AMIDD Lecture 8: Omics- and cellular-level models
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Omics data are projections of
high-dimensional biological space. It is an
inverse problem to infer a
high-dimensional space from its
projections.

Multiscale Modelling of Drug Mechanism
and Safety by Zhang, Sach-Peltason,
Kramer, Wang and Ebeling, Drug
Discovery Today, 2020



Omics and cellular models in drug discovery

Drug discovery
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Drug development
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Investigational New Drug
New Drug (IND) Application (NDA)

Adapted from Paul et al. “How to Improve R&D Productivity: The Pharmaceutical
Industry’s Grand Challenge.” Nature Reviews Drug Discovery, 2010



WHEN YOV SEE A CLAIM THAT A
COMMON DRUG OR VITAMIN “KILLS
CANCER CELLS IN A PETRI DISH

It is often easy to see what a compound does to cells or to animals.

It takes time and can be challenging to understand why it does so.
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Outline

e What is MoA, and how can we study it with cell- and omics models?
e What modality-specific approaches are available?

O Small molecules

O Therapeutic antibodies

O Antisense oligonucleotides

® Quiz



What is MoA and how can we study it?



Mechanism of Action & Mode of Action

e Mechanism of Action: The specific biochemical interaction
through which a drug substance produces its pharmacological . .
effect, at the molecular level. @amsm of ‘@

e Mode of Action: Functional or anatomical changes, at the
cellular level, resulting from the exposure of a living organism to
a substance.

Many to many

Mode of Action

Many to many

Phenotype

e Forinstance, a mechanism of action of a drug can be “binding
to epithelial growth factor receptor (EGFR)” while its mode of
action would be “inhibition of proliferation”.

e In this talk we use the two terms interchangeably, since in
many cases we want to understand both to make a good

drug.
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General approaches for MoA understanding

e Microscopy-based methods, e.g. bacteria phenotyping

e Direct biochemical methods, e.g. binding and TR-FRET
(time-resolved fluorescence energy transfer) assays

Lysis of E.coli, Etienne Maisonneuve & Kenn
Gerdes, Center for Bacterial Cell Biology,
University of Newcastle, UK

e Computer inference methods, with chemoinformatics, i
computer-aided drug design, and bioinformatics tools < : *‘\‘

e Omics based methods, with genetics, transcriptomics,

i Donor/acceptor proximity —> FRET
prOteom ICS, etc. Distant donor/acceptor —> NO FRET Cryptate emission measured at 620 nm
Cryptate emission measured at 620 nm  Acceptor emission measured at 665 nm

Principles of TR-FRET, by cisbio.com


https://www.youtube.com/watch?v=UjLmf-cVcMw
https://www.cisbio.com/drug-discovery/tr-fret-basics

Why it can be challenging to understand the MoA of a

compound? (I): Many Causes, One Effect

J0

CUASES EFFECT
Battery Bulb
Dead/Missing Broken/Missing
Switch 000 Wiring Flashlight
Stuck off Corroded/broken doesn’t work

Many different causes can lead to the same
effect.

The same principle applies to biological
systems, where many different inputs can
lead to highly similar outputs.

NX~
\/l\/|\/
NN
N
UNI
BASEL
Input layer Gro W‘h[ @@(Amph egulin ) (‘Epiregutin ) (Betacellulin ) ("Epigen ) ("HB- EGF)(NRGl)(NRGZ)(NRGE,)(NR(M)
Sg al-processing \
layers 4_]
HSP90 t I MIGG/
machinggei pSOF;s @
L@F“ SPRY
A A
s (F = ) (m e

Figure 1| A systems perspective of the ERBB network. A reductionist view of the bow-tie-architectured signalling

Citri, Ami, and Yosef Yarden. “EGF-ERBB Signalling: Towards the Systems
Level.” Nature Reviews Molecular Cell Biology 7, no. 7 (July 2006): 505-16

Many causes, One Effect makes MoA understanding challenging




Why it can be challenging to understand the MoA of a
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compound? (ll): The One MoA assumption may be wrong

e A drug may have multiple MoAs. Most
methods study only one type of effect.

e Recent findings in medicinal chemistry,
pharmacology and bioinformatics
proffer a ‘multi-MoA’ view.

B. photo-naproxen

photo- SO
celecoxib indomethacin

Three commonly used NSAIDs
are found bound to a
surprisingly high number of
proteins in cells. Gao et al., J.
Am. Chem. Soc. 2018, 140,
4259-4268

" photo-

Methotrexate
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[As chemotherapy agent]
Inhibiting dihydrofolate
reductase (DHFR) and
consequently DNA synthesis.

[As immunosuppressant]
Multiple mechanisms, e.g. (1)
inhibiting purine metabolism, (2)
inhibiting methyltransferase, and
(3) inhibiting IL-1b binding to its
receptor.

Drugs may have more than one MoA, which makes MoA understanding challenging



Bioinformatics contributes to MoA understanding of
many modalities by integrating information

e MoA can be inferred either with the information of the compound
alone, or with the data generated by testing the compound in in
vitro or in vivo experiment systems. Prior knowledge encoded in
databases is often of great help.

e The process is usually iterative with hypothesis-testing cycles.
e Many bioinformatics approaches are applicable to virtually all
modalities, for instance:
o Experiment design
o Sequence analysis
o Analysis of RNA-sequencing and other omics data

Bioinformatics

o  Statistical data modelling !

o  Network analysis
e Modality-specific approaches are illustrated later.

MoA understanding with bioinformatics works by information integration and iterations

Database
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Principle of RNA sequencing

DNA gene in genome I

S Fanscription
= pre-mene - T N R
Intron splicing
Mature mRNA —
Fragmentation
. e & B F N N
E Reverse transcription
E ds-cDNA fragments [y] [ ] ] [ ‘

High-throughput sequencing

Seq uences TATGAGACGCATGCTA ACCCCGCC GCGATATATATA CGCGACGATGACT ATATAGC TCGACTGCCAT

Sequence processing

Alignment —— ——

GATAGGT GTGACT ACCGCCCCAT GAAGCGGCACT GACT ATGAGACGCAT GCT AACCCCGCCGCGATAT ATATACGCGACGAT GACTAT ATAGCT CGACT GCCAT GACAAAAGT GAAGCCGCATATCTGCTGGGTA T h omas S h afe e C C BY
I
Genome sequence 4 0

— <https://creativecommon
g s.org/licenses/by/4.0>,
Spliceariark B —\/— via Wikimedia Commons

In silico



RNA Sequencing

Bulk

Gene1 Gene?2 Gene3
I oo

> )
>>))>>

Condition 1 Condition 2
(compound (control) Mapping Quantification
treatment) l I l
Samples
RNA " Sequencing " Reads
| | Expression
& matrix




Pathway Reporter Genes

Public
databases

Commercial
assays
Manual
curation

(a) Knowledge integration

Pathway-gene bipartite graph

Biological
processes

r_S

Pathways

2 _s

Zhang et al. BMC Genomics (2015) 16:342
DOI 10.1186/512864-015-1532-2

(omc

Genomics

METHODOLOGY ARTICLE

Open Access

Pathway reporter genes define molecular

phenotypes of human cells

Jitao David Zhang, Erich Kiing, Franziska Boess, Ulrich Certa and Martin Ebeling’

s

(b) Network construction

L—Gene3 \/— "V
(Co-)expression by COXPRESSdb

(c) Gene prioritisation
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Pathway Reporter Genes
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(d) Panel customisation
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Hormone and
neuropeptide signaling
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Molecular phenotyping reveals modulation of human o4
pathway activities by compounds

A workflow to quantify expression of pre-defined pathway reporter genes at early time points

after perturbation to infer pathway activities, which may predict late-onset cellular phenotypes

: ~1000 pathway Next-generation
Smallo molecule Antibodies Antlser)se oligos reporter genes sequencing
A »'('0., "I’_
° § 23c2as0es2es
—

Therapeutic candidates ] N
Early time point (3-12h) (@) [ Molecular phenotyping

Human in vitro disease models ] /
. %

Cell lines/ ~iPS-derived cells  Advanced
primary cells (opt. genome editing)  models

Molecular Phenotyping was established within

%—'r@

Roche and is used to study MoA of compounds




An illustrative example of molecular phenotyping results

Inferred activity of 154 human pathways
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Little change of
genes induced by
DNA repair

Inhibition of
reporter genes of
cholesterol
synthesis

Induction of genes
downstream of
TNF-alpha
signalling

Molecular phenotyping reveals what pathways are modulated by each compound




Understanding MoA of small molecules



¥
2R
MoA inference for small molecules S
Direct methods Indirect methods
N
e Small-molecule drug candidates can be d ” ks Coah ?Egégggg canome

discovered via target-based or B
phenotypic approach. Target ﬂ& o =
information and MoA are wished for s . ) ; 3k, Proteomios

both types of molecules.

A - - - - - -

° Com.e.ss et al. (Abele), Journal of | _ - A s
Medicinal Chemistry (2018), gave a solid - 3-hybrid o587 profiling
review.

e Prunotto et al. (Roche+Genentech, Pfizer, T G o AP
Eli Lilly, Novartis), Nature Reviews Drug
Discovery (2017), discussed target ID for

Cell imaging

Drug Discovery Today

: : . , Simple figure, complex issue?
phenotypic drug discovery in more details. This figure (Hart, Drug Discovery Today, 2005, slightly
adapted) provides nevertheless a good overview.

Bioinformatics helps translating data complexity into meaningful decision making
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Chemoproteomics methods o4

e Chemoproteomics methods are based on two principles:
(1) bait/prey and (2) competition.

e Commonly used methods to identify binding partners of small
molecules include affinity-based profiling (shown below),
activity-based profiling, SILAC, elc.

2
' stringent m specific tryptic in-gel é
washin elution digest
> weshing, @AY, _Sliton et B
' ] or 3
D @ heaing >

SDS-PAGE mlz

1

' ” stringent  specific

M ‘ washin elution
g’ oS ———J mass spectrometry
or
heating >

SDS-PAGE Ziegler et al., Angew. Chemie Int. Ed., 2013

Bioinformatics empowers chemoproteomics by statistical analysis and data interpretation




Protein stability-based methods

DON'T EAT. NOT
EVEN COOKED!

A -~ DHFR Lysate/100uM Methotrexate
The death cap —=- DHFR Lysate/Control
contains amatoxin, ~ DHFR Intact cell/10uM Methotrexate
a thermal stable R —— DHFR Intact cell/Control
toxin. %’ 100-
c
2
=
: e : - =
e Proteins are usually stabilized by ligands binding 2 50-
to them. -
>
s
e This principle can be used to identify protein e o

40 44 48 52 56 60 64
Temperature °C

Results of Cellular Thermal Shift Assay (CETSA) to verify
DHFR as a target of methotrexate. Molina et al., Science,

e Currently prohibitively expensive due to patents. 2013.

targets of a ligand without modification of the
ligand (label-free)

Label-free methods despite of limitations have great potentials




D
TR
RNA sequencing can differentiate splicing modifiers ¥
B Risdiplam 121 nM V'
sof  SMN2- o B RO688524119nM A . A
100 - : Gl ., | LMI070 24 nM TR e
ﬂ M oo [ﬂ ~ | Il Untreated
50 : N A 5
1 Foxm1
400 - )
;3‘4:2

], wed A N I L g

e Example above: number of reads mapped to human genomic loci SMN2 (on target) and FOXM1
(off target) in patient fibroblasts. Each peak corresponds to an exon present in mature mRNA.

Ratni, Ebeling, Baird, et al., J Med Chem (2018)

e While risdiplam (blue) and the competitor compound (red) show similar on-target effects, the
off-target effects of risdiplam are much less pronounced than those of the competitor compound.

RNA-sequencing and bioinformatics analysis are essential to study splicing modifiers




Understanding MoA of antibodies



Therapeutic antibodies all
Antagonistic Agonistic
Blocking : -
Examples: i ’ a Signaling | Example:
Trastuzumab aan . 57 5 Selicrelumab (CD40 agonist)
antagonist

(blocking Her2

ligand binding); Receptor antagonist

Pertuzumab Effector cell

(blocking Her Q

dimerization) gg
E_xamp_lg: T-cell | CDC and
bispecific

ADCC
contribute to

antibody, which

brings T cells : > . :
and tumor cells Targetlng % ‘&“ce, ’!, Antibody-Dependent Cell- the efﬂcacy and
. . . 4d : iei safety profiles
Toxin/radiation A mediated Cytotoxicity yp
together and of many
activates T cells CDC i’ antibody drugs

Complement-Dependent Cytotoxicity
Suzuki, Masami et al. Journal of Toxicologic Pathology, 2015 23



Bioinformatics approaches are integral to MoA
understanding of therapeutic antibodies

e Epitope binning and epitope mapping: antibodies of a Ab3 Abd
target are tested pairwise against each other to see whether & ®
antibodies block one another’s binding to the epitope of an
antigen. Antibodies are binned by the competitive blocking
profiles. The information of epitope binding is important to AD2 o
understand MoA of the compound as well as for
differentiation.

e Other bioinformatics topics in antibody drug discovery:

o Sequence analysis and comparative genomics;
o Study of avid effects, for antibodies with two

paratopes, using surface plasmon resonance (SPR); The principle of epitope binning. In

_r . . - this toy example, {A1, A3, A5} are
O
Study and prediction of immunogenicity and binned together, and {A2. Ad} are

anti-drug antibodies (ADA). binned together.

o Ab5

— Blocking — No blocking

A variety of bioinformatics approaches contribute to MoA understanding of antibodies
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Molecular phenotyping revealed unexpected effects of ok
antibodies

In this experiment, 11 antibodies were characterized
by their effects on human pathways in THP-1 cells
(either wild-type [WT], or target knockout cells [KO]).

The right panel summarizes effects on pathways.
Each point corresponds to one pathway. The colors
encode the antibodies used.

AB
Aa2
Ad2
St
s2
S3

KO IG

S4
S5
S6
s7
S8
S9

We are looking for antibody effects that are caused by
effects on the target, which means they should be (a)

absent in KO cells, (b) visible when comparing versus
the unspecific IgG1 (the blue boxes).

1 .f'x

Surprisingly, we found that some antibodies showed .
similar effects in WT and KO cells, while others either  On the X axis, we plot a score indicating effects in WT compared to
show little effects in both, or show stronger effects in IgG1-treated controls (positive/negative scores indicate up-/

. ’ . : . down-regulation compared with IgG1). On the Y axis, the same is
KO than in WT cells. The observations raise question shown for effects compared to IgG1 controls in KO cells. Scores are

about MoA and quality of the antibodies. overall lower but far from insignificant. Courtesy of Martin Ebeling.

These unexpected effects are currently being investigated to gain new insights in biology




Understanding MoA of antisense oligonucleotides



K
V50N
Sequence-dependent binding of oligonucleotides sl
induces both on- and off-target effects
97 ...AT66CCTGOG6ACTTECA... 37 Sensestrand of DNA
3 ..TACCGG6ACCTGARAGT... 5 Antisensestrand of DNA
Antisense Oligonucleotides (ASOs) work by ‘ Trar;;r'ifitsi:rl:siigtt::nl;udem)
blndlng to mRNA transcripts in a 5 ...AUGGCCUGGACUUCA... 3°mRNA (=sense)(in cytoplasm)
sequence-dependent way. 3" TACCGGACCTGARAGT 5 :TOSZZi:E33Teotade
ASO-mRNA binding is a chemical reaction with * L"m'zflg"{sg g |
a spectrum of affinities. For simplification (!), TSR G Ser = Pedide Bio,o%:"gz
we often use the following classification: / Human mRNAS \
o On-target, usually of one mRNA species. AUGGCCUGGACUUCA  On target
o Off-targets potentially of many undesired MY S"’V‘?;',f’s",get oligo  AUGGCCUGGUCUUCA  Off target
MRNA species. TACCGGACC:TGAAGT AUGGCCUGCUcCUUCA Off target
o Non-targets, hardly bound by the ASO, AUGGCCACCACUUCA  Nonfarget
though they can be potentially regulated s
by secondary effects. K UACGUCGUAGUCUUC Non target

Understanding the sequence of ASOs is critical to understand their MoAs



http://www.biology-pages.info/
http://www.biology-pages.info/

The binding affinity between RNA and ASO can be

measured by the melting temperature T

e Binding affinity between RNA and ASOs
can be measured by the duplex melting

temperature (T ), the temperature at
which half of the ASOs are duplexed with

R"'14 -
1.3 -
1.2 1

< 1.1
< 1

0.8 4

=7/ DNA:DNA
=0—DNA:RNA

T, =48°C

T, =61°C

0.8

20 30 40 50 60 70 80

Temperature (Celsius)

A typical plot of
measuring T _.

Zhou et al., Colloids
and Surfaces A, 2015

The higher is the T , the stronger is the
binding, when other conditions are constant.

Name

T1

T2

T3

T4

15

Target

Tradd

Tradd

Tradd

Tradd

Tradd

Sequence (5'to 3')°

GctcatactcgtaggcCA
GCtcatactcgtaggcCA
GCtcatactcgtaggCCA
GCTcatactcgtaggcCA

GCTcatactcgtaggCCA

Length (nt)

18

18

18

18

18

Tm (°C)

66.8
69.7
12:]
73.3

76.3

Part of Table 1 of Hagedorn et al, NAR, 2018.

Question: when other conditions are constant, which ASO binds strongest to the target gene Tradd?

T can be used to characterize binding affinity between ASO and target/off-target RNAs




It is possible to predict melting temperature (i.e. binding
affinity) of ASO-mRNA pairs with free energy

It is a mature application of bioinformatics
to predict T  using the nucleotide
sequences and the principles of nucleic

acid thermodynamics and dynamic Human mRNAs

programming. _ _ AUGGCCUGGACUUCA
My silver-bullet oligo AUGGCCUGGUCUUCA

The melting temperature is correlated with (5™-3)) AUGGCCUGCUCUUCA

o : TGAAGTCCAGGCCAT

the f.ree energy (AG®), which .can be | AUGGCCACCACUUCA

predicted by a fast and effective algorithm .

(Rehmsmeier et al., RNA, 2004). UACGUCGUAGUCUUC

The more negative the free energy is
(i.e. the larger the absolute value is), the

Free Energy
(kcal/mol)

-32.8
-28.5

-23.7

Question: Other conditions held constant, which

higher is T ,namely the ASO-mRNA pair  SERNA e the highest predicted T_  given the data?

is more likely to be stable .

It is possible to predict the free energy of binding and T _ of any ASO-mRNA pair



Transcriptomics profiling allows simultaneous o
investigation of on- and off-target effects

LNA_1 LNA_2
e RNA-sequencing is able to quantify both on-

and off-target effects of ASOs by measuring
gene expression changes.

e Differential gene expression analysis can
be used together with ASO-mRNA
binding-affinity prediction to reveal
off-target potentials of the tested ASOs.

Differential gene expression [logFC]

e At the same time, RNA-sequencing can Ad o th & @ & DD AK-10 5 o B
review pathway- and network-level Free energy [kcal/mol]

changes induced by ASOs, to inform both A declining trend at the left end (red dashed circle) is a
efficacy and safety studies warning sign: mRNAs that are predicted bound to the ASO

are down-regulated, revealing potential off-target effects.

RNA-sequencing and bioinformatics analysis help prioritising LNA candidates




Quiz 4

Q: What is MoA?
A: MoA is the effect of a drug at the molecular or the cellular level.

Q:What is molecular phenotyping?
A: Infer pathway activities by quantifying expression of ~1000 pathway reporter genes (the gauges!).

Q: What specific methods are there for small-molecule MoA studies?
A: Chemoproteomics, protein-stability based methods, RNA-sequencing, ...

Q: What specific methods are there for antibody MoA studies?
A: Epitope binning and epitope mapping, sequence analysis, SPR analysis, molecular phenotyping...

Q: What is the measure of binding affinity between ASOs and mRNAs?
A: Melting temperature and/or the free energy of binding.
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Further readings

Molecular Phenotyping: Drawnel, Faye Marie, Jitao David Zhang, Erich Kiing, Natsuyo Aoyama, Fethallah Benmansour,
Andrea Araujo Del Rosario, Sannah Jensen Zoffmann, et al. “Molecular Phenotyping Combines Molecular Information,
Biological Relevance, and Patient Data to Improve Productivity of Early Drug Discovery.” Cell Chemical Biology 18, no.
24(5), 2017: 624-34. https://doi.org/10.1016/j.chembiol.2017.03.016.

Small molecules: (a) Rix, Uwe, and Giulio Superti-Furga. “Target Profiling of Small Molecules by Chemical Proteomics.” Nature
Chemical Biology 5, no. 9 : 616—24. https://doi.org/10.1038/nchembio.216 (b) Comess, Kenneth M., Shaun M. McLoughlin,
Jon A. Oyer, Paul L. Richardson, Henning Stockmann, Anil Vasudevan, and Scott E. Warder. “Emerging Approaches for the
Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective.” Journal of Medicinal Chemistry, May 2,
2018. https://doi.org/10.1021/acs.jmedchem.7b01921.

Therapeutic antibodies: Suzuki, Masami, Chie Kato, and Atsuhiko Kato. “Therapeutic Antibodies: Their Mechanisms of Action
and the Pathological Findings They Induce in Toxicity Studies.” Journal of Toxicologic Pathology 28, no. 3, 2015: 133-309.
https://doi.org/10.1293/tox.2015-0031; Brooks, Benjamin D. “The Importance of Epitope Binning for Biological
Drug Discovery.” Current Drug Discovery Technologies 11, no. 2 (June 2014): 109-12.
https://doi.org/10.2174/1570163810666131124233827.

Antisense oligonucleotides: (a) Hagedorn, Peter H., Bo R. Hansen, Troels Koch, and Morten Lindow. “Managing the
Sequence-Specificity of Antisense Oligonucleotides in Drug Discovery.” Nucleic Acids Research 45, no. 5 (March 17, 2017):
2262-82. https://doi.org/10.1093/nar/gkx056 (b) Hagedorn, Peter H., Malene Pontoppidan, Tina S. Bisgaard, Marco
Berrera, Andreas Dieckmann, Martin Ebeling, Marianne R. Mgller, et al. “Identifying and Avoiding Off-Target Effects of
RNase H-Dependent Antisense Oligonucleotides in Mice.” Nucleic Acids Research 46, no. 11 (June 20, 2018): 5366—80.
https://doi.org/10.1093/nar/gky397. Contact Lykke Pedersen at RICC for software source code to calculate affinity
parameters of LNAs.

Bonus news outlet: Blog In the Pipeline by Derek Lowe



https://doi.org/10.1016/j.chembiol.2017.03.016
https://doi.org/10.1038/nchembio.216
https://doi.org/10.1021/acs.jmedchem.7b01921
https://doi.org/10.1293/tox.2015-0031
https://doi.org/10.1293/tox.2015-0031
https://doi.org/10.2174/1570163810666131124233827
https://doi.org/10.2174/1570163810666131124233827
https://doi.org/10.1093/nar/gkx056
https://doi.org/10.1093/nar/gky397
https://doi.org/10.1093/nar/gky397
https://github.roche.com/pedersl2
http://blogs.sciencemag.org/pipeline
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The road of MoA understanding can be 120 year long
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Aspirin
trademarked in
1899

Dai et al, Cell, 2019

Acetylation blocks cGAS activity
and inhibits self-DNA-induced
autoimmunity

e Acetylation suppresses cGAS
activity

e Aspirin directly acetylates cGAS

e Aspirin inhibits cGAS-mediated
interferon production

e Aspirin alleviates DNA-induced
autoimmunity in AGS mouse
models and patient cells

MoA understanding can be a long process full of surprises




WHEN YOU SEE A CLAIM THAT A
COMMON DRUG OR VITAMIN “KILLS
CANCER CELLS IN A PETRI DISH

KEEP IN MIND:

4

S0 DOES A HANDGUN.
https://xkcd.com/1217/
It is often easy to see what a compound does to cells or to animals.
It takes time and can be challenging to understand why it does so.

Take a deep breath, let’s give it a try...
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Summary

* MoA profiling: a case study of
omics and cellular modelling
— An example of modality-agonistic
methods: RNA-sequencing
— Examples of modality-specific
methods: antibody binning and
off-target effect prediction for
oligonucleotides
e Current research topics
— Single-cell sequencing
— Spatio-omics profiling
— Genome editing
— Microbiome
— High-content cellular imaging

— Integrative modelling
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From single-cell analysis to spatial-transcriptomics

o T cell )

e lymphocyte of B lineage

e natural killer cell

e myeloid leukocyte

@ hematopoietic cell

» hematopoietic stem cell

® hematopoietic multipotent progenitor cell
» common lymphoid progenitor

e erythrocyte

F CD1c-positive myeloid dendritic cell 1.0 c
CD8-positive, alpha-beta cytotoxic T cell 08 2
IL7R-max CD8-positive, alpha-beta cytotoxic T cell [ E
° central memory CD4-positive, alpha-beta T cell 06 &
8 classical monocyte [ | (
® cytotoxic CD56-dim natural killer cell [ | 04 =
3 naive B cell [ il
= naive thymus-derived CD4-positive, alpha-beta T cell 0.2 %
naive thymus-derived CD8-positive, alpha-beta T cell (] >
non-classical monocyte: - 0.0 o
NN R AR R RN IR T RN EEE S ’
LIS IS S SIS EEEXS S S &
B obr SEL o T ST 2 FSLLES
& SEFEEEEFRES FSETFFIegEE
- > PO PO D7 > Q0 @
S IS S8 S £ T 8
Y D0 QLT S°9Se 8L & §
e Soo0 PELLLT 858 & o8& & g ¢
& TG o F€fe &F T oo F o
P & &P £F §s & &
F o & 85 §¢ S5 &
¥ 8L S 98 ¢ £ ¢
S oo & £S5 & S 8
¢ Regg & °FS 3 'S
&S & S8 & > >
PEL S ) O L o
OQS s> £ $$ F IS
S & P 1
oo & & 3 9 9
s &£ $ N
s § @ S8
& O S $
A .gbAo
¥ ee

Visualization Controls

Use the sliders under the tissue image to adjust how you visualize and
combine the tissue image and the gene expression data. Colors represent
clusters identified by differentially expressed genes.

+

Leaflet

Gene Identification

By placing the pointer above a gene name within the table, spots in the
tissue image will be colored based on the expression of that gene.
Alternatively, by placing the pointer above a value within the table, you can
observe the expression of a specific gene with the spots from an individual
cluster highlighted.

Cluster 1 2 3 4 5 6 7 8
Nptxr 35 11 22 47 18 4.1 1.6 12
Agt 059 20 36 12 0.78 0.42 32 26
Ttr 35 49 3.0 48 34 26 27 28
Pmch 0.77 18 45 15 0.56 0.79 13 0.63
Camk2n1 5.7 3.7 39 58 39 6.8 43 42
Olfm1 5.6 28 35 59 31 55 32 3.6
Pcp4 49 28 42 b4 20 25 33 62
Prked 0.50 0381 0.72 051 0.48 031 16 47
Cck 55 24 23 48 30 52 23 44
Nnat 22 27 52 38 16 1.2 3.0 18
Plp1 48 7.9 48 39 3.6 3.1 6.0 6.2
6330403K07Rik 35 20 53 3.6 1.4 33 34 15
Ctxn1 45 17 32 47 16 39 13 11
Atplal 42 27 31 42 18 49 23 20

Left: Madler, et al. 2020. “Besca. a Single-Cell Transcriptomics
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Analysis Toolkit to Accelerate Translational Research.” NAR Genomics

and Bioinformatics, 2021

Top: Spatial resolution of gene expression, which is becoming
important for digital pathology and personalized healthcare, source:

10x Genomics
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https://doi.org/10.1101/2020.08.11.245795
https://doi.org/10.1101/2020.08.11.245795
https://www.10xgenomics.com/spatial-transcriptomics/

Backup slides



Single-cell sequencing (scSeq) workflow

BBBBB

Tissue dissociation

Single cell capture and
transcriptome sequencing
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A linearized workflow of scSeq data analysis

From short reads to gene-cell matrix

QC, filtering & normalization,
dimensionality reduction, and
clustering

Downstream analysis

Zapia et al., PLoS Computational
Biology 2018, adapted

Alignment

Differential expression
m
o T

NXl
>/|\/|\
AIAIZA
0N
UNI
BASEL
Quantification genes
= e % counts
Q
= I I
2 5
sation Clustering
g0
‘ @D
004 ® o
> _@
.0 @
0g00 s ® als
® o0 Ay
@
Marker genes Expression patterns
“0 P i
PN
39


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006245

Difference in statistical modelling of microarray data, i

next-generation sequencing, and single-cell RNA-seq

data

« Microarray data: log-normal distributed, for
instance implemented in the /imma package

of R/Bioconductor.

« Bulk RNA-sequencing data:
Negative-Binomial distributed (or Poisson
with overdispersion), for instance
implemented in both edgeR and DESeq?2
package of R/Bioconductor.

+ Single-cell data: some authors recently
suggest that negative-binomial or Poisson
distribution suffices if the cell population is
homogenous (Kim, Tae Hyun, Xiang Zhou,
and Mengjie Chen. 2020. “Demystifying
‘Drop-0Outs’ in Single-Cell UMI Data.”

Genome Biology 21 (1): 196), though many
tools assume zero-inflated
negative-binomial model.
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Top: Log-normal distribution
with three rate parameters

Bottom: Poisson distribution
with three rate parameters

From Wikimedia, reused with
the CC Attribution 3.0 license



https://doi.org/10.1186/s13059-020-02096-y
https://doi.org/10.1186/s13059-020-02096-y
https://commons.wikimedia.org/wiki/File:Poisson_pmf.svg

1.

From Poisson distribution to Negative Binomial

Distribution

Two definitions of Negative-Binomial distribution

The number of failures seen before getting n
successes (the inverse of Binomial Distribution,
which the number of successes in n independent
trials)

2. Poisson-Gamma mixture distribution, weighted

mixture of Poisson distributions, where the rate
parameter has an uncertainty modelled by a
Gamma distribution.

M Poisson
B Negative Binomial

1e+08

Pooled gene-level variance (log10 scale)
1e+00 1e+04

5 50 500 5000

Mean gene expression level (log10 scale)

Credit of Jesse Lipp,
bioramble.wordpress.com
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Commonly used dimensionality reduction techniques

» Principal component analysis (PCA)

« {-SNE (t-distributed Stochastic
Neighbor Embedding)

« UMAP (Uniform Manifold
Approximation and Projection) [A
great talk by | eland Mclnnes, the
developer of UMAP, a
mathematician, Ph.D. In Profinite Lie

Rings]

» For a recent overview of
dimensionality reduction techniques
and their applications in biology, see
Nguyen, Lan Huong, und Susan
Holmes. “Ten Quick Tips for Effective

Dimensionality Reduction®. PLOS
Computational Biology 15, Nr. 6 (20.
Juni 2019): e1006907.
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The Tabula Muris Consortium. 2018.
“Single-Cell Transcriptomics of 20 Mouse
Organs Creates a Tabula Muris.” Nature 562
(7727): 367.
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Schulte-Schrepping, et al. 2020.
“Severe COVID-19 Is Marked by a
Dysregulated Myeloid Cell
Compartment.” Cell 182 (6):
1419-1440.e23.
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https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.08.001
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907

