal & Overview

Introduce concept and mathematics of competitive situations:
Lanchester approach, Lotka-Volterra competition,
Wright/Kauffman fitness landscapes

Competition: Use tools from ODEs/PDEs and complex
adaptive systems theory to describe, model and interpret
dynamics (Lanchester, Lotka-Volterra, Kolmogorov)

Negotiation: Pick pricing state space (”fitness landscapes”),
study the system’s macro topology and use geometric insight
to understand pathways and dynamics (Wright, Kauffman)

Application: Construct and interpret pricing landscape
(”pricescape”) for major new antibiotics launched since 2002
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Historical Starting Point I:
Fighting Strength, Lanchester’s Equations 1917

A simple battle model: suppose that R(t) red and G (t) green
units begin fighting at t = 0, and that each unit destroys r or
g (the fighting effectiveness) enemy units in one time unit, s.t.

dR

dt
= −gG , dG

dt
= −rR

To solve eliminate the explicit t-dependence by dividing the
second equation by the first and then by separating variables∫

rRdR =
∫
gGdG

rR2 − gG 2 = constant

rR2 − gG 2 is constant, only one of R or G approaches zero
(only one wins). The fighting strengths (rR2, gG 2) per se vary
by fighting effectiveness times the square of their numbers.
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Two Laws: Lanchester’s Aimed vs. Unaimed Fire

Lanchester’s Square Law (Aimed Fire): The ODE system

ẋ = −βy ; x > 0
ẏ = −αx ; y > 0

represents a situation where attrition to each side is
proportional to the number of units remaining on the other,
and there are no reinforcements. Its solution is
α
(
y2 − y20

)
= β

(
x2 − x20

)
, hence the name square law.

Lanchester’s Linear Law (Unaimed Fire): The ODE system

ẋ = −βxy ; x > 0
ẏ = −αxy ; y > 0

means x ’s fire is merely directed into v ’s operating area,
rather than being aimed at a specific v unit, then the attrition
rate for v will be proportional to y , as well as to x . Its
solution is α (x − x0) = β (y − y0), hence the name linear law.
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Fighting Strength: Bracken’s Generalized Model

Attempts in the literature to fit either the aimed- or the
unaimed-fire model to data have only been partly successful.
One can use Bracken’s generalized model whose parameters
one then fits to the data:

dR

dt
= −gRqGp,

dG

dt
= −rRpGq

for p and q to be empirically determined. The conserved
quantity (by eliminating t, separating and integrating) is

gGα − rRα

where α = 1 + p − q (the Lanchester aimed-fire model
corresponds to p = 1, q = 0 and thus to α = 2, the
unaimed-fire model to p = q = 1 and thus α = 0).
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Summary: Lanchester Type Differential Equations

Functional Forms for Lanchester Combat Models
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Solutions to Lanchester Equations

Lanchester’s Linear Law (unaimed fire, one-on-one combat):
(fighting strength Ki )

Lanchester’s Square Law (aimed fire, ranged combat):
(attrition rate αi )
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Historical Starting Point II:
Predator & Prey, Lotka-Volterra Equations 1926

Lotka-Volterra models are nonlinear, mixed Lanchester models

Competition equations add another term to account for
limitations of the growth rate imposed by members of other
populations.

The corresponding simplified Lotka-Volterra equations are

dN1

dt
= αN1 − βN1N2,

dN2

dt
= δN1N2 − γN2

where

N1 is the number of prey; N2 is the number of predators;
dN1
dt and dN2

dt are growth rates of the two populations;
t represents time;
α, β, γ, δ(> 0) describe the interaction of the two species.
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Predator & Prey: Solutions to Lotka-Volterra Equations

The equations have periodic solutions and do not have a
simple expression in terms of the usual trigonometric functions

Solutions presented as orbits in phase space (eliminating
time); one axis: nprey , other axis: npredators
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Predator & Prey: Equilibrium, Lotka-Volterra Isoclines

Gause-Witt analysis, two-species Lotka-Volterra competition

The isocline for each species i is the line on the N1/N2 phase
plane where dNi/dt = 0. Joint equilibria shown as filled
(stable) and hollow (unstable) circles.
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Historical Starting Point III:
Fitness Landscapes in Biology, Wright 1932

Fitness landscapes in biology: visualize/measure relationships
btw. genotypes and reproductive success
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Fitness Landscapes: Formalization, Interpretation
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Kauffman’s NKAC Model: Genetics vs. Pricing Economics

Term Genetics Pricing
N number of genes in a

genotype
number of elements
in a price (e.g. cost,
markup, quality;
c,m, q)

K number of epistatic
interactions between
genes

interactions btw. pri-
cing elements (c ↔
m,m↔ q)

A number of alleles for
a gene

e.g. pricing states
(at-above-below
market)

C degree of coupling
between genotypes

price coupling bet-
ween different mar-
kets (location, use)
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Hypothetical Pricescape: N=3, K=2 with Assigned Fitness

Price dimensions: cost, markup, quality; c ,m, q

N = 3; scoring


c 0 : am, 1 : bm

m 1 : am, 0 : bm

q 1 : am, 0 : bm

K=2: interactions btw. pricing elements (c ↔ m,m↔ q)
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Real World Pricescape:
Constructing an Antibiotics Commercial Landscape

Antibiotics Competition Space:
span (Efficacy, Side Effects, Economic Fitness)

Efficacy:
Drug effectiveness, e.g. by UK-NICE or AAUSES scores

Side Effects:
Drug SE profile (GI, fungi, skin), e.g. by UK-NICE score

Economic Fitness:
- profitability: margin m = p − c (producer view: price, cost)
- value e.g. v = u(x) (consumer view: perceived utility)
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First Look at a Real-World Antibiotics Fitness Landscape

Data from antibiotics use meta-analysis in acute skin
infections; 7816 pts., 19 stds. (adapted fm. Guest et. al, 2017)

DAL: dalbavancin, DAP: daptomycin, LCD: linecolid, TIG:
tigecycline, VAN: vancomycin, VARMIN: var. minor antiotics
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Generalization I: Static Analysis of a Pricescape

P1: f1(m1, v1);m1, v1: max; single (unique) global maximum

P2, P3, P6: multiple (unique) local maxima

P4,5; P7-10: multiple (mixed) local maxima

CW: definition of clusters, neighbourhood, distance → metric
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Generalization II: Dynamic Analysis of a Pricescape

P1: primary; price stable

P2, P3, P6: secondaries; prices metastable, pos. epistasis ?

P4,5; P7-10: mixed; prices unstable, disruptive, neg. epistasis ?

CW: modeling pos./neg.epistasis, neighbourhood distances
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Pricescapes: Testing for Epistasis

(pictures from Gould et al., 2019): right panel shows two
(top) and three agent interaction (bottom)

P1, P3: two-way interaction coordinate suggests neg. epistasis
uP1P3 = F00 + FP1P3 − F0P3 − FP10 < 0 (F = fitness); top left

seems intuitively right (’prices repel’); more data required
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Pricescapes: Topologies and Pathways
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Pricescapes: Business Interpretation I - Market Domination

P1: quasi-monopoly; leader, price ”at rest”

P2, P3, P6: (secondary) monopolies; followers, prices ”at rest”

P4,5; P7-10: (mixed); followers; prices unstable, disruptive
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Pricescapes: Business Interpretation II - Niche Player

P1: quasi-monopoly; leader, price ”at rest”

P2, P3, P6: (secondary) monopolies; followers, prices ”at rest”

P4,5; P7-10: (mixed); followers; prices unstable, disruptive
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Pricescapes: Business Interpretation III - Generic Corner

P1: quasi-monopoly; leader, price ”at rest”

P2, P3, P6: (secondary) monopolies; followers, prices ”at rest”

P4,5; P7-10: (mixed); followers; prices unstable, disruptive
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Historical Starting Point IV:
Backward Stochastic Differential Equations, Gobet 2003

Backward Stochastic Differential Equation (BSDE) are
important tools in mathematical finance. In a complete
market, a contingent claim with payoff Φ(S),Y is the
replicating portfolio value, Z is related to the hedging strategy.

Numerical methods exist for solving decoupled forward-
backward stochastic differential eqns. (FBSDE; Gobet, 2003).

St = S0 +

∫ t

0
b (s,Ss) ds︸ ︷︷ ︸
Riemann

+

∫ t

0
σ (s, Ss) dWs︸ ︷︷ ︸

Ito

Yt = Φ(S) +
∫ T
t f (s, Ss ,Ys ,Zs) ds +

∫ T
t ZsdWs

where S =
(St : 0 ≤ t ≤ T ) is the forward component and Y =
(Yt : 0 ≤ t ≤ T ) is the backward one. Equations are solved
in S,Y and Z (Z: hedging strategy).
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Numerical Solutions to BSDEs

The authors propose a numerical method to find an
approximation of the unique solution (S,Y,Z) to the above
equations

The method is based on a Monte Carlo method involving a
Voronoi partition. The authors also use a iterative method
based on the Picard fix point theorem and a regression on
function bases.

The authors design a new algorithm for the numerical
resolution of BSDEs. At each discretization time, it combines
a finite number of Picard iterations and regressions on
function bases.

These regressions are evaluated rapidly with only one set of
simulated paths.
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Summary & Conclusions

The evolution of biological, technological, social, and
economical entities can be studied by a toolbox coming from
differential equations, systems research, algebra, geometry and
topology.

The simplest models of rivalry correspond to systems of
ordinary second order differential equations, widely used to
describe numerous natural scientific objects (ODEs)

More complex models rely on semilinear parabolic PDEs, a
generalization of the Feynman-Kac type (BSDEs)

Collaborative-competitive situations are modelled as fitness
landscapes: evolutionary optimization methods using scalar
valued fitness functions, s.a. potential functions in physics
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Fitness Landscape Math I: Wright’s Allellomorphs

Consider the set
Σk = {w = (s1, s2, . . . sk) |si ∈ Σ, 1 ≤ i ≤ k}
of words of length k in the alphabet

Σ = {n1, n2, . . . , n`}

A fitness landscape is a function
h : Σk → R

w 7→ h(w)

. Mathematics of Rivalry:Add-On Materials



Fitness Landscape Math II: Epistasis Introduction

Epistasis (allelic interactions) in fitness landscapes

ε(00, 01, 10, 11) = h(11) + h(00)− h(10)− h(01)

ε(00, 01, 10, 11)


=0 no epistasis

>0 positive epistasis

< 0 negative epistasis

Question:
How to generalize this description to higher dimensions ?
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Fitness Landscape Math III: Epistasis via Fourier Transform

Interaction coordinates and Fourier transforms

For V = {0, 1}n and w ∈ V with at least two coordinates
equal to one, consider:∑

v∈V
(−1)〈v ,w〉h(v)

For example, for V = {0, 1}3 and w = 111:

(h(000)+h(011)+h(101)+h(110))−(h(001)+h(010)+h(100)+h(111))

. Mathematics of Rivalry:Add-On Materials



Fitness Landscape Math IV: Fitness Graph Approximation

Approximation via fitness graphs
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Fitness Landscape Math V: Shape Analysis

Shapes of fitness landscvapes reveal epistasis
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Fitness Landscape Math VI: Shapes via Circuits

Shapes of fitness landscapes via circuits

For V = {0, 1}3, up to symmetries, consider the following
circuit interactions:

hf = h(111) + h(001)− h(101)− h(011)
hp = h(111) + h(000)− h(100)− h(011)
hb = h(111) + h(100) + h(001)− h(010)− 2h(101)
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Fitness Landscape Math VII: Triangulations

Characterization via triangulation
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Fitness Landscape Math VIII: Cluster Partition Analysis
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