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Offline activities of Lecture 6
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Q1. What is the method commonly used to benchmark performance of different techniques of computer-aided drug design (CADD)? (Receiver
Operating Characteristic curves)

Q2: What do we mean by molecular dynamics? (A computer simulation method to analyze the movements of atoms and molecules using
Newtonian mechanistics)

Q3: What are the three basic methods to represent target and ligand structures in silico? (atomic, surface, and grid representations)

Q4: What sampling algorithms are there for protein-ligand docking? Can you explain one of them using your words? (systematic algorithms,
molecular dynamics simulations, Monte Carlo search with Metropolis Criterion and genetic algorithms)

Q5: What are the key steps in structure-based virtual high-throughput screenings (SB-vHTS)? (preparing structures, posing, scoring)

Q6: What is the usual starting point of structure-based CADD campaign? (Experimentally determined protein structures, preferably in complex
with ligands)

Q7: What do we mean by 'pharmacophore'? (model of the target binding site which summarizes steric and electronic features needed for
optimal interaction of a ligand with a target, a "subgraph" of a molecule with interesting properties for drug design/protein binding)

Q8: In QSAR analysis, why it is important to select optimal descriptors/features? (to reduce noise, to increase generalized performance, and
for hypothesis generation)

Q9: What do we mean by the acronyms DMPK and ADMET? (DMPK=drug metabolism and pharmacokinetics; ADMET= absorption,
distribution, metabolism, excretion, and the potential for toxicity)

Q10: Why common CADD methods have difficulties handling protein-protein interaction and protein-DNA interactions? (large interaction size,
lack of user-friendly tools, and comparably little training data)
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Question about the ROC curve .
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Y=1 0 .
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Topics

 From molecular models to cellular models
 Gene expression profiling: a case study of omics and cellular modelling

e Applications for drug mechanism of action: molecular phenotyping
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Four classical classes of mathematical models A

Compartment models

dx
dt
d[LR] dy
ke ki[L][R] — k2[LR] o
Kinetics of
ligand-target
interaction

ax — fry.

— i+ 08,

The Lotka-Volterra
equations modelling
predator-prey

relationships.

Transport models

o
O

Drug Delivery Device

O

gical
'

Ay -

Diffusion & Convection o

%

ds  BIS
d¢ N’
ar _pIs __,
- N
dR
-
The SIR
(S=susceptible,
I=infectious,

R=removed) model of
epidemiology

McGinty, Sean, and Giuseppe
Pontrelli. 2015. “A General Model of
Coupled Drug Release and Tissue
Absorption for Drug Delivery
Devices.” Journal of Controlled
Release 217 (November): 327-36.
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Particle models
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B0 e

A Study on Socio-spatial Segregation Models Based on
Multi-agent Systems by Quadros et al. (2012).
10.1109/BWSS.2012.14.

Finite state models

A finite-state Markov
chain modelling DNA
sequences
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Molecular similarity and similarity measures 4
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Table 2 Formulas for the various similarity and distance metrics

Mol. LogP Rotatable | Aromatic | Heavy
Chemical weight bonds rings atoms
similarity A 341.4 5.23 4 4 26
B 463.5 4.43 4 5 35
Molecular
similarity N
i
&/N /N\er -
2D LN {N,
similarity A
3D
similarity
A B
Vascular endothelial Tyrosine-protein kinase TIE-
Biological growth factor receptor 2 2
similarity A active inactive
B active active
ke
PR
Global G s \
similarity ! :

Local similarity

Formula for continuous variables® Formula for dichotomous variables®

T
Da, 8 = Z|>{,=A—X,B’

Distance metric

Manhattan distance Dpg=a+b-2c

Euclidean distance D=l b~2c]7"'*

P -
S/\.b’ == AOUJ. 7>

e 5 pe '/2
Cosine coefficient Sng = [Z&mg] I [Z (X)'»")ZZ(X;'B)zjl

Dice coefficient Sag=2c/[a+b]

Tanimoto coefficient Sag=c/la+b—-]

Da s = Dag =1~

Soergel distance®

‘:_imax (x4, xB):|

Z|Xf"_ )'5|] /

S denotes similarities, while D denotes distances. The two can be converted to each other by
similarity=1/(1+distance). X, means the j-th feature of molecule A. a is the number of on bits in
molecule A, b is number of on bits in molecule B, while ¢ is the number of bits that are on in both
molecules.

(Left) Maggiora, Gerald, Martin Vogt, Dagmar Stumpfe, und Jirgen Bajorath. ,Molecular Similarity in
Medicinal Chemistry“. Journal of Medicinal Chemistry 57, Nr. 8 (24. April 2014): 3186-3204. (Right)
Bajusz, David, Anita Racz, and Karoly Héberger. 2015. “Why |s Tanimoto Index an Appropriate Choice
for Fingerprint-Based Similarity Calculations?” Journal of Cheminformatics 7 (1): 20. 6
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Quantitative Structure-Activity Relationships (QSARS)

QSAR is a statistical modelling of correlation
between biological activity and
physicochemical properties, or A¢p=f(AS),
where ¢ indicates a biological activity and S
indicates a chemical structure (1868-1869).

Molecular
Descriptors (MD)
Target | MD, | MD, ... MD,,
property
G C1 y1 X1,1 X1,2 X1,M
% CZ y2 X2,1
g Cs Y3
8_ C, Y4
S
(@]
&
CN yN XN,1 XN,2 XN,M

The basic form of a QSAR model: find a
function f that predicts y from x, y~f(x)
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An example: The Free-Wilson analysis. The assumption: the biological

activity for a set of analogues could be described by the contributions that

substituents or structural elements make to the activity of a parent structure.

X
Y@CHCHZNMeZ
&

meta ||para |[meta- \para- 11,05 lllog

X)) [[(Y) F Cl1 Br I Me F Cl1 Br I Me || obsd. || calc.a)

H H 746 || 7.82

H F 1 8.16 || 8.16

H Cl 1 8.68 || 8.59

H Br 1 889 || 8.84

H 1 1 925 || 925

H Me 1 930 || 9.08

F H 1 15252 . . . .

s 1 = Multivariate regression analysis

Br H 1 830 || 826

1 H 1 840 || 840

Me |H 1 846 || 828

Cl F 1 1 819 || 837

Br F 1 1 857 || 8.60

Me |F 1 1

o o 1 T log (1/EDsg) = — 0.301{m-F] + 0.27{m—Cl) + 0.434[m-Br] + 0.579[m-I]

Br Cl 1 1

T : 1 : + 0.454{m~Me] + 0.340[ p-F] + 0.768[ p~Cl] + 1.020 p-Br]

S - 1 + 1.429[p-T] + 1.256[ p-Me] + 7.821

Me |Me 1

B 1 n=22,r"=094.5=0.19%.F =170




QSAR models mark the early adoption of statistical modelling
and machine learning in drug discovery, the fifth type of
mathematical modelling

« QSAR is among the earliest A non-exhaustive guide
. . to Machine Learnin
subjects that used machine s
learning and pattern recognition Unlabelled data Labelled data
. ] Goal is to «explore» Goal is to «predict»
in drug discovery.

« Advantages: technically easy,

fast, and many models are . S _ ,
Find subgroups Reduced dimensionality Numerical label Categorical label

useful as filters.
- Disadvantages: statistical DIT:;;:::\“W Regression
models cannot capture

Unsupervised learning Supervised learning

Classification
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mechanistic aspects of

biochemical interactions, limited a m é ﬁ “ o,
ability to debug when a model e

fails to work, and findings may Tl

not be generalizable.

Badillo, Solveig, et al. 2020. “An Introduction to Machine Learning.” Clinical Pharmacology & Therapeultics.
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The general practice of training a supervised learning model

Limited dataset .
Cumulative count

of compounds

. Test
Training subset A
subset I
4 T N I Test set
( raining folds »
& For each model to test
1 subset k-1 subsets [ score1 | Training set
run 1 1 |
L J I
Score 2 Average
run 2 si | of scores I
\ over the
) k runs I
Scorek | I
run k Sk
For each run: I
- model built on k-1 subsets |
. performance measure computed on
\ tes? subset for mog’e/ validation 4 | P
" Final model Select model with best metric Time
built on training
\ subset ) Evaluate model on test set (generalization error)

(Left) To assess the generalization ability of a supervised learning algorithm, data are separated into a training
subset used for building the model and a test subset used to assess the generalization error (from Badillo et al.,
2020) (Right) Temporal validation is especially important for drug discovery, because chemical structures used in
the training set may differ substantially from those that will be tested.
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Molecular similarity does not equal biological similarity K3
a
A1: 2D fingerprints A2: 3D fingerprints A3: Scaffolds A4: Structural keys A5: Physicochemistry
B1: Mechanisms of action B2: Metabolic genes B3: Crystals B4: Binding B5: HTS bioassays
C1: Small molecule roles C2: Small molecule pathways C3: Signaling pathways C4: Biological proceses C5: Interactome
D1: Transcription D2: Cancer cell lines D3: Chemical genetics D4: Morphology D5: Cell bioassays
\(@ \\ . E1: Therapeutic areas E2: Indications E3: Side effects E4: Diseases & toxicology E5: Drug—drug interactions
O s C N\ A: Chemistry
nM g \Q/ A o B: Targets
C: Biological network
D: Cells
s E: Clinical readout
LN
<:N N. “
2390 nM / A4
gy m B IS B1 D1
8 3wt 8 S S5 IS o 1‘;-;;:;: N = ; % , v ,;;"9“!';?;‘4_\;;,';:“""‘
DA . :G 13-~ S 2k ‘w\—‘::?’:;"-ui;..'{ e
. . . . : é/" Z K7 ﬂ » 1\\}.‘;’:3‘0 °
Watch out biological activity cliffs! "o 14 Wy
Slmllarlty dOGS not |mply act|V|ty Three = Transcriptomics = Cancer cells # Structural keys = Structural keys = MoA # Transcriptomics
vascular endothelial growth factor N A B1| B4| D1
receptor 2 (VEGFR2) ligands are shown AR SN WP 18l o,
. . . PR . . 12r _,—"'/ -
that represent different similarity—activity AN ) "
relationships. %10 : .
# Structural keys = Transcriptomics = MoA # Binding = Interactome = Transcriptomics

Duran-Frigola, Miquel, Eduardo Pauls, Oriol Guitart-Pla, Martino Bertoni, Victor Alcalde, David Amat, Teresa Juan-Blanco, and Patrick Aloy. 2020. “Extending the
Small-Molecule Similarity Principle to All Levels of Biology with the Chemical Checker.” Nature Biotechnology, May, 1-10.
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Interpretable and Causal Models will become more

important

Interpretability

( Linear =) B
regression =
)

N

Decision ‘

trees

oé

(-]
( I:-Nearest A %%%
. Neighbors ’ %
forests

(a)

[
o
w

| ‘\léi:5))>>))))))))))))»)))))»))))))!

9.9

9.4 |

8.9 |

8.4 |

a;\peSaN

aAlISOd

(b)

[

Kernel
methods

>

Input
neuron

hidden
neurons

Output label

Output
neurons

Deep Neural
Networks

Rodriguez-Pérez, Raquel, and
Jurgen Bajorath. “Interpretation of
Machine Learning Models Using
Shapley Values: Application to
Compound Potency and
Multi-Target Activity Predictions.”
Journal of Computer-Aided
Molecular Design 34, no. 10

Performance

(October 1, 2020): 1013-26..
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Resources for learning about machine learning

Gareth James
Daniela Witten
Trevor Hastie Trevor Hastie

Robert Tibshirani Robert Tibshirani

Jerome Friedman
The Elements of An |ntr.0d_UCt|0n
Statistical Learning to Statistical

ESL and [SL: From a ‘ Learning
frequentist view (almost) h ppcatonsn

D Springer

David J.C. MacKay

Information Theory, Inference,
and Learning Algorithms

\ W

PRML and ITILA: From a
Bayesian view

Cambridge University Press, 2003

Mathematical foundations

MLaPP: Application oriented,

more accessible, and
balanced views

WATHEMATICS 1o
WACHINE LEARNING

Machine Learning
A Probabilistic Perspective

Kevin P. Murphy
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https://web.stanford.edu/~hastie/ElemStatLearn/
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
http://www.inference.org.uk/mackay/itila/book.html
https://www.cs.ubc.ca/~murphyk/MLbook/
https://mml-book.github.io/

Drug-induced phospholipidosis is correlated with amphiphilicity u

* Phospholipidosis is a lysosomal storage
disorder characterized by the excess
accumulation of phospholipids in tissues.

* Drug-induced phospholipidosis is caused by
cationic amphiphilic drugs and some cationic
hydrophilic drugs.

» Clinical pharmacokinetic characteristics of
drug-induced phospholipidosis include (1)
very long terminal half lives, (2) high volume
of distribution, (3) tissue accumulation upon
frequent dosing, and (4) deficit in drug
metabolism.

Fischer et al. (Chimia 2000) discovered that it is
possible to predict the amphiphilicity property of
druglike molecules by calculating the amphiphilic
moment using a simple equation.

~

/ Cationic
N
1 € Hydrophobi
\

‘ . | : < ) L
. : " 4 h\ ' 5 /: ,:» e ]
Perhexiline / s 8 / o ';"‘

Lallmann et al., Drug Induced Anderson and Borlak, Drug-Induced

Phospholipidosis, Crit. Rev. Toxicol. 4, Phospholipidosis,. FEBS Letters
185, 1975 580, Nr. 23 (2006): 5533-40.
A= d -« i
L

A: Caculated amphiphilic moment

d: distance between the center of gravity of the charged part of a molecule
and the hydrophobic/hydrophilic remnant of the molecule

a;: the hydrophobic/hydrophilic contribution of atom/fragment i

In silico calculation of amphiphilicity property may be used to predict phospholipidosis induction potential
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In silico prediction of amphiphilicity !
Development of CAFCA (CAlculated Free energy of amphiphilicity of small Charged Amphiphiles)

EL

AAGpy = -2.52 kJ/mol

b & N & & & b v 4 o

Free Energy of Amphiphilicity, AAG,y [kJ/mol]
3

\ AAGpay = -8.24 kJ/mol
AAGpy = -7.55 kJ/mo

-1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 erapamll
Calculated Amphiphilic Moment (CAM) [a.u.]

-
N -

Iterative model building, experimentation, and model refining led to the predictive tool CAFCA

14
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Validation of in silico phospholipidosis prediction
Model Validation from 1999-2004

Qe
6@ ® o in vitro/ | insilico/ | Exp. PC/ |Insilico/ |[n=36
O ® O in vivo in vivo in vivo in vitro
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&
b o
— o ® o & 94% 81% 89% 89%
s
3 |
et O
>
g
i ® Accuracy Sensitivity Specificity Precision
[(TP+TN)/ [True Positive [True Negative [TP/(TP+FP)]
16+ O (P+N)] Rate] Rate]
@
R —— 86% 80% 90% 84%
5 6 7 8 9 10 n
Calculated Basic pK, Fischer et al., J. Med. Chem, 55 (1), 2012

Plot of amphiphilicity (AAG,,,) versus calculated basic pK, for the
training set of 24 compounds. The red area defines the region where a
positive PLD response is expected, and the green area defines where
a negative response is expected according to the tool.

We gained mechanistic insights of phospholipidosis induction by cationic amphiphilic drugs with the model



Phospholipidosis: lessons learned
(and lessons not yet learned)

» Cationic amphiphilic properties of a molecule is an early
marker for safety in drug discovery and early development.

— Phospholipidosis in dose range finding studies

— Cardiac ion channel interactions (hERG, natrium
channel, ...)

— Receptor binding promiscuity
— P-gp inhibition

— Mitochondrial toxicity in case of safety relevant findings,

e.g. in dose range finding studies

« Extreme basic amphiphilic properties should be avoided
because of a higher risk of PLD, QT-prolongation,
mitochondrial toxicity. However, basic compounds with
moderate amphiphilic properties are still a preferred scaffold
for many therapeutic areas (especially CNS).

* Generally, some safety liabilities, despite complex
underlying biological and chemical mechanisms, can be
predicted by molecular modelling well, sometimes with
surprisingly elegant models!
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Fig. 1. Representative examples of CADs that are identified in SARS-CoV-2 drug repurposing screens.

Tummino, Tia A., Veronica V. Rezelj, Benoit Fischer, Audrey
Fischer, Matthew J. O’Meara, Blandine Monel, Thomas Vallet, et
al. “Drug-Induced Phospholipidosis Confounds Drug Repurposing
for SARS-CoV-2.” Science 373, no. 6554 (July 30, 2021): 541-47.
https://doi.org/10.1126/science.abi4708.



https://doi.org/10.1126/science.abi4708

DataWarrior: an open-source program for data visualization

and analysis with chemical intelligence

i _CHaNs! prunedLibraryWithProperties.dwar
| Table ™ Structure of Product n X ‘
Reactant 2 Reactant 3 Molw.. clogP clegS  H-Ac ¢ O Product o X :
i 327 125 -231 & : et -
2 o=t A is similarto [S... |'§ = |
1 fY\m ﬁ ,\{J \;‘J Nnd'-\v
f O{J\-fﬁ N, S e
' o 330 2.14 -3.26 4 N KA o [\;J N -
|
o~ T T s oo AR L
2 | - — 0, T b A By C
g i
R Molweight @ X
" 339 159 -255 6 Y i I i - b
N:-(., 5 [
o om HN 4 NE Y (5 2
3 | E ?u ] P Jj l\.[,c-\ : “| 1327 451
[
. — L U ( j: SN0 Yl clogP @ X
7T = % (Virtual Librany in 3D sax.oxl [ )
Reactant . ~ --
< Data.
\ Column Name  Value
X . Molweight 393
A Ay cLogP 2.744
A R tlogs -3.821
A H-Acceptors 6
H-Donors 0
Polar Surface... 79.7
." A
- - ey
Polar Surfacs Area 5 60 70 B0 90 100
Product Similarity |SkelSpheres) fled
04 055 07 085 1
Reactant3 @
:-v:m:‘-;
g e s ‘ e Peectane
clogP @15 @2 @25 @3 @35 ~ Neighbor Tree  Virtual Library in 3D | -

Selected: 11 Visible: 482 Toinl: 482
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DataWarrior was and still is developed
at Actelion/ldorsia Pharmaceuticals Ltd.

Selected subset of functionalities

» Molecular descriptor calculation

« Similarity calculation
« Compound clustering
« Docking

Thomas Sander, Joel Freyss, Modest von Korff,
Christian Rufener. DataWarrior: An Open-Source
Program For Chemistry Aware Data Visualization
And Analysis. J Chem Inf Model 2015, 55,
460-473, doi 10.1021/ci500588|



https://doi.org/10.1021/ci500588j

X

REO0S

0N

Summary of molecular modelling S

Today we learned ligand-target
A B interaction and molecular modelling
3D protein structure-based approaches Ligand-based approaches techniqueS'

@510 | } e (A) 3D protein structure-based

N O% f[ ____________ } E approaches. An example with

docking can be found in the
bropertes or backup slides.
activity e (B) Ligand-based approaches
(similarity search). Another
example of amphiphilicity can
be found in the backup slides.

Molecular features

I asAR

L E Zhang, Jitao David, Lisa Sach-Peltason,
Artificial ’ | network Christian Kramer, Ken Wang, and Martin

: Matched molecular pairs and ficlal neural newor Ebeling. 2020. “Multiscale Modelling of Drug

Drug-target interaction map whole-molecule similarity Mechanism and Safety.” Dru g Discov ery

Today 25 (3): 519-34.
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Why modelling molecules is not enough
for drug discovery?

The importance of networks

|
BBBBB



Simulation of biological networks with ordinary differential

expression: the simplest case

Given the reaction

According to the law
of mass action

kl k‘

S+E=C—SP+E

ko

d[$]

— = —ki[E][S] + k2[C],

_C[gl = —ky[E)[S] + (ky + ks)[C,
% = ki [E][S] — (k2 + k3)[C],
d|P]

— = ks[C,

See Systems Enagineering Wiki (tue.nl) for MATLAB/COPASI codes and

Stochastic Modelling for Systems Biology by Darren J. Wilkinson

Given the initial values
and rate constants

It is possible to
simulate the
concentration
changes by time
deterministically.

+ &)

Concentration
w

N

X
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e S(0) =5e 7
o E(0) =2e7
* C(0) = P(0) =
o k; = 1é°
o ky = le?
o k3 =0.1
x 10”7

0N
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http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example
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Chemical Master Equations (CME): a particle model of
chemical reaction
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K
. . ky i " K
Giventhereacton A + B = C + D and the initial condition X(O) — G (K molecules of species A and of species B respectively)
ke
[0 |
M| =1 =2 it N
— — 0
The state vector X ()  can take at any time point one of the values i : 1 : 2 F—— .
0 2 K
BN | T | I |

Theoretically we can build an ODE system with K+7 equations to model every state of the reaction, down to every particle. In reality, the
dimension is so high so that a simulation is not feasible.

CME is a set of ODEs, with each ODE representing one possible state of the system. Solution of the kth equation

at time t is a real number giving the probability of system being in that particular state at that time.
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Reaction Rate Equations (RRE): a compartment model ey
RRE simulation of the
d[E] Michaelis-Menten model
— = —k;[BIIS] + k. [BS] + kel ES),
-7
B & k) + k(B 510 .
E+S=ES—E+P d[ES] ~—— 8]
k, = = ky[BS] — K, [ES] — ke BS), _ 4 A — P
d[P ke '
l % = kcat[ES]’ § 3
=
Vsl k;[E][S] = k,[ES] § 2
- O
B 4 k/([Elo — [ES)IS] = k[BS] o
TV L k/{ElolS] — ky(ES)[S] = k,[ES)
4(BL(S] = K BS] + KBS o ]
d[P] koot | Elo|S] ks[Elo[S] = [ES](kr + ky[S]) .
v="g = FealBS|= = 5] (BS] = ks[Elo[S] Time
k, + ks [S]
B8] = k¢[E]o[S] Source: Systems Engineering Wiki (tue.nl)
ki (e + [S))

RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time tis

a real number representing the concentration of species j at time t.
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The Gillespie’s algorithm and the chemical Langevin equation

allow stochastic simulation of biological networks

30!

» The stochastic simulation algorithm (exact SSA), also called Gillespie’s algorithm, allows
stochastic simulation of a reaction.

200

* ltis performed in four steps

Molecules
P
N
=]

Initialize the system with initial conditions

Given a state at time ¢, we can define a probability p that reaction j takes place in
the time interval [t+71, t+7+d7). It is the product of two density functions of two
random variables: the probability of reaction j happens (proportional to the number

100

50

of substrate molecules), multiplied by the time until next reaction, which is
exponentially distributed. This is known as the Monte Carlo step.

Let the randomly selected reaction happen and update the time.

Iterate until substrates are exhausted or simulation time is over.

* Further computation tricks such as ‘tau-leaping’ by lumping together reactions are
possible. The chemical Langevin equation (CLE) replaces further accelerates stochastic
simulation by approximating the Poisson distribution with the normal distribution.

Molecules

Figure source and further reading: Higham, Desmond J. 2008. “Modeling and Simulating Chemical
Reactions.” SIAM Review 50 (2): 347-68. htips://doi.org/10.1137/060666457.
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Why stochastic modelling*
BASEL
1. Molecular dynamics
4.1a Master equation® 2. Individual-based
800 4.1b SSA*
4.2 Tau-leap/higherorder
600! 4. Discrete stochastic
X 400+
200¢
Advantages and disadvantages of several modelling/simulation methods.
0 . . . . Simulation method Cat. Advantages Disadvantages References Software
Master equation 4 Exact Very computationally intensive [85,143]
SSA 4 Statistically exact Very computationally intensive [82,109] COPASI [144]
. . . L. . . StochKit [145]
» Stochastic modelling can reveal individual trajectories i b
th at are Oth erWi se ‘ avera g e d ’ by O D E model S. Tau-leap 4 Relatively fast gl?fpr;:):liznnaéi ;Tgsilaol\;vr?;clggii systems [83,113,118] StochKit [145]
H H Higher-ord 4 Relatively fast; i ; low for 1 83,121,122,124,125
+ Small systems and single-molecule studies show R e e e ] ‘
. . Multiscale/hybrid 4 Fast; good for systems with disparate Approximate; problems with coupling [131,132,137,139,148] COPASI [144]
StOCh aStI C be h aviour. reaction scales different scales BioNetS [147]
° |t iS po S Si b|e to con S|d er both extri ns | ca nd | ntri n SiC Brownian dynamics 2 Tracks individual molecules Slow; molecule size must be artificially added [149,150] iﬂnézll?ir{ls[;rgj 51]
H Compartment-based 3 Accounts for diffusion between Slow; compartment size must be set manually; [150,153,154] MesoRD [153]
fa Cto rsan d ta ke th emil nto th em Od e I - homogeneous compartments each compartment is homogeneous URDME [155]
SDE 5 Fast Continuous; Gaussian noise [76] BioNetS [147]
PDE (R-D) 6 Very fast; spatial Continous; no noise [156]
ODE 6 Very fast Continuous; no noise [157]

Székely and Burrage. 2014. “Stochastic Simulation in Systems Biology.”

diffusion equations); ODE, ordinary differential equation.

Computational and Structural Biotechnology Journal 12 (20-21): 14-25.
Also see Stochastic Modelling for Systems Biology by Darren J. Wilkinson.

Cat. represents Category from Fig. 2. Abbreviations: SSA, stochastic simulation algorithm; SDE, stochastic differential equation; PDE (R-D), partial differential equation (classical reaction-
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Biochemical system simulator COPASI

* Freely available at http://COPASI.org/

« COPASI supports two types of simulations:

(1) ordinary differential equation (ODE)
based simulation, (2) stochastic kinetic
simulation, among others using the
stochastic Runge—Kutta method (RI5) and
Gillespie’s algorithm
* Resources to learn more about
stochastic modelling: MIT
OpenCourseWare by Jeff Gore,
and Stochastic Processes: An
Introduction, Third Edition by
Jones and Smith

» Tutorials also available on the website of
European Bioinformatics Institute (EBI)

« The mathematical concept and software
tools are important for detailed analysis of
enzymatic reactions, especially in the
presence of drugs and/or disease-relevant
mutation
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Huang and Ferrell, PNAS, 2006
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Concentrations, Volumes, and Global
Quantity Values 1

410 1
1 |1

I« Values[MAPKKK_phosphorylation_ratio] I— [E1] =

[~ E21 [~ IMAPK-Pase]

[~ IMAPK-Pase_P-MAPK] | MAPK-Pase_PP-MAPK]

[~ tMAPKK-Pase] [~ IMAPKK-Pase_P-MAPKK]

[ IMAPKK-Pase_PP-MAPKK] [~ MAPKKK]

[~ tMAPKKK E11 [ tmaPkk]

[~ tmapk] [~ [P-MAPKKK]

ODE-based simulation of dynamics
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http://copasi.org/
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Gillespie_algorithm
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses
http://www.ebi.ac.uk/biomodels-main/courses

Summary

« QSAR and machine learning models in drug discovery.

 Machine learning should be guided by chemical and biological models to improve
human understanding.

« ODE-based compartment models and stochastic models can be used to model small to
moderate biochemical networks.

 The network nature of biology requires models beyond the molecular level.



N4
XK
0N

Modelling biological networks unn

2 o
EX 3=
£ 3 Qualitative Quantitative @ © 3
@ 5 ge
() <
Static Boolean Kinetic
Networks ® Models
N i Y PP /i
A B K_y
Static models Dynamic models Dynamic models
No stoichiometry No stoichiometry Stoichiometry
No parameters No parameters T
Kinetic parameters

Concentration

0 0.5 1
Time

Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and loannis Xenarios. 2012. “Implicit Methods for
Stéphane CHEDIN & Jean LABARRE, www-dsv.cea fr Qualitative Modeling of Gene Requlatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited
by Bart Deplancke and Nele Gheldof, 397-443. Methods in Molecular Biology. Totowa, NJ: Humana Press.
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