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ABSTRACT: DNA-encoded small molecule libraries (DELs)
have enabled discovery of novel inhibitors for many distinct
protein targets of therapeutic value. We demonstrate a new
approach applying machine learning to DEL selection data by
identifying active molecules from large libraries of commercial and
easily synthesizable compounds. We train models using only DEL
selection data and apply automated or automatable filters to the
predictions. We perform a large prospective study (∼2000
compounds) across three diverse protein targets: sEH (a
hydrolase), ERα (a nuclear receptor), and c-KIT (a kinase). The
approach is effective, with an overall hit rate of ∼30% at 30 μM and discovery of potent compounds (IC50 < 10 nM) for every target.
The system makes useful predictions even for molecules dissimilar to the original DEL, and the compounds identified are diverse,
predominantly drug-like, and different from known ligands. This work demonstrates a powerful new approach to hit-finding.

■ INTRODUCTION

Discovering small molecule therapeutics is an increasingly
expensive and long process.1 Once a target is validated, finding
diverse small molecule hits that modulate its function is
foundational for a successful drug discovery effort. These hits
should also have good physicochemical properties and be
tractable for further optimization into therapeutic candidates.
Effective computational screening of large virtual libraries has
long been a goal of the community. Here, we present a new
process for building a machine learned model from readily
generated experimental data and using that model on large,
low-cost chemical libraries. We validate this approach with the
largest reported prospective experimental study using machine
learning (ML) for hit finding.
DNA encoded small molecule libraries (DELs)2 have been

increasingly explored in recent years to enhance hit
identification efforts in drug discovery. Capitalizing on the
power of next generation sequencing (NGS) and reduced cost
per compound tested as compared to high-throughput
screening (HTS), this approach allows simultaneous readout
of target binding by millions to billions of molecules.2−4

Accordingly, the use of DEL screening has significantly
expanded the accessible scope of chemical space that can be
explored in a single experiment, in terms of diversity and
degree of variation around structural motifs.3 Success using
DELs has been demonstrated across a broad range of targets of
varied classes5 by multiple pharmaceutical, biotech, and

academic groups.3 A number of programs based on DEL-
identified hits have progressed to clinical trials.6,7

However, existing successes have limitations. Analysis of
DEL selections has typically focused on identifying molecules
within the DEL by directly examining the output, aided by
informatics analysis and visualization tools.2,3 This close
involvement of human analysis limits the scale of molecules
considered, introduces bias, and makes it difficult to fully
utilize the subtle patterns in the DEL selections. These subtle
patterns may be obscured by sources of variability such as the
yield of individual library members and random sampling
effects.8,9

Over the past decade, neural networks have demonstrated
strong performance on molecular property prediction
tasks.10−15 For many applications in drug discovery with
small or sparse data, neural network methods do not
outperform simpler methods like random forests;14,16 however,
the benefits of custom graph-based architectures become clear
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with large17 or highly structured10 data, and DEL selection
data is both.
In this work, we demonstrate a new application of DEL

selection data for discovering hits outside the compounds in
the DEL (Figure 1). First, affinity-mediated selections of the
DEL under several conditions were performed with each
target. Second, the sequencing readout was processed and
aggregated (see Experimental Section). Third, a machine
learning model was trained on the aggregated selection data
(using no prior off-DNA activity measurements) and used to
virtually screen large libraries (∼88 million) of easily
synthesizable or inexpensive purchasable compounds. Fourth,
automated diversity filters, reactive substructure filters, and a
chemist review restricted to elimination of molecules with
potential instability or reactivity were applied to the top
predictions of the model. Finally, the selected compounds were
tested experimentally.
We show that graph convolutional neural network (GCNN)

models16 trained with this approach generalize well to new
chemical spaces and have much stronger prospective perform-
ance than simpler baseline models. For GCNN models applied
to three different protein targets, we report hit rates for the
best-performing target of 72% at 30 μM, 33% at 10 μM, and
29% at 1 μM. This is in contrast to traditional HTS (without
ML), which normally reports hit rates of ∼1%.18,19 Our results
demonstrate that this approach significantly expands the utility
of DEL selection data by identifying hits in low-cost
compound libraries, producing structurally diverse starting
points for both tool compound discovery and lead generation
at a fraction (∼25%) of the cost of typical DEL-based hit
finding.

■ RESULTS

Discovering Potent Ligands. Three therapeutic protein
targets were screened: soluble epoxide hydrolase (sEH) is a
target for cardiovascular diseases,20 tyrosine-protein kinase
KIT (c-KIT) is a target for multiple pathologies including
gastrointestinal stromal tumors,21 and estrogen receptor alpha
(ERα) is a target for multiple pathologies including breast
cancer.22

Two types of ML models were trained on the DEL selection
data to classify compounds: Random Forest (RF)23 and
GCNN.16 The training data were preprocessed with disynthon
aggregation (see Experimental Section) to handle noise in
DNA-sequencing counts of individual library members, for
example, due to undersampling of the DEL selection output
(see Figure 1). Notably, only the DEL selection data and ML
techniques described herein were used in building these
models: no known ligand data were used beyond the choice of
the competitive inhibitors used in the DEL selections, and no
explicit representation of the protein targets nor 3D data were
used. In fact, the authors building the GCNN models were
intentionally blinded to the names and nature of the targets at
the time of model building. To cleanly assess the quality of the
model predictions, we avoided subjective selection of the most
chemically attractive compounds from the predictions. To
identify molecules for purchase and testing, we started with the
top predicted molecules and applied diversity, logistical, and
structural filters and a restricted chemist review (see
Experimental Section). Though not automated in this
experiment, this limited chemist review could be automated.
All compounds successfully acquired or synthesized were
experimentally validated.
Performance of an ML model is dependent on the data set

on which it is trained. In a traditional DEL screening approach,

Figure 1. Schematic example of machine learning models trained on DEL data. (a) Starting with a DEL containing ∼108 unique molecules, an
affinity-mediated selection is performed against the target, and the DNA tags for retained molecules are PCR-amplified and sequenced. After
removal of PCR-amplification duplicates, reads for each library member are then aggregated across shared two-cycle disynthon representations.
These disynthons are labeled for machine learning based on calculated enrichment scores. Aggregation is performed for every possible pair of
synthons; that is, some disynthons aggregate over the central synthon(s). The figure shows an example for a three-cycle DEL, but we also used two-
cycle and four-cycle libraries; overall, we ran selections for ∼40 libraries covering ∼1011 unique molecules. Note that additional counter-selections
may be run to provide richer labels, for example, inclusion of a known competitive inhibitor. (b) The labeled disynthon representations are used as
training data for machine learning models. The trained models are then used to predict hits from virtual libraries or commercially available catalogs
such as Mcule. Predicted hit compounds are ordered or synthesized and tested experimentally to confirm activity in functional assays.
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a single selection campaign is generally sufficient for hit
identification against the target of interest. To ensure this is
equally true for training predictive models, two separate DEL
selections were performed months apart on sEH. This
experiment showed that the two separate training sets were
equivalent with respect to model training (see Experimental
Section and SI Figure 7).
Experimental validation followed a traditional two step

approach: single-point inhibition assays were run first, followed
by dose−response assays to confirm hits from the initial assays
(see Experimental Section). Dose−response potency values are
reported as the concentration required for 50% inhibition
(IC50). The experimental hit rates and potencies are reported
in Figure 2 and cover 1885 unique compounds from two
readily accessible, low-cost libraries: Mcule24 and a proprietary
single reaction virtual library (XVL; see Experimental Section).
Results from these two screening libraries have been combined
for the main figures in this article. Notably, all the experimental
validations in this work are biochemical activity or ligand
displacement assays, reducing the likelihood of false positive
hits that are inactive (nonbinders, allosteric binders, or silent
binders).
Across the three protein targets, we identified 304 ligands

with better than 10 μM potency, and 165 with better than 1
μM potency. The GCNN models achieved substantially higher
hit rates and better potencies than the RF models. While the

hit rates varied across protein targets, the GCNN model still
identified 78 hits <30 μM for the least productive protein (c-
KIT). Hit rates may be correlated with the number of positive
training examples (see Experimental Section): sEH models had
the highest hit rates and largest number of positive training
examples, while c-KIT models had the lowest hit rates and
fewest positive training examples. The Mcule library was
generally more productive than the virtual library in terms of
potency and hit rates (SI Figure 1). Perhaps not surprisingly,
considering our filtering criteria and that Mcule and XVL are
curated to be more drug-like, 568/583 (97%) of the unique
confirmed hits had ≤1 Lipinski ”Rule of 5” violations25 (SI
Figure 5). Some structures may still look unattractive to a
skilled chemist; this is a result of our desire to limit subjective
intervention.
As a baseline comparison, we also tested 107 compounds

identified by a similarity search against a subset of positive
training examples from the ERα DEL selection that were
chosen for both high enrichment and diversity (see
Experimental Section). This similarity search yielded no hits
with detectable activity. Because this approach found zero hits,
we did not repeat this baseline for the other targets.

Analysis of Confirmed Hits Discovered by ML. As drug
discovery campaigns move from hit finding into lead
optimization, the structural diversity of the hits matters:
diverse hits act as insurance against local minima in the

Figure 2. Numbers tested along with hit rates and potencies across three therapeutic protein targets for two machine-learning models. Compounds
came from Mcule, a commercial provider, and a proprietary virtual library (XVL). Lower concentrations correspond to more potent hits and are
represented by darker colors; a black vertical line marks the 1 μM threshold in each bar chart. Note that some compounds appeared in multiple
target/model (e.g., “sEH/GCNN”) buckets, such that the number of unique molecules is slightly smaller than the sum of the counts shown here
(1885 vs 1900).

Figure 3. Cumulative hit rates of GCNN-predicted compounds (a), along with a scatter plot of hits (b), on a shared x-axis of ECFP6-counts
Tanimoto similarity of compounds to the training DELs. The cumulative hit rate plots show the hit rates for compounds with less than or equal to a
given (x-axis) similarity to the training set. For example, the observed sEH hit rate at 1 μM was 29.7% (point D for sEH, 347 compounds tested),
but when only considering compounds that have ≤0.40 similarity to the training set nearest neighbor (point E, 36 compounds tested), the hit rate
drops to 22.2%. Error bands are Clopper−Pearson intervals32 at 95% confidence.
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multiobjective lead optimization landscape.26 Despite its large
size (up to ∼1011 molecules), a DEL represents a minute
fraction of the universe of small, drug-like molecules
(estimated at 1033 molecules27), so the degree to which the
ML model is accurate far from the training data is paramount.
Yet, across many applications, ML models often fail to
generalize when tested on data distributions different from
the training data.28,29

The development of simple metrics to evaluate similarity
and diversity of small molecules remains an unsolved
cheminformatics problem. No single metric has captured all
the nuances, including differences in molecular size and
domain- or target-specific knowledge of what substitutions
have similar effects. The most commonly used metric is
Tanimoto similarity on Extended-Connectivity Fingerprints30

(ECFP) and their “functional class” counterpart (FCFP); see
Experimental Section for details. Another way to analyze
similarity is with Bemis−Murcko scaffolds,31 which define a
central structure that can be decorated with functional groups.
Figure 3 depicts the cumulative hit rate and potency as a

function of similarity to the nearest neighbor in the training
set. While there is evidence of a drop off in hit rate as
compounds become dissimilar from the training data, the hit
rates remain useful even at less than 0.4 ECFP Tanimoto
similarity to the training set (22, 28, and 5 hits with better than
30 μM potency for sEH, ERα, and c-KIT respectively); this
suggests that GCNN models have the ability to generalize to
unseen regions of chemical space. Many potent hits were found
far from the training set (e.g., the hit least similar to ERα
training data, with ECFP Tanimoto similarity of only 0.29 to
the training set, had an IC50 of 20 nM). SI Figure 2 includes
similar analysis with FCFP and produces comparable
conclusions about generalization far from the DEL. Overall,
there was no meaningful correlation between the biochemical

IC50 of identified hits and ECFP Tanimoto similarity to the
DEL selection training set: the largest R2 (squared regression
correlation coefficient) values on any target for GCNN
predicted hits and RF predicted hits were 0.001 and 0.183
respectively.
Table 1 highlights some potent hits for each target, and the

most similar previously known hit from ChEMBL. SI Figure 4
shows distributions of similarity between confirmed hits and
nearest training set compounds, while SI Table 1 highlights a
selection of hits along with their nearest neighbors in the
training set (to ground these similarity numbers with specific
examples). Of the Bemis−Murcko scaffolds found in the
confirmed hits, only 42.7% (GCNN) and 60.8% (RF) were
also contained in the training set.
We applied diversity filtering (see Experimental Section) in

selecting compounds for testing. The final hits maintain
diversity, as illustrated by SI Figure 6b and scaffold analysis:
the 418 hits with ≤30 μM potency identified from GCNN
predictions were distributed among 370 unique Bemis−
Murcko scaffolds, while the 170 hits identified from RF
predictions were distributed among 166 scaffolds.
The confirmed hits are also structurally novel: only 2.2%

(GCNN) and 3.0% (RF) of hit scaffolds were previously
reported in ChEMBL33 for these targets, and SI Figure 6b
shows distributions of similarity between confirmed GCNN
hits and the nearest ChEMBL ligand (see Experimental
Section).

■ DISCUSSION AND CONCLUSIONS
Overall, we have demonstrated a new virtual screening
approach that couples DEL selection data with machine
learning and automated or automatable filters to discover
diverse, novel hits outside the DEL. This approach is effective
on three diverse protein targets. Because of the generalization

Table 1. Examples of Potent Hits for Each Targeta

aFor each hit compound, we show the closest previously known ChEMBL hit as measured by Tanimoto on ECFP6-counts fingerprints. Similarity
values are given as ECFP6-counts (FCFP6-counts). A redacted set of hits and nearest neighbors for all targets is given in the Supporting
Information.
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of the ML models, practitioners have significant power in
choosing a virtual library. They could restrict screening to
molecules with desirable properties, such as synthesizability,
commercial availability, presence of favored substructures,
specific molecule property ranges, or dissimilarity to known
ligands. In this work, we focused on purchasable or easily
synthesizable molecules that tended to have drug-like proper-
ties. This avoids the time-consuming and expensive process of
building new chemical matter into a DEL library and
performing new selections or incorporating new molecules
into a HTS screening library. This ability to consider
compounds outside of the DEL is the biggest advantage of
our approach; notably, this approach can be used at a fraction
of the cost of a traditional DEL screening follow-up, driven
primarily by the large difference in synthesis cost (see SI Table
3).
The success of this approach is attributable to at least three

factors: First, the past few years have seen the rise of more
powerful machine learning methods for many problems. For
hit-finding in particular, we provide the first large scale
prospective evidence of modern graph based neural networks
having a significant advantage over simpler methods. Second,
DEL selection generates both the large quantity and the high
quality of data points that is essential for the training of
performant machine learning models. Lastly, large make-on-
demand small molecule libraries (proprietary or commercially
available) provide a source of low-cost, structurally diverse
compounds for virtual screening. Just as Lyu et al.34 showed
effective use of commercially available libraries for a computa-
tional molecular docking screen, we have shown the utility of
these libraries for machine learning driven screens.
We believe the ability of a model trained on binding data to

predict activity comes in part from classification criteria that
include DEL selection with a competitive binder (which may
or may not be a small molecule) present in the target active
site of interest. Future application of this approach could
explore areas complementary to traditional HTS (as non-ML
virtual screening has35), as well as integration with lead
generation and optimization in combination with machine
driven exploration of chemical space (such as Zhavoronkov et
al.36). There is also ample opportunity to expand on and
further investigate the ML approaches, including other model
architectures, whether GCNN also outperforms DNN models
in prospective validation, the effects of methods for over-
sampling positives, and alternatives to the disynthon
aggregation procedure for creating the training data. We
expect the impact of this approach to expand as DEL selections
are used to measure properties beyond competitive on-target
binding; for example, some absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) properties may be
assayable as DEL affinity-mediated screens.
The trends of more powerful machine learning and larger,

more diverse make-on-demand libraries will continue,
suggesting that the utility of the approach demonstrated here
will grow over time. Further, with growth in the quality of the
models and the number of targets to which they are applied,
we hope to impact later stages of the drug discovery process.

■ EXPERIMENTAL SECTION
Machine Learning and Cheminformatics. Classification of

Disynthons from Selection Data. A common analysis technique for
DEL data is “disynthon aggregation”.3 The molecules in a DEL are
built up by incrementally adding building blocks or “synthons” to the

molecules. Disynthon aggregation is used to reduce the variability
from the potentially small number of sequencing counts when billions
of molecules are considered. We built our training data using this
technique.

Sequencing data for each selection condition was compiled as
summed counts for all combinations of two building blocks across all
cycle combinations. For example, for a three cycle library of the form
A−B−C, sums aggregating counts for the A−B, A−C, and B−C
disynthons were generated. Counts and statistics based on these
counts (factoring in DNA sequencing depth and library sizes) were
used along with a cutoff to calculate a binary designation (enriched/
not enriched) for each disynthon/condition pair. The conditions
included target only, target and competitive inhibitor, and no target
(matrix only) control. Additionally, a binary indicator of promiscuity
was calculated through a historic analysis of dozens of targets. First, a
promiscuity ratio for each disynthon was calculated by taking the
number of protein targets selected via immobilization on any nickel
immobilized metal-ion affinity chromatography (IMAC) resin where
that disynthon was enriched and dividing by the total number of
targets selected via immobilization on any nickel IMAC resin where
that disynthon had been screened to date. Then, a cutoff was applied,
and any disynthons with a higher ratio were considered promiscuous
binders. Altogether, this procedure resulted in the assignment of each
disynthon to one of five classes: competitive hit, noncompetitive hit,
promiscuous binder, matrix binder, or nonhit. Competitive hits (the
“positive” class for machine learning) included disynthons that (1)
were enriched in the target condition, (2) were not enriched in the
“matrix only” and “target and competitor” conditions, and (3)
demonstrated a low promiscuity ratio.

Random Forest Models. The training data were divided into
training and test sets. The RF models were a two class prediction with
the “competitive hits” as the positive class and all others as the
negative. The number of competitive binder training examples used
for the RF models that were experimentally validated were 100 000,
87 729, and 100 000 for sEH, ERα, and c-KIT, respectively. Test set
size and composition varied, with sEH, ERα, and c-KIT sets
containing approximately 100 000, 10 000, and 1000 positive
examples and 190 000, 125 000, and 10 000 negative examples,
respectively. To address memory limitations during fitting, RF models
were trained using 10 different random samples of competitive binder
examples (positive examples were each included twice in the training
set) in combination with four random samples of 500 000 negative
examples, resulting in a total of 40 different training sets. Fingerprint
representations for all molecules were generated using the RDKit37

implementation of 1024-bit binary Morgan Circular Fingerprints with
radius 2 (ECFP4).30 Models were trained using the Random-
ForestClassifier class in Scikit-learn,38 with the following nondefault
hyperparameters: n_estimators=1000, min_samples_split=5,
n_jobs=6, max_features=’sqrt’, random_state=42. Performance was
defined as the enrichment over random chance of positive examples
(examples predicted at ≥0.5) in the test set. For each target, the top
performing model was used to select predicted hits for experimental
validation.

GCNN Models. Architecture. The GCNN was a “weave” graph-
convolutional neural network, specifically the “W2N2” variant with
input features and hyperparameters as specified by Kearnes et al.16

While the final linear layer in that work was used to make multitask
binary classification predictions, here the final linear layer was used to
make predictions on the five mutually exclusive classes described
above, trained with softmax cross entropy loss. Note that this is
different than the two class RF models.

Cross-validation. A k-fold cross validation scheme, which split the
DEL data into train, tune, and test splits, was used for the GCNN
model. Each of the k folds was specified as a grouping of one or more
of the DNA-encoded libraries. The groupings of the libraries into
folds were determined by plotting the first three Principal
Components of the ECFP6 2048-bit binary vectors of a random
sample of disynthons from each DNA-encoded library. After plotting,
the libraries that clustered visually were grouped into the same fold,
with ambiguities being resolved by grouping together libraries with
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similar combinatorial chemistry reactions. k − 2 folds were then used
for training each fold of the GCNN, with one tune fold reserved for
training step selection and one test fold reserved (but ultimately not
used in this study). In the c-KIT and ERα models, 10% of all the DEL
selection data stratified by each of the 5 classes (randomly sampled by
hash of molecule ID) were reserved as an “ensemble holdout” set (see
SI Figure 3b). Due to third party use restrictions, for the ERα and c-
KIT models a handful of productive DNA-encoded libraries were
withheld from the GCNN training data, but they were used in fitting
the Random Forest model. The number of competitive binder
training examples used for the GCNN models that were
experimentally validated were 355 804, 74 741, and 50 186 for the
sEH, ERα, and c-KIT targets, respectively.
Oversampling during Training. The vast majority of the training

data is in the NON_HIT class, and the cross-validation folds varied
substantially in size. To improve training convergence time and
stability of the GCNN, oversampling of the under-represented classes
and cross-validation folds was used. The mechanism of oversampling
was to constrain each stochastic gradient descent minibatch to have
equal numbers of disynthons from each class and cross-validation fold.
Some fold/class combinations had fewer than 10 disynthons and were
not used. Thus, minibatch sizes varied slightly by cross-validation fold
and protein target: the minibatch size was the number closest to 100
that was evenly divisible by the number of fold/class combinations
with at least 10 disynthons. Note that a different and much simpler
oversampling was applied to RF.
Step Selection and Ensembling. After training one model for each

cross-validation fold, the model weights at the training step with the
maximum ROC-AUC39 for the competitive hits class on the tuning
set were selected. To generate model predictions on the Mcule and
virtual library data sets for experimental validation, the median
prediction for the compound across cross-validation fold models was
used.
Performance. The average cross-validation ROC-AUC was ∼0.8.

The ensembled model for c-KIT and ERα evaluated on the “ensemble
holdout” reached a ROC-AUC of ∼0.99. See SI Figure 3 for details.
Compounds Selected by Similarity Search. To further determine

contribution of machine learning on our ability to select potent
molecules, a parallel experiment using Tanimoto similarity to positive
training examples was conducted. Training structures were chosen
from the pool of structures used in generation of GCNN models for
ERα, detailed as follows. Directed sphere exclusion40 was used with
Tanimoto similarity (ECFP6) cutoff of 0.35, ranked by the degree of
enrichment in the target selection, and the exemplar with highest
enrichment from each of 994 clusters was chosen. The Mcule catalog
was then searched for similars to the 994 training examples
(molecules with >15 business day delivery time were excluded).
Results were filtered to include compounds with ECFP6 Tanimoto
scores of ≥0.55. Directed sphere exclusion was again applied to the
original list of Mcule similars using an ECFP6 Tanimoto cutoff of 0.35
and ranking by maximum similarity to the training examples. From
each of the resulting 114 clusters, the exemplar with the highest
similarity to any input molecule was chosen; 107 compounds were
received and tested. This method produced no molecules with
detectable activity.
Selection of Diverse Predicted Compounds. Selection of

compounds for order or synthesis was made for each model from
those with a prediction score over a specified cutoff (GCNN, 0.8; RF,
0.7 for Mcule and 0.5 for XVL) from either the Mcule catalog or the
XVL. Removal of duplicated scaffolds (generated using the “RDKit
Find Murcko Scaffolds” Knime node) was performed on some
predictions, retaining the more highly predicted structure. For GCNN
Mcule selection, directed sphere exclusion clustering with ranking by
model prediction score was applied using ECFP6 Tanimoto similarity
with cutoffs determined empirically to reduce the number of
molecules to hundreds or low thousands (GCNN Mcule sEH, 0.3;
c-KIT, 0.5; ERα, 0.45). For both RF and GCNN Mcule selection,
hierarchical clustering was used as needed to further reduce to
approximately 150 clusters. The most highly predicted compound was
selected from each cluster. For Mcule orders, compounds weighing

>700 Da or less than a minimum MW ranging from 190 to 250 Da
(varied by target and model) or with too few heavy atoms (≤10) were
removed. Molecules containing silicon were removed. For all orders
except sEH GCNN, Mcule molecules reporting delivery times of
greater than 14 business days were excluded. All Mcule compounds
had >90% purity except two (with 75% and 85% purity, respectively).
To limit depletion of stocks, XVL compounds were filtered to limit
the use of any single building block; the compound with the highest
prediction score for any given building block was selected. To avoid
synthesis problems, XVL compounds with reactants containing
multiple reactive groups (e.g., two carboxylic acids) were removed.
For sEH XVL predictions, the top 150 remaining compounds were
chosen and an additional 105 compounds were chosen by binning
prediction scores into 21 bins (size 0.05, between 0.8 and 1.0) and
choosing 5 randomly from each bin. The “Match_PAINS.vpy” script
provided with Dotmatics Vortex was applied for some compound
purchase and synthesis requests. For both Mcule and XVL, an
additional nonsystematic visual filtering was performed by a chemist
with or without the aid of substructure searches that was restricted to
removal of molecules with the potential for instability or reactivity.

Molecular Similarity Comparisons. Quantification of molecular
structure similarity used Tanimoto similarity on extended-connectiv-
ity fingerprints30 with radius 3 (ECFP6). In this work, we use a count-
based representation (to better capture differences in molecular size
with repeated substructures compared to binary fingerprints) and
unhashed fingerprints (to avoid hash collisions). ECFP6-count
v e c t o r s w e r e g e n e r a t e d w i t h RDK i t 3 7 u s i n g t h e
GetMorganFingerprint() method with useCounts=True argument.
Functional-Class Fingerprints (FCFP) are related to ECFP, but atoms
are grouped into functional classes such as “acidic”, “basic”,
“aromatic”, etc. before substructures are enumerated.30 Molecules
that are similar structurally but have substitutions of similar atoms will
look much more similar using FCFP than ECFP. FCFP6 counts (also
with radius 3) were generated with GetMorganFingerprint() with
useCounts=True and useFeatures=True arguments. Tanimoto
similarity for two counts vectors (also commonly referred to as “1
− Jaccard Distance”) is defined as the sum of the element-wise
minimum of their counts divided by the sum of the element-wise
maximum of their counts. A similarity value of 1.0 indicates identical
structures (ignoring chirality), while 0.0 means that no substructures
are shared. Nearest neighbors for hits in the training data were found
using brute force exact search41 over the fingerprints.

Deep Neural Network Architecture Choice. The experimentally
validated results reported in this manuscript were derived from
models trained on CPUs. GCNN models were trained to convergence
on 100 CPU replicas for each fold, taking about a week for each
model. Fully connected deep neural networks (DNN) models trained
on ECFP430 bit vectors were considered for experimental validation
but did not perform as well as GCNN in cross-validation. SI Figure 3
compares cross-validation performance of GCNN and DNN models
(with ReLu-activated layers of size 2000, 100), as quantified by ROC-
AUC.39 The cross-validation results in panel a of SI Figure 3 come
from models not used in this study’s experimental results. They were
trained on Tensor Processing Units,42 on which the DNN and
GCNN models converged in 2−3 h, and the AUC reported is the
mean AUC from 10 models trained from scratch with different
random seeds. Each of the 10 models converged 8 independently
randomly initialized sets of model weights and used the mean of the
predictions from these 8 sets of weights as their overall prediction.

ChEMBL Searches for Published Inhibitors. For sEH, a search for
“epoxide hydrolase” was conducted through the ChEMBL33 Web site
at https://www.ebi.ac.uk/chembl/. Targets were narrowed by
organism to Homo sapiens, and target entries for other proteins
were removed. Bioactivity results were retrieved for the relevant target
entry. Results were limited to Ki, Kd, and IC50 values (i.e., percent
inhibition values were removed). All values qualified with “>” or “ ≥ ”
were removed, as were compounds reported with Ki, Kd, and IC50 >
10 μM. All remaining (1607 compounds) were used for similarity
comparison. Target specific searches were conducted for ERα
(‘Estrogen Receptor’) and c-KIT (‘KIT’); identification of published
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actives followed this same procedure producing 2272 and 1288
compounds, respectively.
Reproducibility of Training Data. Two DEL selections were

performed on sEH months apart. Disynthon aggregation and labeling
as described above resulted in training labels (as determined by
thresholded enrichment values) that cross-predicted each other
almost perfectly. We quantified this cross-prediction performance by
calculating the Area Under the Curve (AUC) of the Receiver
Operator Characteristic (ROC) curve.39 Using the first DEL
selection’s positive-class enrichment values as a ranking function to
predict the positive-class binary training label of the second DEL
selection achieved a ROC-AUC equal to 0.97, and predicting the first
DEL selection’s training label from the second DEL selection’s
enrichment values achieved 0.99 (see SI Figure 7).
Experimental Methods. On-Demand Synthesis of Virtual

Library Compounds. A virtual library (XVL) comprising 83.2 million
compounds was enumerated as the product of amide formation of all
compatible building blocks available in the X-Chem in-house
inventory. Small libraries of compounds chosen via machine learning
prediction and filtering were synthesized in parallel on a micromole
scale (about 1 μmol). The synthesis was performed in 96 well plates
using a conventional synthesis protocol with DMT-MM as the
coupling agent. The crude reaction mixtures were filtered through
filter plates fitted with an alumina plug. This limited XVL compound
purification effort was intentional in order to reduce the cost of the
study. The semipurified reaction mixtures were analyzed using LC-MS
to evaluate the reaction efficiency. The eluents were collected in 96
well receiving plates and diluted to 1 mM solution in DMSO that was
used directly for the primary biochemical assay. A small number of
XVL compounds (4) identified by both GCNN and RF models for
ERα were synthesized and tested independently for each model and
are reported separately in the figures and supplementary data.
Affinity-Mediated Selection. All affinity-mediated selections

included between 31 and 42 DEL libraries synthesized as described
in Cuozzo et al.43 For each target, purified protein (sEH, 1 μM; c-KIT
(wild-type), 3 μM; ERα (wild-type), 8 μM), each containing a His6
tag, was incubated in solution with DNA-encoded library (40 μM) for
1 h in a volume of 60 μL in 1× selection buffer, which consisted of
HEPES (20 mM), potassium acetate (134 mM), sodium acetate (8
mM), sodium chloride (4 M), magnesium acetate (0.8 mM), sheared
salmon sperm DNA (1 mg/mL, Invitrogen AM9680), imidazole (5
mM), and TCEP (1 mM) at pH 7.2; 1× selection buffer for sEH
additionally included Pluronic F-127 (0.1%) and 1× selection buffer
for ERα and c-KIT additionally included Tween 20 (0.02%). For each
target, an additional selection condition containing both target and
40−100 μM of a competitive inhibitor of the target was run in
parallel. The competitive inhibitor was preincubated with the target in
1× selection buffer for 0.5 h prior to addition of the DNA-encoded
library. For each target, an additional selection condition containing
no target was run in parallel. For each selection condition (no target,
target, or target with competitive inhibitor), a separate ME200 tip
(Phynexus) containing 5 μL of nickel affinity matrix was prewashed 3
times in 200 μL of appropriate, fresh 1× selection buffer. The affinity
matrix used for sEH and c-KIT was HIS-Select HF Nickel Affinity Gel
(Sigma H0537), and the affinity matrix used for ERα was cOmplete
His-Tag Purification Resin (Sigma 5893682001). Each selection was
separately captured with 20 passages over the appropriate ME200 tip
for a total of 0.5 h. The bound protein/library captured on the ME200
tip was washed 8 times with 200 μL of appropriate, fresh 1× selection
buffer. Bound library members were eluted by incubating the ME200
tip with 60 μL of 1× fresh, selection buffer at 85 °C for 5 min. The
solution from the heat elution was incubated with 20 passages over a
fresh, prewashed ME200 tip containing 5 μL of nickel affinity matrix
to remove any eluted protein. This selection process was run a second
time using the eluate of the first selection in place of the input DNA-
encoded library and using no target, fresh target, or fresh target with
competitive inhibitor as appropriate. The eluate of the second round
of selection was PCR amplified in a volume of 200 μL with 5′ and 3′
primers (0.5 μM each) and 1× Platinum PCR Supermix (Invitrogen
11306-016) with 15−25 cycles of denaturation at 94 °C for 30 s,

annealing at 55 °C for 30 s, and extension at 72 °C for 120 s until the
double-stranded amplification products were clearly visible on an
ethidium-stained 4% agarose gel. These primers include Illumina
READ1 or READ2 sequences as required for sequencing on an
Illumina HiSeq 2500. PCR-amplified selection output was then
sequenced on an Illumina HiSeq 2500. Sequence read numbers (in
millions) of the selections ([target, no target control, target +
competitive inhibitor]) were [93, 95, 90] for sEH, [41, 18, 39] for c-
KIT, and [56, 31, 65] for ERα. Sequence data were parsed, error-
containing sequences were disregarded, amplification duplicates were
removed, and building block and chemical scheme encodings were
decoded and reported along with associated calculated statistical
parameters.

Biochemical Assays. sEH Assay. The IC50 values for soluble
epoxide hydrolase compounds were determined using the biochemical
activity assay described by Litovchick et al.44

c-KIT WildType Assay. The IC50 values for c-KIT were determined
using an ADP-Glo assay. Recombinant kinase domain was diluted in
assay buffer (20 mM HEPES, pH 7.5, 10 mM magnesium acetate, 100
mM sodium acetate, 1 mM DTT, 0.1% Pluronic F127) such that the
final assay concentration was 30 nM. Serially diluted test compounds
were then added to the assay plate. Both ATP and peptide substrate
were then added to a final concentration of 100 μM each. The
reaction was incubated for 1 h at room temperature and then
terminated by the addition of ADP-Glo reagent and kinase detection
reagents (Promega). The final reaction volume was 12 μL. A
luminescence plate reader was used to measure the signal generated
by the ADP-Glo reagents, and the data points were plotted against
compound concentrations.

ERα Wild-Type Assay. Two assays were used in the course of this
work reflecting availability of two different reagents. Consistency of
results between the two assays was validated with a reference
compound.

Inhibition values for ERα compounds were determined using a
homogeneous time-resolved fluorescence energy transfer assay
(HTRF). Recombinant GST-tagged ERα (Thermo Fisher Scientific)
was diluted into nuclear receptor assay buffer (Thermo Fisher
Scientific) containing a terbium-labeled anti-GST antibody (Thermo
Fisher Scientific). Serial dilutions of test compounds dissolved in
DMSO or DMSO-only controls were dispensed into the assay plate in
a volume of 120 nL, and then 6 μL of GST-tagged ERα/terbium anti-
GST antibody was added to the wells and incubated for 15 min at
room temperature. The final assay concentrations of GST-tagged ERα
and antibody were 2.1 nM and 2 nM, respectively. A volume of 6 μL
of fluorescent ligand was then added to each well to a final
concentration of 3 nM, and the plates were further incubated at room
temperature for 4 h to allow binding to reach equilibrium. HTRF
signal was measured using an excitation wavelength of 337 nm and
emission wavelengths of 490 nm and 520 nm on a fluorescent plate
reader. The 520 nm emission signal was normalized using the 490 nm
signal and plotted against compound concentrations.

For assaying compounds chosen by the similarity search, we used a
fluorescence polarization based protocol using recombinant His-
tagged ERα (in-house generated). The final assay concentrations of
His-tagged ERα and fluorescent ligand were 5 nM and 3 nM,
respectively, in a total reaction volume of 12 μL. Compounds were
preincubated with receptor for 15 min at room temperature prior to
addition of the fluorescent ligand. After further incubation for 1 h, the
fluorescence polarization signal was measured using an excitation
wavelength of 485 nm and emission wavelength of 535 nm.

Assay Cascade and Reported Potency Values. In the first round
of experiments for each target, single-point inhibition assays were run,
and those ligands meeting the thresholds listed in SI Table 2 were
retested with at least two 10-point dose−response curves. IC50 values
were calculated by fitting the data points to a sigmoidal curve using a
four-parameter logistic model. To best utilize available budget for
dose−response curves in this study, these thresholds were decided
after the single-point assays were run, solely based on the number of
molecules that would consequently receive dose−response testing.
When reporting hit potencies and hit rates in figures and text of this

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://dx.doi.org/10.1021/acs.jmedchem.0c00452
J. Med. Chem. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.0c00452/suppl_file/jm0c00452_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.0c00452/suppl_file/jm0c00452_si_002.pdf
pubs.acs.org/jmc?ref=pdf
https://dx.doi.org/10.1021/acs.jmedchem.0c00452?ref=pdf


work, we aggregated data from both single-point inhibition assays and
full dose−response curves. All potencies reported as under 10 μM are
the geometric mean of at least two validated (10-point curve) IC50
values. Dose−response curves were validated, and IC50 values were
excluded when the Hill slope of logistic fit was <0.5 or >3.0 or R2 <
0.8 (when inhibition was >50% at max concentration) or R2 < 0.6
(when inhibition was ≤50% at max concentration). Hits reported as
30 μM potency come from one of the following three categories: (1)
geometric mean of least two (10-point curve) IC50 values was less
than 30 μM, (2) only one of the tested dose−response curves resulted
in a valid IC50 (ranging from 13 nM to 28.43 μM), or (3) single-point
inhibition assays (at 10 μM or 30 μM) showed >50% inhibition but
the compound was not retested with full dose−response curves due to
resource constraints.
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