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Protein engineering seeks to design or discover proteins with 
properties useful for technological, scientific, or medical appli-
cations. Properties related to a protein’s function, such as its 

expression level and catalytic activity, are determined by its amino 
acid sequence. Protein engineering inverts this relationship in order 
to find a sequence that performs a specified function. However, cur-
rent biophysical prediction methods cannot distinguish the func-
tional levels of closely related proteins1,2. Furthermore, the space of 
possible proteins is too large to search exhaustively naturally, in the 
laboratory, or computationally3. The problem of finding optimal 
sequences is NP-hard: there is no known polynomial-time method 
for searching this space4. Functional proteins are scarce in this vast 
space of sequences, and as the desired level of function increases, 
the number of sequences having that function decreases exponen-
tially5,6. As a result, functional sequences are rare and overwhelmed 
by nonfunctional and mediocre sequences.

Directed evolution has been successful because it sidesteps sci-
entists’ inability to map protein sequence to function. Inspired by 
natural evolution, directed evolution leads to an accumulation of 
beneficial mutations via an iterative protocol of mutation and selec-
tion. The approach entails sequence diversification to generate 
a library of modified sequences followed by screening to identify 
variants with improved properties, with further rounds of diversifi-
cation until fitness goals are achieved (Fig. 1a). Directed evolution 
finds local optima through repeated local searches, taking advan-
tage of functional promiscuity and the clustering of functional 
sequences in sequence space5,7 (Fig. 1b).

Directed evolution is limited by the fact that even the most high-
throughput screening or selection methods sample only a fraction 
of the sequences that can be made by most diversification meth-
ods, and the development of efficient screens is nontrivial. There 
are an enormous number of ways to mutate any given protein: for a 
300-amino-acid protein, there are 5,700 possible single-amino-acid 
substitutions and 32,381,700 ways to make just two substitutions with 
the 20 canonical amino acids. Exhaustive screening to find rare ben-
eficial mutations is expensive and time-consuming, and sometimes 
impossible. Moreover, directed evolution requires at least one mini-
mally functional parent and a locally smooth sequence–function  

landscape8. Recombination methods may allow for bigger jumps 
in sequence space while retaining function9, but these methods are 
restricted to combinations of previously explored mutations.

Whereas directed evolution discards information from unim-
proved sequences, machine-learning methods can use this informa-
tion to expedite evolution and expand the number of properties that 
can be optimized by intelligently selecting new variants to screen, 
thereby reaching higher fitness levels than are possible through 
directed evolution alone10–14 (Fig. 1c). Machine-learning methods 
learn functional relationships from data15,16—the only added costs 
compared with those of directed evolution are in computation 
and DNA sequencing, the costs of which are decreasing rapidly. 
Machine-learning models can be predictive even when the underly-
ing biophysical mechanisms are not well understood. Furthermore, 
machine-learning-guided directed evolution is able to escape 
local optima by learning efficiently about the entire function  
landscape (Fig. 1d).

Machine learning is not necessarily useful for all protein-
engineering applications. Although machine learning will never 
reduce the expected improvement per iteration, the added costs of 
sequencing every variant screened and synthesizing desired variants 
may increase the experimental burden. In cases where the screen is 
expensive or slow enough to outweigh the cost and time of sequenc-
ing and synthesis, machine learning is beneficial. Alternatively, if 
the library design necessitates gene synthesis (instead of mutagen-
esis to generate variation), then machine learning should be used 
to choose which sequences to synthesize. However, it is impossible 
to predict a  priori how much machine learning will speed up an 
optimization. The decision to use machine learning should consider 
prior knowledge about the system (the difficulty of the screen, the 
smoothness of the fitness landscape, etc.).

Once the decision has been made to use machine learning, there 
are two key steps: (i) building a sequence–function model and  
(ii) using that model to choose sequences to screen. We provide 
practical guidance for these steps, as well as two case studies that 
illustrate the machine-learning-guided directed evolution pro-
cess. Finally, we consider developments that would allow wider 
application of machine learning for protein engineering.
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Protein engineering through machine-learning-guided directed evolution enables the optimization of protein functions. 
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model of the underlying physics or biological pathways. Such methods accelerate directed evolution by learning from the prop-
erties of characterized variants and using that information to select sequences that are likely to exhibit improved properties. 
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ing for protein engineering, as well as the current literature and applications of this engineering paradigm. We illustrate the 
process with two case studies. Finally, we look to future opportunities for machine learning to enable the discovery of unknown 
protein functions and uncover the relationship between protein sequence and function.
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Building a machine-learning sequence–function model
Machine-learning models learn from examples of protein sequences 
and the respective functional measurements of the proteins. The 
examples chosen for building the model determine what the model 
can learn. The initial set of variants to screen can be selected at ran-
dom from a library10 or to maximize information about the muta-
tions considered11–13,17–19. The selection of variants at random is 
usually the simplest method; however, for low-throughput screens, 
it can be important to maximize information obtained from high-
cost experiments, as this will maximize model accuracy on unseen 
sequences. Maximizing information about the remainder of the 
library is roughly equivalent to maximizing diversity in the training 
sequences. After collecting the initial training data, the user must 
decide what type of machine-learning model to use, represent the 
data in a form amenable to the model, and train the model.

Choosing a model
A wide range of machine-learning algorithms exist, and no single 
algorithm is optimal across all tasks20. For machine-learning-guided 
directed evolution, we are most interested in methods that take 
sequences and their associated output values and learn to predict 
the outputs of unseen sequences.

The simplest machine-learning models apply a linear transfor-
mation to the input features, such as the amino acid at each posi-
tion, the presence or absence of a mutation10, or blocks of sequence 
in a library of chimeric proteins made by recombination21. Linear 
models are commonly used as baseline predictors before more pow-
erful models are tried.

Classification and regression trees22 use a decision tree to go 
from input features (represented as branches) to labels (represented 

as leaves). Decision-tree models are often used in ensemble meth-
ods, such as random forests23 and boosted trees24, which combine 
multiple models into a more accurate meta-predictor. For small 
biological datasets (<104 training examples), including those often 
encountered in protein-engineering experiments, random forests 
are a strong and computationally efficient baseline and have been 
used to predict enzyme thermostability25–27.

Kernel methods, such as support vector machines28 and kernel 
ridge regression29, use a kernel function, which calculates similari-
ties between pairs of inputs, to implicitly project the input features 
into a high-dimensional feature space without explicitly calculat-
ing the coordinates in this new space. While general-purpose 
kernels can be applied to protein inputs, there are also kernels 
designed for use on proteins, including spectrum and mismatch 
string kernels30,31, which count the number of shared subsequences 
between two proteins, and weighted decomposition kernels32, which 
account for three-dimensional protein structure. Support vector 
machines have been used to predict protein thermostability25–27,33–37,  
enzyme enantioselectivity38, and membrane protein expression  
and localization39.

Gaussian process (GP) models combine kernel methods 
with Bayesian learning to produce probabilistic predictions40. 
These models capture uncertainty, providing principled ways to 
guide experimental design. The run time for exact GP regres-
sion scales as the cube of the number of training examples, which 
makes it unsuitable for large (>103) datasets, but there are now 
fast and accurate approximations41,42. GPs have been used to pre-
dict thermostability11,32,43, substrates for enzymatic reactions44, 
fluorescence45, membrane localization12, and channelrhodopsin  
photoproperties13.
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Fig. 1 | directed evolution with and without machine learning. a, Directed evolution uses iterative cycles of diversity generation and screening to find 
improved variants. Information from unimproved variants is discarded. b, Directed evolution is a series of local searches on the function landscape.  
c, Machine-learning (ML) methods use the data collected in each round of directed evolution to choose which mutations to test in the next round.  
Careful choice of mutations to test decreases the screening burden and improves outcomes. d, Machine-learning-guided directed evolution often 
rationally chooses the initial points (green circles) to maximize the information learned from the function landscape, thereby allowing future iterations  
to quickly converge to improved sequences (violet stars).
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Deep-learning models, also known as neural networks, stack 
multiple linear layers connected by nonlinear activation func-
tions, which allows them to extract high-level features from struc-
tured inputs. Neural networks are well suited for tasks with large 
labeled datasets. They have been applied to protein–nucleic acid 
binding46–48, protein–major histocompatibility complex binding49, 
binding-site prediction50, protein–ligand binding51,52, solubility53, 
thermostability54,55, subcellular localization56, secondary structure57, 
functional class58–60, and even three-dimensional structure61.

Figure 2 shows a general heuristic for choosing an algorithm for 
modeling protein sequence–function relationships. If estimates of 
model uncertainty are required, GPs are the simplest off-the-shelf 
solutions. Otherwise, linear models provide a simple, interpretable 
baseline. If a linear model is insufficiently accurate, random forests, 
boosted trees, or support vector machines are efficient for datasets 
with fewer than 10,000 examples, whereas neural networks gener-
ally provide the best performance on larger datasets.

Model training and evaluation
Training a machine-learning model refers to tuning its parameters 
to maximize its predictive accuracy. The primary goal of training 
is to accurately predict labels for inputs not seen during training. 
Therefore, during model training, performance should be estimated 
on data not in the training set. It is thus essential to withhold approx-
imately 20% of the data, called the test set, for model evaluation.

In addition to parameters, all model families have hyperparam-
eters that determine the form of the model. In fact, the model fam-
ily is itself a hyperparameter. Unlike parameters, hyperparameters 
cannot be learned directly from the data. They may be set manu-
ally by the practitioner or determined via a procedure such as grid 
search, random search, or Bayesian optimization62. For example, the 
hyperparameters for a neural network include the number, size, and 
connectivity of each layer. The vectorization method is also a hyper-
parameter. Even modest changes in the values of hyperparameters 
can considerably affect accuracy, and the selection of optimal values 
is often computationally intensive, as each set of hyperparameters 
requires training of a new model.

For model comparison and the selection of hyperparameters, the 
data that remain after removal of the test set should be further split 
into a training set and a validation set. The training set is used to 
learn parameters, and the validation set is used to choose hyperpa-
rameters by providing an estimate of the test error. If the training set 
is small, cross-validation may be used instead of a constant valida-
tion set. In n-fold cross-validation, the training set is partitioned 
into n complementary subsets. Each subset is then predicted using 
a model trained on the other subsets. The average accuracy across 
the withheld subsets provides an estimate of test accuracy. Cross-
validation provides a better estimate of the test error than the use of 
a constant validation set, but it requires more training time.

The datasets should be split into training, validation, and test sets 
to allow an accurate estimate of the model’s performance under the 
conditions in which it will be used. For datasets from mutagenesis 
studies, which tend to be small and accumulative, the best practice 
is to train on variants characterized in earlier rounds of mutagenesis 
and to evaluate model performance on later rounds (to recapitulate 
the iterative engineering process). When dealing with large, diverse 
datasets, the best practice is to ensure that all examples in the vali-
dation and test sets are some minimum distance away from all the 
training examples to test the model’s ability to generalize to unre-
lated sequences.

Vector representations of proteins
Machine-learning models act on vectors of numbers, not directly on 
protein sequences. How each protein sequence is vectorized deter-
mines what can be learned63,64. A protein sequence is a string of 
length L in which each residue is sampled from an alphabet of size 
A. The simplest way to encode such a string is to represent each of 
the A amino acids as a number. However, this enforces an ordering 
on the amino acids that has no physical or biological basis. Instead 
of representing each position as a single number, a one-hot encod-
ing represents each of the L positions as a series of A − 1 zeros and 
one 1, with the position of the 1 denoting the identity of the amino 
acid at that position. Given structural information, the identity of 
pairs of amino acids within a certain distance in the structure can 
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Fig. 2 | A general heuristic for choosing a machine-learning sequence–function model for proteins.
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also be one-hot encoded11,12. One-hot encodings are inherently 
sparse, memory inefficient, and high-dimensional, and presup-
pose no notion of similarity between sequence or structural ele-
ments. Nevertheless, one-hot encodings can be considered a good  
baseline encoding.

Proteins can also be encoded on the basis of physical properties. 
For example, each amino acid can be represented by its charge, 
volume, or hydrophobicity, and each protein can be represented 
by a combination of these properties. Higher-level properties, such 
as predicted secondary structure, can also be used. AAIndex65 and 
ProFET66 have large collections of physical descriptors for protein 
sequences. There have also been attempts to reduce each amino 
acid to two dimensions on the basis of volume and hydrophobic-
ity67 or to combine physical properties with structural informa-
tion36,68 by encoding each position as a combination of the amino 
acids in its geometric neighborhood. However, the molecular 
properties that dictate each functional property are typically 
unknown a priori.

While many protein sequences have been deposited in databases, 
most are unlabeled. These unlabeled sequences contain information 
about the distribution of amino acids selected by evolution to com-
pose proteins, which may be helpful across prediction tasks. The 
simplest encodings incorporating evolutionary information are 
BLOSUM69 and AAIndex2-style substitution matrices based on rel-
ative amino acid frequencies. However, more sophisticated continu-
ous vector encodings of sequences can be learned from patterns in 
unlabeled sequences52,70–76 or from structural information77. These 
representations learn to place similar sequences together in the con-
tinuous space of proteins. Learned encodings are low-dimensional 
and may improve performance by transferring information in  
unlabeled sequences to specific prediction tasks. However, it is  
difficult to predict which learned encoding will perform well for 
any given task.

Just as no model will be optimal for all tasks, there is no uni-
versally optimal vectorization method20. Researchers must use a 
combination of domain expertise and heuristics to select a set of 
encodings for comparison. For small datasets, one-hot encodings 
offer superior performance to general sets of protein properties73, 
although careful feature selection informed by domain knowledge 
may yield more accurate predictions. If accuracy is insufficient, 
learned encodings may be able to improve performance74,75. The 
encoding should ultimately be chosen empirically to maximize pre-
dictive performance.

using sequence–function predictions to guide exploration
Once a sequence–function model has been trained, the next set of 
sequences to be screened can be chosen via the collection of ben-
eficial mutations or direct optimization over sequences. For the 
former, linear models of the mutational effects can be learned and 
directly interpreted in order to classify mutations as beneficial, 
neutral, or deleterious. Mutations can then be fixed, eliminated, or 
reconsidered in future rounds of optimization10. Alternatively, the 
model can be used to select combinations of mutations with a high 
probability of improving function14,45,78.

Optimization can also be carried out directly over sequences. 
This can be as simple as enumerating all the sequences considered, 
predicting their function, and synthesizing the best predicted vari-
ants. However, if multiple rounds of optimization are to be per-
formed and the sequence–function model provides probabilistic 
predictions, Bayesian optimization provides a way to balance the use 
of the information learned and the exploration of unseen regions of 
sequence space62. Probabilistic predictions provide a well-calibrated 
measure of uncertainty: the model knows what it does not know. 
For example, the GP upper confidence bound (GP-UCB) algorithm 
balances exploration and exploitation by selecting variants that 
maximize a weighted sum of the predictive mean and s.d.79 (Fig. 3).  
Alternatively, the model and data can be fully exploited with the 
GP lower-confidence-bound algorithm, which selects variants that 
maximize the weighted difference between the predictive mean and 
s.d. These approaches have been combined with structure-guided 
recombination to optimize cytochrome P450 thermostability11, 
channelrhodopsin localization to mammalian cell membranes12, 
and channelrhodopsin light-activated conductance13. With no 
high-throughput screen for channelrhodopsin properties, it would  
not have been possible to optimize conductance by traditional 
directed evolution.

Case study 1: using partial least-squares regression to 
maximize enzyme productivity
An early large-scale evolution campaign guided by machine learn-
ing improved the volumetric productivity of a halohydrin dehaloge-
nase in a cyanation reaction by roughly 4,000-fold10. In each round 
of evolution, 10–30 mutations of interest were identified through 
traditional directed evolution methods (Fig. 4). These mutations 
were then randomly recombined, and from the resulting pool, a 
number of variants (three times the number of positions mutated) 
were sequenced and represented as one-hot vectors to train a partial 
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Fig. 3 | GP-uCB algorithm. At each iteration, the next point to be sampled is chosen on the basis of the maximized weighted sum of the posterior mean 
and s.d. This balances exploration and exploitation by exploring points that are uncertain and have a high posterior mean. The right-hand panel shows the 
posterior mean and s.d. after observation of the selected point (green) in the left-hand panel.
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least-squares (PLS) regression model80. The PLS algorithm projects 
both sequences and fitnesses to a space with reduced dimensions 
to fit the linear model. Thus, PLS is able to fit data for which the 
number of variables exceeds the number of observations and poten-
tially avoid indirect correlations in the model81. The resulting linear 
model can be expressed as

∑=
=

y c x
m

q

m m
1

where cm is the additive contribution of each mutation to fitness, 
and xm indicates the presence (xm = 1) or absence (xm = 0) of the 
mutation. Mutations were classified as beneficial, deleterious, or 
neutral on the basis of their PLS coefficients to determine whether 
each was retained, discarded, or retested. However, when the mod-
el’s accuracy was low, the authors were more biased toward retesting 
mutations in future rounds. Finally, the best variant identified in the 
library with randomly recombined mutations was fixed as the start-
ing sequence for the next round.

This case study was one of the first protein-engineering cam-
paigns guided by machine learning. In it, 519,045 variants were 
tested, of which 268,624 were used to identify mutations to model 
with PLS and 250,421 were chosen using PLS. In 18 rounds of 
optimization, none of the rounds achieved more than a threefold 
improvement. Machine learning sped up optimization by finding 
beneficial mutations that would otherwise have been obscured by 
their co-occurrence with deleterious mutations. However, optimi-
zation could have been accelerated by tests of different vectoriza-
tion methods and machine-learning algorithms to improve model 
accuracy. The final linear model assumed that local regions of 
the sequence–function landscape display predominantly additive 
effects. For fitness landscapes where this is not the case, an alterna-
tive model should be used. Nevertheless, this work, which followed 
an in silico demonstration of the approach on a theoretical fitness 
landscape81, remains a landmark effort in the application of statisti-
cal modeling to protein engineering.

Case study 2: using Bayesian optimization to maximize the 
thermostability of cytochrome P450
Machine learning is particularly suitable when it is expensive or dif-
ficult to screen for the property of interest. Romero et al. increased 
the thermostability of cytochrome P450s, as measured by T50 (the 

temperature at which an enzyme loses half its activity after a 10-min 
incubation), by recombining sequence fragments from the heme 
domains of the bacterial cytochrome P450 proteins CYP102A1, 
CYP102A2, and CYP102A311 (Fig. 5). The sequence fragments were 
chosen to minimize the number of contacts broken, where contacts 
are amino acids within 4.5 Å of each other. Machine learning pro-
vides a benefit in such a situation because the chimeric genes must 
be made via direct synthesis of the DNA sequence for each con-
struct, and the T50 measurement requires multiple incubations and 
measurements for each variant and is relatively low throughput.

Romero et al. trained initial GP models for T50 and the presence 
or absence of function on 242 chimeric P450s, and then evaluated 
model performance on a test set of chimeric P450s generated with 
different boundaries between sequence fragments. The GP model 
used a one-hot representation of the protein’s three-dimensional 
structure, which was more predictive than a one-hot representation 
of the primary sequence. GP models are a good fit for this prob-
lem setting in which only a small amount of data is available. These 
models also provide probabilistic predictions, which can be used to 
guide data-efficient exploration and optimization.

After validating the accuracy of their models, Romero et  al. 
selected a small set of additional sequences to augment their mod-
els’ knowledge of the recombination landscape. In general, one 
does this by selecting the sequences that most reduce uncertainty 
in the predictions, as measured by the mutual information between 
the measured sequences and the remaining sequences. Typically, 
these sequences will be very diverse. However, because many vari-
ants are nonfunctional and therefore provide no information about 
T50, Romero et al. used their classification model to select 30 addi-
tional sequences by maximizing the expected mutual information11. 
Informally, these 30 sequences combined a high probability of being 
functional with high sequence diversity, and 26 of these sequences 
were functional despite being on average 106 mutations from the 
closest parent. This demonstrates the ability of a machine-learning 
model to efficiently explore diverse sequences while minimizing the 
resources wasted on screening of nonfunctional proteins.

With sufficient training data collected, the authors then used 
Bayesian optimization to search for more thermostable variants. 
First, four rounds of the batch GP upper-bound algorithm yielded a 
diverse sampling of thermostable P450s. However, because none of 
these variants increased the maximum observed T50, Romero et al. 
checked their sequence–function model by screening a sequence pre-
dicted to be stabilized with high certainty. Two additional iterations  
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Fig. 4 | directed evolution using PLs regression. In this approach, Fox et al. randomly recombine mutations previously identified through a classical 
technique such as random or site-directed mutagenesis13. Variants with these mutations are screened and sequenced, and the data are used to fit a linear 
model with the PLS algorithm. On the basis of the magnitude and sign of the contributions of the linear model, mutations are classified as beneficial, 
neutral, or deleterious, after which mutations are fixed, retested, or removed, respectively. This approach improved the volumetric productivity of a 
protein-catalyzed cyanation reaction roughly 4,000-fold in 18 rounds of evolution.
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of GP-UCB were then followed by a pure exploitation round of  
five sequences, two of which were more thermostable than any pre-
viously observed P450s.

By using previously collected data, an accurate sequence–func-
tion model, and Bayesian optimization, the authors demonstrated 
a framework for data-efficient protein engineering that has since 
been transferred to other protein systems and properties12,13.

Conclusions and future directions
Machine-learning methods have demonstrated utility in directed 
protein evolution. However, for broader applications of machine 
learning, scientists will have to take advantage of unlabeled protein 
sequences or sequences labeled for properties other than those of 
specific interest to the protein engineer. Databases such as UniProt82 
contain hundreds of millions of protein sequences, some of which 
are annotated with structural or functional information. These 
sequences contain information about the sequence motifs and pat-
terns that result in a functional protein, and the annotations provide 
clues as to how structure and function arise from sequence. These 
annotations can be learned from sequences74, and embeddings 
trained on these annotations may be able to transfer knowledge 
from UniProt to specific problems of interest83.

These large quantities of sequence data may also enable machine-
learning models to generate artificial protein diversity leading to 
novel functions. Only a tiny fraction of the amino acid landscape 
encodes functional proteins, and the complete landscape contains 
cliffs and holes where small changes in sequence result in a com-
plete loss of function. Natural and designed proteins are samples 
from the distribution of functional proteins, although these samples 
are biased by evolutionary constraints. A method for sampling from 
the distribution of functional proteins would enable large jumps to 
previously unexplored sections of sequence space. Generative mod-
els of the distribution of functional proteins provide such a tool, and 
are an attractive alternative to de novo design methods84.

Unlike discriminative models that learn the probability p(y|x) in 
order to predict labels y given inputs x, generative models learn to 
generate examples that are not in the training set by learning the 
generating distribution p(x) for the training data. Generative mod-
els in other fields have been trained to generate faces85, sketches86, 
and even music87. Instead of using neural network models to directly 
learn the mapping from protein sequence to function, variational 
autoencoders can be trained to learn the distribution of allowed 

mutations within functional protein families88,89. An autoencoder is 
a neural network that learns to encode an input as a vector (encod-
ing) and then reconstructs the input from the vector (decoding) 
(Fig. 6). By learning an encoding with smaller dimensionality than 
the original input, the model extracts the most important infor-
mation from the input. In a variational autoencoder, the learned 
encoding is further constrained to encourage the encodings to be 
densely packed to allow interpolation between examples and the 
ability to mix and match properties90. Applied to protein sequences, 
variational autoencoders can learn complex epistatic relationships 
among variants, thus allowing predictions of variant functionality 
based only on existing sequences, without a need for individual 
measurements88,89.

In addition, the protein variants generated by a variational auto-
encoder or other generative model can be highly sequence divergent 
from known sequences but potentially still functional91. These can 
be starting points for further engineering, or the generative model 
itself can be tuned in silico to produce sequences with a desired 
property. Recently, recurrent neural networks have generated novel 
antimicrobial peptides92,93 and protein structures94, and there has 
been an effort to develop a mathematical framework for shifting 
a generative model to sample sequences with one or more speci-
fied properties95,96. While these early examples show the potential 
of generative models to discover sequences with desired functions, 
this remains a promising and largely unexplored field.

Machine-learning methods have already expanded the number 
of proteins and properties that can be engineered by directed evo-

Sequence–T50 pairs

Screen

Parents

UCB/LCB/EXPNew sequences

Maximize information

Training set

70

60

50

40

T
50

 (
ºC

)

Iteration

Par
en

t
Tra

in

UCBr1

UCBr2

UCBr3

UCBr4
LC

B

UCBr5

UCBr6
EXP

Fig. 5 | directed evolution using GPs and Bayesian optimization. After the selection of an initial training set chosen to be maximally informative, 
subsequent batches of sequences are chosen using the GP upper confidence bound (UCB) or lower confidence bound (LCB) algorithm, or to fully exploit 
the model (EXP). The plot shows the T50 for variants found in each round.

MADTIVAVET...MADTIVAVET... Encoder

Code

Decoder

Input Reconstruction

Fig. 6 | Autoencoder. An autoencoder consists of an encoder model and 
a decoder model. The encoder converts the input to a low-dimensional 
vector (code). The decoder reconstructs the input from this code. Typically, 
the encoder and decoder are both neural network models, and the entire 
autoencoder model is trained end to end. The learned code should contain 
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lution. However, advances in both computational and experimen-
tal techniques, including generative models and deep mutational 
scanning97, will allow for better understanding of fitness landscapes 
and protein diversity. As researchers continue to collect sequence–
function data in engineering experiments and to catalog the natural 
diversity of proteins, machine learning will be an invaluable tool 
with which to extract knowledge from protein data and engineer 
proteins for novel functions.
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