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Vast resources are devoted to understanding the toxicity potential in 
humans of pharmaceutical and environmental chemicals. However, 
traditional toxicity testing has major limitations as evidenced by the 
thousands of environmental chemicals lacking toxicity data and the 
high failure rate of investigational drugs due to adverse drug reac-
tions1,2. These limitations arise from the costs of animal testing, soci-
etal concern over animal use and difficulties in extrapolating findings 
from animals to humans3. Nonanimal approaches that rely on in vitro 
assays to assess adverse effects of compounds on cells or targets have 
become standard practice in drug discovery, but drawbacks include 
insufficient numbers of validated targets and questions about the  
relevance and interpretation of assays4,5. Although the catalog of  
toxicity mechanisms can be expanded by computational models, 
and by methods to predict binding affinities6,7 and structure-activity  
relationships8, what is lacking is a way to directly link computational 
(in silico) targets and cellular (in vitro) responses with pathways of 
toxicity and adverse outcomes for relevant in vivo endpoints.

Here we describe how we used a panel of eight, complex, cell- 
culture systems, consisting of one or more primary human cell types, 
to detect and distinguish chemicals that act through a broad range of 
mechanisms relevant to human toxicity and pathological pathways. 
These cultures, called BioMAP Systems, are low-passage cells, which 
retain the intrinsic signaling patterns that enable them to respond 
physiologically to pharmacological agents. We based our selection 
of the eight cell systems on previously demonstrated sensitivity  
to specific drug mechanisms and pesticidal adverse effects9–12.  

The systems included primary endothelial cells (EC), peripheral 
blood mononuclear cells (PBMC), bronchial epithelial cells (BEC), 
dermal fibroblasts, keratinocytes and coronary artery smooth muscle 
cells in either mono- or co-culture conditions (Table 1). Concurrent 
activation of multiple signaling networks in each organ- or tissue-
specific system, shown as “stimuli” in Table 1, generated activated, 
in vitro models that were maximally sensitive to perturbation by 
chemical exposures. A broad array of 87 endpoints including cell 
adhesion proteins, cytokines, matrix metalloproteases and cell surface 
receptors were measured by enzyme-linked immunosorbent assay 
(ELISA) to detect compound-induced changes in expression levels. 
These in vitro endpoints showed significant associations in predic-
tive models of various toxicity phenotypes13–15. We challenged the 
cell culture systems with 776 diverse, unique, environmental and 
industrial chemicals (http://www.epa.gov/ncct/dsstox/sdf_toxcst.
html)16,17; the toxicity information available for each ranged from 
none at all to animal guideline studies to effects measured in humans. 
Six pharmaceutical company partners contributed 135 failed drugs 
with accompanying preclinical and in vivo safety assessments, provid-
ing a unique and valuable asset toward developing alternative testing 
approaches. This work was conducted as a major component of the US 
Environmental Protection Agency’s (EPA) ToxCast Program—a part 
of Tox21, the federal consortium that includes the US Food and Drug 
Administration and the National Institutes of Health—which seeks to 
develop more efficient approaches to predicting how chemicals may 
affect human health18.
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Given the large size and complexity of the present data set, we pro-
vide an initial characterization of the data and assessment for relevant 
patterns. Owing to the large number of environmental compounds 
with unknown mechanisms or toxicities, an overall quantitative pre-
dictive assessment was not feasible; however, a number of known 
associations and previously unreported predictions emerged. Self-
organizing maps (SOM) and hierarchical clustering were employed as 
unsupervised analyses. The data set was explored by supervised analy-
ses using a reference database of compounds with known mechanisms, 
and classified using Support Vector Machine (SVM) models developed 
for 28 mechanism classes9. Examples substantiating the utility of this 
approach along with identified limitations are described below.

RESULTS
Overview of activities measured
We tested the 776-compound chemical library (800 coded samples, 
including blinded replicates) in concentration-response in the eight 
BioMAP systems with quantitative readouts for 7–14 protein biomar-
kers per system (Table 1), totaling 87 readouts per compound per 
concentration. In total, the complete data set contains 306,240 meas-
urements (Fig. 1a and Supplementary Table 1; also available at http://
epa.gov/ncct/toxcast/data.html), where 700 compounds were run at 
four test concentrations in duplicate, and a subset was run at four addi-
tional concentrations (Fig. 1b). Analysis by chemical use groups shows 
that pesticides and pharmaceuticals were the most active chemicals,  

whereas fragrances and colorants were least active. Overall, 22%  
of chemicals were overtly cytotoxic to one or more cell types at the  
top concentration tested, although the percentage of compounds 
ranged from 0% to 30%, depending on use group (Supplementary 
Table 2). Fibroblasts, endothelial cells and PBMCs were most  
frequently affected, although there was substantial diversity among 
the chemical groups.

The assays demonstrated excellent reproducibility across techni-
cal and biological replicates (Supplementary Table 3). Colchicine, 
included on every plate as a positive control, had Pearson correlation 
coefficients from 0.82–0.97, and the concordance for the 700 com-
pounds run in duplicate was >95% across all assay endpoints. Principal 
component analysis of built-in test replicates (seven chemicals  
each, present as three independent samples and two chemicals  
each, present as six independent samples) showed tight cluster-
ing of each replicate set based on AC50 values across all assays 
(Supplementary Fig. 1).

Each BioMAP system (Table 1) contains one or more assay end-
points measuring general cytotoxicity that may indicate potential 
for toxicity in vivo, as well as confound interpretation of individual 
biomarker endpoints in vitro. For example, loss of specificity of an 
otherwise mechanism-based downregulation of a biomarker may 
be secondary to loss of cell function at concentrations approaching 
cytotoxicity. Thus, we separately evaluated compounds that were 
cytotoxic across cell types. Ten compounds were highly cytotoxic 

Table 1 Panel of 8 BioMAP systems used in this study
BioMAP system 3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

Primary human cell types Venular  
endothelial  
cells

Venular 
endothelial 
cells

Peripheral  
blood  
mononuclear  
cells +  
endothelial  
cells

Peripheral 
blood  
mononuclear 
cells +  
endothelial 
cells

Bronchial  
epithelial  
cells

Coronary  
artery  
smooth  
muscle cells

Fibroblasts Keratinocytes + 
fibroblasts

Stimuli IL-1β + TNF-α +  
IFN-γ

IL-4 +  
histamine

TLR4 TCR IL-1β +  
TNF-α +  
IFN-γ

IL-1β +  
TNF-α +  
IFN-γ

IL-1β +  
TNF-α +  
IFN-γ + EGF + 
bFGF +  
PDGF-BB

IL-1β + TNF-α 
+ IFN-γ + 
TGF-β

Number of endpoints 13 7 11 10 11 14 12 9

E
nd

po
in

t 
ty

pe
s

Acute  
inflammation

E-selectin, IL-8 E-selectin, IL-1α, 
IL-8, TNF-α, 
PGE2

IL-8 IL-1α IL-8, IL-6,  
SAA

IL-8 IL-1α

Chronic  
inflammation

VCAM-1, ICAM-1, 
MCP-1, MIG

VCAM-1, 
Eotaxin-3, 
MCP-1

VCAM-1,  
MCP-1

MCP-1,  
E-selectin, MIG

IP-10, MIG, 
HLA-DR

MCP-1,  
VCAM-1,  
MIG, HLA-DR

VCAM-1,  
IP-10, MIG

MCP-1,  
ICAM-1, IP-10

Immune 
response

HLA-DR CD40, M-CSF CD-38, CD40, 
CD69, PBMC 
cytotox., T cell 
proliferation

HLA-DR M-CSF M-CSF

Tissue  
remodeling

uPAR, MMP-1, 
PAI-1, TGF-β1, 
SRB, tPA, uPA

uPAR Collagen III, 
EGFR, MMP-1, 
PAI-1, fibroblast 
proliferation, 
SRB, TIMP-1

MMP-9, SRB, 
TIMP-2, uPA, 
TGF-β1

Vascular  
biology

TM, TF, uPAR, EC 
proliferation, SRB, 
Vis

VEGFRII, 
uPAR,  
P-selectin, 
SRB

Tissue Factor, 
SRB

SRB TM, TF,  
LDLR, SMC 
proliferation, 
SRB

Disease/tissue relevance Cardiovascular 
disease, chronic 
inflammation

Asthma,  
allergy, 
oncology, 
vascular 
biology

Cardiovascular 
disease, chronic 
inflammation

Autoimmune 
disease, 
chronic  
inflammation

COPD,  
respiratory, 
epithelial

Cardiovascular, 
inflammation, 
restenosis

Fibrosis, wound 
healing

Psoriasis,  
dermatitis, skin

BioMAP systems listed according to their short names comprise the cell types shown, cultured and activated with the indicated stimuli (added along with test compounds) for  
24 h. For each system, the protein or mediator biomarker readouts listed (number of readouts is shown in parentheses) are measured by ELISA at 24 or 72 h. Biomarker endpoints 
measured were all cell-associated with the exception of TNFα and PGE2, which were measured in the supernatants. Pathway mechanisms detected in each system were assessed 
by testing highly selective, pathway-specific activators or inhibitors, as described9.
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(>50% reduction in total protein levels) in  
the majority of cell systems at concentra-
tions <15 µM (Supplementary Table 4), 
including several organometallics and three 
pharma compounds that failed preclinically: 
DPharma52, DPharma121 and DPharma123 
(full names in Supplementary Table 5).

A large number of compounds exhibited 
cell type–specific responses, both in terms of 
cytotoxicity and functional activity; for exam-
ple, a number of estrogenic compounds were 
selectively cytotoxic to endothelial cells in the 
3C system (consisting of venular endothelial 
cells stimulated with three cytokines: inter-
leukin (IL)-1β, tumor necrosis factor (TNF)α 
and interferon (INF)-γ) including estrogens, phytoestrogens and estro-
genic pesticides (Supplementary Fig. 2). Other compounds with this 
pattern included flame retardants (tris(2-ethylhexyl) phosphate and 
triphenyl phosphate) and pharmaceutical compounds DPharma13 
and DPharma 77. Another group of compounds including aromatic 
organic phenols and organic peroxides exhibited specific cytotoxicity  
in the HDF3CGF system, which consists of fibroblasts stimulated  
with six cytokines or growth factors. Ten of these 11 chemicals were 
activators of NRF-2, a transcription factor responsive to oxidative 
stress, in a reporter gene assay run in the ToxCast program (unpub-
lished data). The chemical that was inactive in the NRF-2 assay was a 
known oxidant19, suggesting the HDF3CGF system may be sensitive 
to oxidative stress-induced cytotoxicity. The surfactants perfluorooc-
tanesulfonate (PFOS) and perfluorononanoic acid, and a pharma  
compound identified as a glycine transporter inhibitor showed  
cytotoxicity unique to BECs (BE3C). Notably, PFOS is known to affect 
lung development prenatally20, and studies have shown preferential 
distribution of the chemical to the lung in pharmacokinetic studies21.  
It is intriguing that this cell model may possibly recapitulate some 
of the chemical’s complex in vivo toxicity. Keratinocytes were  
preferentially affected by a cluster of 28 compounds including  
nicotine, shown to have toxicity mediated through nicotinic  
acetylcholine receptors expressed by keratinocytes22. Several clusters 

of compounds exhibited cell type–specific upregulation of inflam-
matory endpoints (Supplementary Fig. 3), such as 25 compounds  
affecting vascular endothelial cells in the 4H system (venular endo-
thelial cells stimulated with IL-4 and histamine) including known  
angiogenic modulators 5HPP-33 (thalidomide analog23), lovastatin 
and simvastatin24.

Among the 776 compounds tested, 63 compounds (8%) were 
inactive (no lowest effective concentration) across all the endpoints, 
including a number of pharmaceutical compounds (two donated 
failed drugs, DPharma8 and DPharma103, and marketed drugs eryth-
romycin, tolazamide and 3-azido-3-deoxythymidine) with expected 
bioactivity that can be considered false negatives or indicate lack of 
appropriate bioassay systems.

Chemical clustering
To characterize the range of biological activities and patterns detected, 
we first analyzed the data set by unsupervised clustering of all end-
points for each compound/concentration pair. Responses at individual 
concentrations were used to discriminate potential effects of polyp-
harmacology that are often seen at increased concentrations. The data 
were normalized by row (chemical, Supplementary Table 6) to reduce 
concentration effects and by column (assay, Supplementary Table 7)  
to highlight responses driven by specific proteins. Unsupervised 
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Figure 1 Overview of responses for all chemicals 
and endpoints. (a) Hierarchical clustering of 
ToxCast Phase II chemicals (rows) by activity in 
human primary cell systems (columns). Where 
information was available, chemicals are color-
coded by use class (colorant, consumer use, 
food additive, fragrance, industrial process, 
personal care, pesticide, pharmaceutical or NA 
for not available). Activity (by log-transformed 
lowest effective concentrations) in 87 endpoints 
in two directions (down- and upregulation) 
across eight cell systems for 776 compounds. 
Clustering was by Pearson’s dissimilarity and 
Ward’s method. The left clade represents 
the majority of upregulated endpoints, 
whereas the right clade shows those that were 
downregulated. (b) Summary of activities by 
chemical group. Endpoint measurements that 
are outside a 95% confidence interval for 
vehicle controls were deemed active. Chemicals 
for which the number of active endpoints at 
the highest concentration is >5 were deemed 
active. Chemicals were deemed cytotoxic if 
the chemical at the highest concentration was 
cytotoxic to one or more cell types.
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clustering was done using a self-organizing map (detailed in Online 
Methods)25 approach in 10 × 10 arrays (Supplementary Fig. 4).

We found clusters containing chemicals with similar activity, whose 
mechanisms might be predictable, along with those that were not 
obvious (Table 2). Illustrative examples of clusters with known phar-
macologic mechanisms include cluster one, containing pharmaceu-
tical and natural analgesics and anesthetics as well as compounds 
not known to have analgesic activity (the antioxidant propyl gallate 
and the herbicide fluridone). Each of these chemicals was present at 
multiple concentrations in this cluster, suggesting polypharmacology 
was not a major confounding factor over the concentration range 
tested. Cluster 57 contained 44 chemical-concentration pairs consist-
ing of 20 unique chemical structures of which several, for example, 
benz(a)anthracene, were polycyclic aromatic hydrocarbons, a class of 
chemicals known to activate the aryl hydrocarbon receptor (AHR). 
Data from a multiplexed, transcription-factor reporter gene assay, run 
on the same chemical library, showed that of the 20 unique structures 
in this cluster, 18 were positive for activation of AHR (unpublished 
data). These results demonstrate the utility of a cell systems approach 
where, even without explicitly including targets such as AHR, 
chemical perturbation of common critical pathways can be sensed. 
Cluster 46 was driven by selective inhibition of TNFα production 
in the lipopolysaccharide system and contained 11 donated pharma 

compounds, the herbicide terbuthylazine and all-trans retinoic acid 
(ATRA). Of the drugs whose targets were known, eight were identi-
fied as phosphodiesterase inhibitors (PDE3, -4 and/or -5). Inhibition 
of PDE4 is associated with cAMP elevation and was previously shown 
to suppress immune and inflammatory responses, including TNFα 
production26. Neighboring chemical clusters showed similar, but less 
potent, downregulation of TNFα. Cluster 39 was driven by specific 
upregulation of serum amyloid A (SAA) in smooth muscle cells, and 
included almost all test concentrations of the glucocorticoids pred-
nisone, dexamethasone, corticosterone and triamcinolone. SAA is an 
acute-phase inflammatory response protein shown to be preferentially 
upregulated by glucocorticoids in muscle tissue27.

Cluster 48 contained well-known, selective estrogen receptor 
modulators and antagonists. Other compounds found in this cluster, 
such as haloperidol and reserpine, were not specifically associated 
with activation of the estrogen receptor pathway. Another compound, 
the teratogen cyclopamine, acts through the sonic hedgehog pathway 
to downregulate estrogen receptor–α protein, and DPharma34, also 
known as SB-236057, has teratogenic effects through pathways similar 
to those of cyclopamine28. Inspection of the compound profiles in 
cluster 48 and comparison with estrogen receptor agonists (cluster 
28) revealed tissue factor (TF) in the 3C system as a discriminating 
activity of particular interest (Fig. 2). TF levels in the 3C system were 

Table 2 Examples of clusters that emerged from the self-organizing map analysis
Norm. method  
[cluster(s)]

Cluster  
count Common activity

Example compounds:  
known associations

Example compounds:  
novel associations

Chemical [1] 78 Analgesics Aspirin 
Indomethacin 
Celecoxib 
Diclofenec 
Darbufelone 
Clove leaf oil 
Eugenol 
Isoeugenol

Propyl gallate 
Fluridone

Chemical [65] 31 Steroid hormone receptor modulators Cyproterone acetate 
Norgestrel 
Progesterone 
17-hydroxyprogesterone 
Mifepristone

Mirex 
Donated pharma: 
 PPAR pan agonist 
 A3 adenosine receptor antagonist

Chemical [57, 67] 52 AHR ligands Hydroquinone 
4-chloro-1,2-diaminobenzene 
1,2-phenylenediamine 
Fenaminosulf

Color Index. Solvent Yellow 14

Chemical [48] 27 Estrogen receptor pathway modulators Clomiphene citrate 
Tamoxifen citrate 
Fulvestrant 
Raloxifene hydrochloride  
Tamoxifen 
4-hydroxytamoxifen

Cyclopamine 
Amiodarone hydrochloride
Haloperidol
Reserpine 
Donated pharma: 
 NK1 receptor antagonist 
Bradykinin B1 receptor antagonist 
Lipid-lowering agent

Assay [46] 29 TNFα inhibition All-trans retinoic acid 
Donated pharma: 
 PDE inhibitors (8 compounds)

Terbuthylazine 
Donated pharma: 
 GABAA1 receptor antagonist

Assay [39] 31 SAA upregulation Prednisone 
Dexamethasone 
Corticosterone 
Triamcinolone

Coumarin 
4-octylphenol 
Cyclohexanol 
Pentaerythritol

Assay [90,100] 58 Potent cytotoxicants Tributyltin methacrylate 
Tributyltin chloride 
Gentian violet 
Didecyldimethylammonium chloride 
Triclosan 
Phenylmercuric acetate

Octyl gallate 
4-Nonylphenol 
9-Phenanthrol 
Donated pharma: 
 Factor Xa inhibitor 
 CCK1R agonist 
 Mast cell tryptase inhibitor

Examples shown here based on common mechanisms or observed in vitro activity. The normalization method and corresponding cluster number was by chemical (Supplementary 
Table 5) or by assay (Supplementary Table 6). The cluster count refers to the number of chemical/concentration pairs that appear in that cluster. Note: cluster numbers differing 
by 10, for example, 57 and 67, are adjacent in the 10 × 10 self-organizing map array and thus expected to be relatively closely related.
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preferentially increased by estrogen recep-
tor antagonists, and decreased by estrogen 
receptor agonists. TF (coagulation factor 
III or thromboplastin) is an initiator of the 
extrinsic blood coagulation cascade and is 
a clinical risk factor for thrombosis29. In a 
previous study, among compounds from 28 mechanism classes, only 
compounds from two mechanism classes, mTOR inhibitors and AHR 
agonists were found to increase the level of TF in the 3C system9. 
Rapamycin, an mTOR inhibitor, has been shown to increase TF and 
promote arterial thrombosis in vivo30, and cigarette smoke, associated 
with risk of cardiovascular disease and acute coronary thrombosis31, 
causes exposure to polycyclic aromatic hydrocarbons with expected 
activation of AHR. In addition, thrombosis is associated with clini-
cal use of the selective estrogen receptor modulators, tamoxifen 
(Nolvadex) and raloxifene (Evista)32,33.

Pharmaceutical correlation analysis
To determine if we could classify compounds designed to be active  
in humans by mechanism of action, we first analyzed the BioMAP 
profiles of the 135 donated pharmaceuticals by pairwise correla-
tion. We visualized these relationships in a function-homology map  
(Fig. 3 and Online Methods)34,35. Compound pairs (Pearson’s  
correlation coefficient (r) > 0.75) are shown as connected lines  
demonstrating that the pharmaceutical compounds could be 
sorted into groups (clusters in Fig. 3) by BioMAP profiling (Online 
Methods). In each of these clusters, there were multiple examples of 
drugs whose intended and classified mechanisms matched, and drugs 
whose classified mechanism may represent an unidentified off-target 
effect. Compounds were further analyzed by comparison to BioMAP 
profiles previously generated from reference chemicals with known 
mechanisms of action.

Representative BioMAP profile matches with r > 0.75 (Fig. 3)  
include examples of confirmatory classifications and previously unre-
ported associations. We highlight five here. (i) Compound DPharma27 
was identified as a CysLT1 antagonist based on the similarity of its 
profile to that of the reference compound montelukast (r = 0.85). This 
compound was developed as an LTB4 receptor antagonist, and failed 
clinical development owing to aneuploidy, possibly reflected by its 
BioMAP cytotoxicity in multiple cell types. (ii) Compound DPharma68 
(40 µM) was identified as a PDE4 inhibitor based on profile simi-
larity to ibudilast (r = 0.82), and was indeed developed as a PDE4 
inhibitor, was modestly antiproliferative to endothelial cells, PBMCs, 
coronary artery smooth muscle cells and dermal fibroblasts, and 
showed strong inhibition of TNFα in the lipopolysaccharide system.  
Clinical failure involved emesis and linked vagal response, known 
adverse events associated with PDE4 inhibitors36. (iii) Compound 
DPharma2 was identified as an mTOR inhibitor based on profile  

similarity to rapamycin (4.44 µM, r = 0.75) and to AZD8055 (13.3 µM,  
r = 0.77, profile not shown). This compound was developed as a 
benzothiophene cell activation inhibitor, and was antiproliferative to 
endothelial cells, PBMCs, coronary artery smooth muscle cells and 
dermal fibroblasts, and inhibited uPAR and HLA-DR in endothelial 
cells. (iv) Compound DPharma86 (13.3 µM) was identified as a p38 
MAPK inhibitor based on profile similarity to VX-745 (r = 0.96). This 
compound was developed as a MAP kinase inhibitor and inhibited TF 
and HLA-DR, strongly inhibited monocyte activation, and upregu-
lated adhesion molecule VCAM-1 and chemokine IP-10 in dermal 
fibroblasts. Clinical failure was associated with central nervous system 
adverse events and acneiform rash and preclinical lethal effects in 
rabbit reproductive toxicity testing. (v) Two additional compounds 
(not shown), DPharma75 and DPharma101, developed as PDE4 
inhibitors for treatment of asthma, matched the profile for ATRA 
at multiple concentrations with Pearson’s correlations of 0.71–0.82. 
Rodent studies on these two compounds showed fetal effects, as would 
be expected from compounds acting like the developmental toxicant 
ATRA (http://actor.epa.gov/toxrefdb/faces/Home.jsp). The complete 
BioMAP profile similarity search results (r > 0.7) for the subset of 
donated pharmaceuticals is included as Supplementary Table 8.

Mechanism predictions
We next applied a support vector machine (SVM) learning algorithm 
to the BioMAP data to classify chemicals by likelihood of belonging 
to 28 predefined models of mechanistic classes trained on a reference 
compound database. The details of these models, their performance 
and example applications were described previously9. Mechanism class 
decision values (DV), a measure of in-class confidence, were calculated 
for each test concentration of every compound, again to separate poly-
pharmacological effects. All compounds with high DV (DVmax > 0.4)  
for the respective mechanisms classes were systematically examined. 
We found 71 predictions consistent with known mechanisms and  
65 potentially novel predictions (Supplementary Table 9). The complete  
set of SVM predictions is in Supplementary Table 10. To visualize 
the overall distribution of predicted compound activities, we clus-
tered the SVM DVs using a 30 × 30 self-organizing map. Figure 4  
shows the distribution of mechanism class DVs for all compounds as 
a trellis self-organizing map plot. The in-class predictions for each 
mechanism are shown as separate plots illustrating both unique 
clusters of compounds corresponding to specific mechanism classes 
(e.g., glucocorticoid receptor (GR) agonists, H1 antagonists) as well as  
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the median; and the whiskers, the upper and 
lower 5%. The intraclass correlation coefficients, 
that is, the fraction of the variance of each 
variable that is explained by the difference 
between these clusters, are 0.79, 0.69, 0.35 
and 0.28 for TF, E-selectin, hLADR and MIG, 
respectively (cluster 28: n = 26, cluster 48: n = 27).
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compound clusters that have high DVs for multiple mechanism 
classes (e.g., PDE4 inhibitors, retinoic acid receptor/retinoid X recep-
tor (RAR/RXR) agonists, prostaglandin E receptor (EP) agonists), 
possibly reflecting pathway crosstalk.

The group of compounds predicted to be GR agonists included 
the corticosteroids dexamethasone, corticosterone, triamcinolone and 
prednisone. Other compounds in the GR agonist cluster included 
coumarin, previously shown to bind to steroid hormone receptors37, 
and pentaerythritol, for which a mammalian enzyme, pentaerythri-
tol tetranitrate reductase, has shown preferential binding to steroid 
substrates38. Five compounds had high DVs at multiple test concen-
trations unique to the histamine receptor H1 antagonist mechanism 
class with two of these, trelanserin and volinanserin, known as selec-
tive serotonin 5-HT2A antagonists; volinanserin and other serotonin 
modulators have been shown to control histamine release in mice39. 
Besonprodil is a N-methyl-d-aspartate (NMDA) receptor antagonist 
under development as a supplemental medication for Parkinson’s 
disease40, whose interaction with the histaminergic system has not 
been shown; however, another NMDA receptor antagonist, ketamine, 
has shown acute suppression of histamine release in rat limbic brain 
regions41. There were 11 compounds specifically predicted at multiple 
test concentrations to be AHR agonists, and this cluster showed a 

high degree of overlap with the aforementioned cluster of polycyclic 
aromatic hydrocarbons and AHR ligands that emerged during the 
unsupervised analysis.

Some compounds with specific known mechanisms also gave high 
DVs for additional classes, suggesting similarities or functional rela-
tionships. One group included p38 MAPK inhibitors, PDE4 inhibi-
tors, IKK2 inhibitors, EP agonists and RAR/RXR agonists. There was 
concordance between predicted PI3K inhibitors, mTOR inhibitors, 
microtubule stabilizers and disruptors, and mitochondrial affecters, as 
well as predicted proteasome modulators, histone deacetylase inhibi-
tors (HDAC) inhibitors and Hsp90 inhibitors. However, there were 
still small numbers of compounds that had high DVs unique to each 
mechanism. This was sometimes defined by specific concentrations. 
For example, colchicine had distinct DVs at multiple test concentra-
tions distinguishing between microtubule disruption and microtu-
bule stabilization. The reference compounds for HMG-CoA reductase 
inhibition, lovastatin and simvastatin, had high DVs for the corre-
sponding pathway, as did the only other statin included in the library, 
pravastatin. The remaining compound clusters with positive DVs for 
this mechanism class overlapped substantially with clusters for micro-
tubule stabilization and mTOR inhibition. Mechanism classes with 
consistently low DVs across the data set were JAK inhibitors, EGFR 

p38 MAPK

PDE IV / cAMP

CysLT1

mTOR

iii

iv

i

ii

Figure 3 Function similarity map for 135 failed pharmaceutical compounds. Compound profiles in eight BioMAP systems were compared by pairwise 
correlation and subjected to nonlinear projection. Each circle represents a compound profile at a single concentration, colors (randomly assigned) 
represent different compounds with shading to indicate compound concentration (darkest shading indicating highest concentration). Lines are drawn 
between compound-concentration pairs with r > 0.75. Line graphs highlight examples of BioMAP profile similarities between donated pharmaceuticals 
(red) and reference compounds (blue). (i) DPharma86 (13.3 µM) is similar to the p38 MAPK inhibitor, VX-745 (3.33 µM), with a Pearson’s correlation 
coefficient of 0.963. (ii) DPharma27 (40 µM) is similar to the CysLT1 antagonist, montelukast (10 µM), with a Pearson’s correlation coefficient of 
0.853. (iii) DPharma68 (40 µM) is similar to the PDE4 inhibitor, ibudilast (90 µM), with a Pearson’s correlation coefficient of 0.821. (iv) DPharma2 
(4.44 µM) is similar to the mTOR inhibitor, rapamycin (0.11 µM), with a Pearson’s correlation coefficient of 0.75.
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inhibitors and calcineurin inhibitors, suggesting a lack of coverage of 
these targets within this chemical library.

There were 33 compounds with known mechanisms included  
in the 28 classes predicted by the SVM model (Supplementary  
Table 11). We reported the maximum DV and associated mechanism 
class for each chemical at any tested concentration, as well as the top 
DV for the intended mechanism class, in cases where it differed. Of 
these compounds, 78% (26) of 33 chemicals belonging to nine classes 
were correctly predicted (accuracy ranged from 50–100% depending 
on the class). The reference compound set was biased toward endo-
crine active compounds known to target the estrogen receptor (ER), 
and six of ten estrogen receptor agonists were correctly predicted by 
the SVM model. Notably, many estrogen receptor antagonists had 
nonzero DVs for the estrogen receptor agonist mechanism class, but 
their maximum DV corresponded to another class. Estrogen recep-
tor reference compounds predicted to affect microtubule stabiliza-
tion were 4-hydroxytamoxifen, 4-nonylphenol, clomiphene citrate, 
raloxifene hydrochloride, and tamoxifen, whereas, diethylstilbestrol 
and meso-hexestrol were predicted to affect mitochondria. These are 
both known potential side effects of estrogen receptor pathway modu-
lation at superpharmacological concentrations42,43.

DISCUSSION
This study demonstrates the promise of using panels of primary 
human cells in profiling bioactivity for a large and diverse set of 
chemicals with potential human exposure. In contrast to approaches 
focused on understanding the actions of a single chemical agent  
at the molecular and mechanistic level, this method harvests the  
collective knowledge embedded in reference chemicals with respect 
to their molecular targets, mechanism of action, and animal and 
human toxicity and applies it to characterizing the biological activity  
of large numbers of newly tested chemicals. Even using a limited  
set of primary human cell systems, we have shown the capability to 
recognize consistent patterns of bioactivity correlated with diverse 
drug actions and toxicities. Several statistical clustering methods 
consistently grouped known and unknown chemicals by similar 
bioactivity profiles. New chemicals falling into clusters with known 
activities suggest specific potential mechanisms of toxicity to be more 

carefully evaluated, greatly increasing the efficiency of toxicity testing 
by focusing resources for follow-up testing on bioactivities of highest 
concern. Nevertheless, the sheer volume of results from this study, 
together with the lack of comprehensive, publically accessible data-
bases of the biological activity of these compounds, prevented us from 
exhaustively analyzing the results and determining the sensitivity and 
specificity of the predictions derived from the data.

Several findings illustrate the potential in this data set for elucidating  
mechanisms of action or toxicities recognized by profile similarities 
among drugs with common targets and similar or distinct clinical 
adverse events. For example, the donated pharmaceutical compound 
DPharma86 (correctly predicted to be a MAP kinase inhibitor) 
increased the inflammatory molecules VCAM-1 and IP-10 in dermal 
fibroblasts. These pro-inflammatory activities have been observed in 
several clinical compounds for which exposure has been associated 
with skin rash (MEK and p38 MAPK inhibitors)44,45, and indeed this 
was an observed adverse outcome of this particular compound in clin-
ical trials. Another intriguing finding is the discovery of a common 
feature between estrogen receptor pathway modulators, AHR acti-
vators and mTOR inhibitors, that is, increased TF in the 3C system, 
and its association with risk of thrombosis. Both of these examples 
illustrate the potential utility of this approach for elucidating toxic-
ity mechanisms, defining adverse outcome pathways and building 
predictive models.

One notable advantage of this approach is the relatively close 
relationship of the endpoints measured (e.g., TF in EC-containing 
models, VCAM-1 in the dermal fibroblast model) to human adverse  
outcomes (thrombosis and skin rash, respectively), providing a  
means to gauge the plausibility of the findings and suggest possible 
biomarkers of exposure. The present study highlights only some of 
the most interesting findings (a number of other similar findings and 
examples are included in the Supplementary Discussion).

There are many challenges and limitations in using bioactivity 
profiles to predict mechanisms and adverse outcomes. One major 
issue is the lack of clinical information; what is available is limited, 
difficult to access and not in a computable form. Annotated public 
databases of clinical effects using standardized vocabulary combined 
with exposure and compound metabolism information would allow 
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Figure 4 Distribution of mechanism class decision 
values (DV) for all test concentrations of all 
compounds shown as self-organizing maps in a 
trellis plot conditioned by mechanism class DV. 
Each plot shows a 30 × 30 grid of boxes, where 
each box represents a heterogeneously sized 
cluster of chemicals and/or concentrations. 
Color scale represents SVM DVs from blue 
(negative DV) to red (high DV), computed based 
on the weighted average of Pearson correlation 
coefficients to identified reference classification 
profiles (n = 3,600 chemical/concentration 
pairs). The relative probabilities for belonging 
to each mechanism class are shown as separate 
plots, where the clustering of compounds is 
consistent across all plots. Red areas represent 
compounds strongly predicted to belong to that 
class, and blue areas represent compounds 
strongly predicted not to belong to that class. 
Unique clusters of compounds corresponding 
to specific mechanism classes may be observed 
(e.g., GR agonists, H1 antagonists), as well 
as compound clusters that have high DVs 
for multiple mechanism classes (e.g., PDE4 
inhibitors, RAR/RXR agonists, EP agonists).
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development of human relevant models and likely widen the ability 
to uncover novel findings. In addition, it is necessary to perform the 
analysis at multiple testing concentrations as this is critical in han-
dling the promiscuity and polypharmacology of chemicals including 
human drugs7. Moreover, some compounds that were expected to 
be biologically active, such as pharmaceuticals, did not affect any 
of the endpoints measured here, and other compounds with known 
mechanisms of action were not assigned to appropriate classes. For 
example, valproic acid is an HDAC inhibitor, but it did not have posi-
tive DVs for the corresponding mechanism classes or, in fact, for any  
of the classes examined here. Perhaps it was not tested at appropriate 
concentrations, as very high concentrations (mM) of valproic acid 
are required for HDAC inhibition relative to the 40 µM top con-
centration tested here. In other cases, we may have been unable to 
classify a compound by its mechanism of action because the current  
testing panel did not have appropriate cell systems. Although many of 
the activated signaling pathways used in these systems are conserved 
and used to varying degrees in most cell types, there are others that 
are specific to particular cells and tissues. Examples of missing and 
potentially useful systems include renal, adrenal, neural, intestinal, 
mammary and liver cells. Some of these systems might also supply 
a great deal of xenobiotic metabolism capacity that current systems 
may lack. Such biotransformation potential is likely to be crucial in 
building a complete predictive in vitro testing strategy.

This BioMAP primary human cell system platform is only one 
component of the Environmental Protection Agency’s ToxCast pro-
gram. The goal of ToxCast is to develop predictive toxicity models 
based on data from alternative testing methods. Other assay plat-
forms in the program include biochemical assays targeting individual 
enzymes and receptors, cellular gene reporter assays for transcription 
factors and stress pathways, high-content imaging assays for cell 
health profiles, and assays targeting key cell signaling pathways and 
gene expression17. The use of primary human cells in the BioMap 
system is an important complement to the other assays that do not 
use primary cells. The same chemical library has been tested by all 
assay platforms and the results have been made publically available 
(http://actor.epa.gov). The large number of compounds tested and 
the rich detail about the molecular targets and cellular responses 
across a range of exposures make this a unique effort in toxicology. 
The compound libraries are also used in the US governmental Tox21 
collaboration that has a goal of transforming traditional toxicity test-
ing46. The Tox21 chemical library totals over 8,100 unique com-
pounds and is being tested on an ongoing basis with an initial focus 
on nuclear receptors and stress pathways. Although these approaches 
are currently at the research stage, data are beginning to be applied 
toward chemical prioritization in support of the Endocrine Disruptor 
Screening Program47.

This study has demonstrated the ability to use alternative meth-
ods combined with existing knowledge to classify compounds for 
potential mechanisms and to broaden our understanding of relevant 
doses and polypharmacology. This type of complex, in vitro assay 
panel based on human primary cells in carefully designed biological 
environments combined with innovative in silico analysis may serve 
as a first-tier alternative to animal testing using a human-relevant 
system for chemical screening and prioritization with applications 
to toxicity testing and drug discovery.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Cell culture. The panel of eight BioMAP systems employed are shown in 
Table 1. Preparation and culture of primary human endothelial cells (EC), 
PBMCs, neonatal foreskin fibroblasts (HDFn), BECs (Cell Applications, Inc., 
San Diego, CA), arterial smooth muscle cells (Lonza, Inc., Allendale, NJ) and 
keratinocytes (Cambrex, Inc., East Rutherford, NJ), as well as methods for 
the 3C, 4H, lipopolysaccharide, SAg, BE3C, HDFCGF, KF3CT and CASM3C 
systems were as previously described11,12,34,48–50. The following concentrations 
and/or amounts of agents were added to confluent microtiter plates to build the 
various systems: cytokines (IL-1β, 1 ng/ml; TNF-α, 5 ng/ml; IFN-γ, 20 ng/ml; 
IL-4, 5 ng/ml), activators (histamine, 10 µM; SAg, 20 ng/ml or lipopolysac-
charide, 2 ng/ml), growth factors (TGF-β, 5 ng/ml; EGF, bFGF and PDGF-BB, 
10 ng/ml) or PBMC (7.5 × 104 cells/well). All primary human cells used in 
this work were obtained under protocols that were reviewed by Institutional 
Review Board(s) (IRB) that operate in accordance with the requirement of 
EPA Regulation 40 CFR 26 and HHS Regulation 45 CFR 46 of the US Federal 
Government for the protection of human research subjects.

Compounds. Chemical information associated with the ToxCast library (i.e., 
chemical names, CASRN and substance description) was quality reviewed and 
structure-annotated within the US EPA’s DSSTox project (http://www.epa.gov/
ncct/dsstox/). The compound library is listed in Supplementary Table 12 and 
a tabular listing and Structure Data Format (SDF) file of the complete ToxCast 
chemical library is available at: http://www.epa.gov/ncct/dsstox/sdf_toxcst.
html. Analytical chemical analysis for the complete library is being conducted 
by OpAns (Durham, NC) and will be made publically available upon comple-
tion at the same URL. Compounds were tested in multiple batches (phase IIa, 
IIb, and IIc) in concentration-response in a single well per readout parameter. 
Phase IIa and IIb (700 compounds) were tested in duplicate at 40, 13.3, 4.4 and 
1.48 µM. Due to the high level of reproducibility among the duplicate samples, 
the remaining phase IIc (100 compounds) set was tested in singleton at 40, 
20, 10, 5, 2.5, 1.25, 0.625 and 0.313 µM. Out of 776 total compounds (800 
with blinded replicates), 135 were donated pharmaceutical compounds from 
industry partners (Pfizer, GlaxoSmithKline, Roche, Merck, Aventis, Astellas), 
the majority of which exhibited preclinical or clinical toxicity and were not 
marketed drugs. Compounds were prepared in DMSO from 20 mM stock 
solutions, added 1 h before stimulation of the cells, and were present dur-
ing the whole 24-h stimulation period. Final DMSO concentration was 0.2%. 
Colchicine, 1.1 µM, was included as a positive control. Compounds were tested 
in a blinded fashion and included two sets of sextuplet samples and seven sets 
of triplicates for quality control purposes.

Plate formats. Templates were prepared with seven compounds (four concen-
trations) per 96-well plate. One positive control (colchicine) and eight negative 
control wells (0.2% DMSO) were employed on each plate. Left and rightmost 
rows (A1-H1, A12-H12) were not employed for EPA compounds.

ELISA. The levels of readout parameters were measured by ELISA as 
described11,12,34,48–51. Briefly, microtiter plates are treated, blocked, and then 
incubated with primary antibodies or isotype control antibodies (0.01–0.5 µg/ml)  
for 1 h. Specific antibodies used for ELISA are listed in Supplementary 
Table 13. After washing, plates were incubated with a peroxidase-conjugated 
anti-mouse IgG secondary antibody or a biotin-conjugated anti-mouse IgG 
antibody for 1 h followed by streptavidin-horseradish peroxidase for 30 min. 
Plates were washed and developed with TMB substrate and the absorbance 
(OD) was read at 450 nm (subtracting the background absorbance at 650 nm). 
Quantification of TNF-α and PGE2 in the lipopolysaccharide system was done 
using commercially available kits according to the manufacturer’s directions. 
Proliferation of PBMCs (T cells) was quantified by Alamar blue reduction 
and proliferation, and cytotoxicity of adherent cell types was quantified by 
sulforhodamine B (SRB) staining.

Other assessments. Overtly adverse effects of compounds on cells were 
determined by (i) measuring alterations in total protein using SRB staining, 
(ii) measuring the viability of PBMCs and (iii) microscopic visualization (3C 
system). SRB assay was performed by staining cells with 0.1% sulforhodamine 
B after fixation with 10% TCA, and reading wells at 560 nm. PBMC viability 

was assessed by adding Alamar blue to PBMC that had been cultured for 24 h  
in the presence of activators and compounds and measuring its reduction 
after 8 h. Samples were assessed visually according to the following scheme:  
2.0 = cobblestone (nonactivated phenotype); 1.0 = activated (normal phenotype);  
0.5 = lacy or sparse; 0.375 = rounded; 0.25 = sparse and granular; 0.1 = no cells 
in well. During this procedure, cells were also assessed for the presence of com-
pound precipitates, and samples were flagged if precipitates are observed.

Data analysis. Measurement values for each parameter in a treated sample 
were divided by the mean value from eight DMSO control samples (from the 
same plate) to generate a ratio. All ratios were then log10 transformed. Visual 
categorical scores (see above) were similarly converted (log10 ratios of 0.3, 
0.0, −0.3, −0.4, −0.6 and −1.0). Significance and hit prediction envelopes were 
calculated for historical controls (99% and 95%), and LECs were assigned as 
the minimum test concentration at which a significant response was observed 
(>99%). Concentration response plots were generated using an automated data 
workflow process in R (v2.13.0), and Hill functions were fit and half-maximal  
concentrations (AC50) were calculated for responses exceeding a twofold 
change in either direction. Computer code for data processing is available 
in Supplementary Software. Overtly cytotoxic compounds were identified 
as generating profiles with one or more of the following readouts below the 
indicated thresholds: SRB < −0.3, PI or PBMC cytotoxicity < −0.3 or Visual 
score < −0.6 in one or more systems. A cytotoxicity filter was applied to the 
LEC and AC50 values to remove downregulation of protein targets due to 
overt cytotoxicity, primarily at the highest test concentrations. The complete 
set of results for the 776 chemicals for each of the 87 endpoints is included in 
Supplementary Table 1.

Correlation analysis. Bioactivity profile analysis was performed as described 
using Pearson’s correlation, systems-weighted and real value Tanimoto metrics 
to compare nonovertly cytotoxic test compounds to a database of reference 
chemicals with known targets and modes of action9,11,12. A Pearson’s correla-
tion threshold of 0.7 was used to identify similar profiles, based on previous 
studies10. However, given that this cutoff was selected to control for the false-
discovery rate (FDR), and FDR depends on dimensionality of the profile data, 
we have repeated the simulation to calculate the FDR for this new magnitude 
of multiple comparisons. Operating with a much larger BioMAP database than 
2006, we used a slightly modified approach to generate the null distribution. 
Instead of permuting empirical profiles, random profiles were generated by 
sampling from a uniform distribution within each biomarker’s range (min 
and max values). Both approaches take into account the differences in the 
amplitude of response of the different biomarkers. The biomarker ranges were 
developed from many experiments with different compound treatments in the 
BioMAP database, and all the biomarkers used in this paper have been profiled 
at least 7,000 times, many of them more than 10,000 times. Using this new null 
distribution, the FDR at a Pearson’s cutoff of 0.7 for the 135 compounds would 
be 7.5% if using the same biomarkers as in Berg10 . However, with a larger 
biomarker panel (eight BioMAP systems in this paper versus four systems in 
Berg10), the null and empirical distributions each become narrower, and the 
separation between empirical distribution and null distribution became much 
larger. Using this approach, we calculated the FDR at Pearson’s cutoff of 0.7 
for the 135 compounds, and found that the FDR is 0.2%, showing that this is 
a sufficiently conservative cutoff value.

SVM models. The 28 SVM models employed in the present study are fully 
described in reference9 and summarized here. The 28 classes of mechanisms of 
action are as follow: AHR agonist, Hsp90 inhibitor, PI3K inhibitor, calcineurin 
inhibitor, IKK2 inhibitor, PKC (c+n) inhibitor, EGFR inhibitor, IL-17R agonist, 
proteasome inhibitor, EP agonist, JAK inhibitor, RAR/RXR agonist, estro-
gen receptor agonist, MEK inhibitor, Src family inhibitor, SR Ca2+ ATPase 
inhibitor, microtubule disruptor, TNF-α antagonist, GR agonist, microtubule 
stabilizer, vitamin D receptor agonist, H1 antagonist, mitochondrial inhibi-
tor, mTOR inhibitor, HDAC inhibitor, PDE4 inhibitor, p38 MAPK inhibitor, 
HMG-CoA reductase inhibitor.

Selection of data for SVM models. For each mechanism class, where  
possible, multiple compounds from structurally distinct chemical classes 

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.epa.gov/ncct/dsstox/
http://www.epa.gov/ncct/dsstox/
http://www.epa.gov/ncct/dsstox/sdf_toxcst.html
http://www.epa.gov/ncct/dsstox/sdf_toxcst.html


nature biotechnologydoi:10.1038/nbt.2914

were employed, and for all classes, profiles generated from compounds tested 
at more than one concentration were included. For the SVM models, 84 of 
87 endpoints in the ToxCast data set were employed (visual scores (3C sys-
tem) and TGFβ (HDF3CGF and KF3CT systems) measurements were not 
included). For each mechanism class, where possible, multiple compounds 
from structurally distinct chemical classes were employed, and for all classes, 
profiles generated from compounds tested at more than one concentration 
were included. All reference compounds, concentrations tested and data can 
be found in reference9. Compounds used for each model were selected based 
on literature information identifying them as selective for a specific target. 
BioMAP profile data (each profile consisting of data from a single compound 
at a single dose) for building mechanism models were selected based on their 
within-class consistency, with strongly toxic or weak profiles removed. Strongly 
toxic profiles are identified as profiles having values for three or more cell cyto-
toxicity endpoints (SRB and PBMC cytotoxicity) with log10 ratio < −0.3. For 
identification of weak profiles, the endpoint values (absolute log10 ratios) were 
digitized to a discrete number according to a lookup table, with each endpoint 
assigned a bit count from 0 to 18 depending on the magnitude of its log10 ratio 
value. The profile bit count represents the strength of a profile and is the sum 
of bits across all endpoints. For SVM model data, weak profiles were defined as 
those having 7 or fewer bits. After this initial filtering, profiles in each model 
were evaluated for within-class consistency. For this, profiles with Pearson 
correlation coefficients of at least 0.7 to at least one other profile in the same 
class were included. We have found that compounds that are highly target 
selective generate BioMAP profiles that are mathematically similar to each 
other over a wide range of concentrations, and we term compounds exhibiting 
this feature ‘dose resistant’. Profile data used to build the models are included 
in Berg9. Due to the availability of selective compounds and our criteria above, 
different numbers of compounds and concentrations were selected for each 
class. As a result, some classes, such as the AHR agonist, contain few profiles 
(1 compound/4 doses), whereas other classes include larger numbers. A list 
of the mechanism classes, compounds and numbers of profiles that were used 
for generating SVM models as well as a table that contains the average class 
profile for each mechanism class can be found in reference 9. These profiles 
were calculated by averaging the values for each biomarker endpoint for all 
profiles selected to build each SVM model.

Building SVM models. Predictive models for 28 mechanism classes were built 
using a two-class approach with SVM. SVM was selected as this method gave 
the best performance among a number of machine-learning algorithms that 
were tested, including Lasso, Random Forest, Gradient Boosting Method and 
Linear Discriminant Analysis (data not shown).

The R SVM package e1071 (http://www.r-project.org/) was used to build the 
SVM models for each mechanism class. Based on performance testing using 
cross-validation with reference and other data, the key variables for building 
SVM models were determined to be (i) row (profile) normalization of both 
model and test data with no column (marker) normalization; (ii) selection of 
linear kernel; and (iii) cost set to 500, resulting in a small increase in positive 
predictive value and a decrease in sensitivity. Other parameters were set to 
default values.

There are several different ways to employ SVM to build predictive models 
in our case. These include: “one class-versus-the rest of the classes”; “one class-
versus-zero (or null) class”; or a “multiclass-classification mode”, where for k 
classes, k(k−1)/2 number of “one-versus-one” binary classifiers are trained, 
and the appropriate class is assigned by a voting scheme. When evaluating the 
approach of “one class-versus-the rest of the classes,” testing against external 
data sets revealed that a greater number of models performed very poorly. We 
did not test the multiclass-classification mode, given that the number of classes 
is large, k = 28 in our case, and building k(k−1)/2 number of “one-versus-one” 
binary classifiers quickly becomes unwieldy. In addition, the number of classes 
would be continuously growing as we generate data on more compounds and 
add additional classes to our set. Thus, in the current study, the mode of “one 
class-versus-zero (or null)” was selected as the most appropriate method. For 
the “null” class, we randomly generated a set of weak profiles using control 
data (log10 ratio values within the 95% significance envelope of the controls). 
In cases where profiles generated from the same compound but at different 

concentrations give different mechanism classes, separate SVM models were 
built as “one class-versus-the other class (or classes)” and profiles re-tested. 
The few number of missing values in the reference data set were filled in using 
the KNNimpute method from the R package imputation.

Criteria for assigning mechanism classes to profiles. For assigning mecha-
nism classes to compound profiles at each concentration tested, individual 
profiles were tested against each of the 28 class models. The resulting DV 
against each model was calculated as described in reference 9 with DV reflect-
ing the distance from the hyperplane separating the two classes (in this case, 
the selected mechanism class versus the null class). Support vectors of the 
positive class (subset of the positive class profiles) have DVs near 1. Any  
DV > 0 indicates class membership; however, as DV increases, confidence in 
class membership will increase.

For each test profile, however, there may be more than one class that gives 
a DV > 0. In these cases, the class with the highest DV becomes the predicted 
class. The performance of this scheme (“largest DV = assigned class”) was 
tested using cross-validation on reference profiles, where 10% of the profiles 
(“test profiles”) from each class was set aside, the remaining 90% of profiles 
from each class was used to build models. Then the set aside “test profiles” 
were evaluated and assigned according to the “largest DV = assigned class” 
scheme. From the results, measures of performance: Positive Predictive Value 
(PPV = TP/(TP+FP), TP = true positive, FP = false positive) and sensitivity  
(= TP/(TP+FN), FN = false negative) were calculated.

As described above, the process of generating the “null” class, randomly 
generated as a set of weak profiles using control data, introduces some variance 
to the DVs obtained each time a prediction is run. The s.d. of multiple runs 
was found to be 0.005. Thus in cases where multiple classes give DV > 0, we 
required that the difference between the highest DV and second highest DV 
be > 0.03, which represents six s.d. for class assignment.

Modified nonlinear mapping (NLM). The modified NLM technique 
employed in the present study has been described previously10,11,48. Methods 
are repeated here for convenience. The function similarity map uses the results 
of pairwise correlation analysis to project the “proximity” of related profiles 
from multidimensional space to two dimensions. The two-dimensional (2D) 
projection coordinates were generated by applying a modified nonlinear  
mapping technique, using a modified stress function by Clark52. A gradient  
descent minimization method was used to minimize the modified stress  
function, starting from a set of initial positions (e.g., from principal components  
analysis). Distances between compounds are representative of their similari-
ties, and lines are drawn between compounds whose profiles are sufficiently 
similar, with metrics that are above the selected thresholds.

Self-organizing map (SOM). The Kohonen SOM is an unsupervised learning 
approach that allows for visualization of patterns in the data by mapping the 
underlying topology. This technique employs self-organizing neural networks 
to reduce the dimensionality of the data so that it may be plotted in 2D space. 
SOMs are based on a competitive learning system implemented by lateral 
inhibition connections where neurons are competing for spatial locations, 
resulting in an emergent structure that optimizes the similarity of neighbor-
ing neurons. The process of self-organization can be summarized as follows. 
First, all the connection weights between neurons are initialized with small 
random values, and then the neurons compute their respective values of a 
discriminant function. The neuron with the smallest value of the discriminant 
function is the “winner,” and determines the spatial location of a topological 
neighborhood of excited neurons that may cooperate with one another. The 
excited neurons decrease their individual values of the discriminant func-
tion through adjustment of the associated connection weights, such that the 
response of the winning neuron to the subsequent application of a similar 
input pattern is enhanced. These steps are repeated and the feature map is 
refined until convergence is reached, where the map no longer changes and 
provides an accurate statistical quantification of the input space. Parameter 
values must be carefully chosen to reflect the dimensionality of the data; 
typically the number of nodes reflects the number of input samples (here, a  
10 × 10 grid was chosen), and the number of training iterations is at least  

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.r-project.org/


nature biotechnology doi:10.1038/nbt.2914

500 times the number of neurons in the network, here set at 100,000  
iterations25. The SOM analysis was performed in Partek Genomics Suite 6.6.
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