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Preface

This booklet was written as a companion to the introductory lecture on digital
image analysis for biological applications, given by the first author as part of
the course In Vivo Imaging — From Molecule to Organism, which is organized an-
nually by the second author and other members of the applied Optical Imag-
ing Center (aOIC) under the auspices of the postgraduate school Molecular
Medicine (MolMed) together with the Medical Genetics Center (MGC) of the
Erasmus MC in Rotterdam, the Netherlands. Avoiding technicalities as much
as possible, the text serves as a primer to introduce those active in biological
investigation to common terms and principles related to image processing,
image analysis, visualization, and software tools. Ample references to the rel-
evant literature are provided for those interested in learning more.
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1

Introduction

Images play an increasingly important role in many fields of science and its
countless applications. Biology is without doubt one of the best examples of
fields that have come to depend heavily upon images for progress. As a con-
sequence of the ever increasing resolving power and efficiency of microscopic
image acquisition hardware and the rapidly decreasing cost of mass storage
and communication media, biological image data sets grow exponentially in
size and carry more and more information. Extracting this information by vi-
sual inspection and manual measurement is labor intensive, and the results
are potentially inaccurate and poorly reproducible. Hence there is a grow-
ing need for computerized image processing and analysis, not only to cope
with the rising rate at which images are acquired, but also to reach a higher
level of sensitivity, accuracy, and objectivity than can be attained by human
observers.” It seems inevitable, therefore, that in the future biologists will in-
creasingly resort to automated image processing and analysis technology in
exploiting their precious data. In order to benefit from this technology, it is of
paramount importance to have at least a basic understanding of its underlying
principles: biologically highly relevant information may easily go unnoticed
or get destroyed (or may even be created ex nihilo!) by improper use of image
processing and analysis tools. This booklet, which summarizes and updates
earlier (partial) reviews in the field,'7 2323173 was written with the aim of pro-
viding the biologist with the minimum know-how to get started. We begin by
(re)defining common terminology and putting image processing and analysis
into historical and future perspective.

1.1 Definition of Common Terms

Because of the rapid rise of imaging technology in the sciences as well as in ev-
eryday life, several terms have become very fashionable, even among a large
percentage of the general public, but whose precise meanings appear to vary.
Before we go into details, it is necessary to (re)define these terms to avoid con-
fusion. The word “image” itself, for starters, already has at least five different
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meanings. In the most general sense of the word, an image is a representation
of something else. Depending on the type of representation, images can be di-
vided into several classes.’® These include images perceivable by the human
eye, such as pictures (photographs, paintings, drawings) or those formed by
lenses or holograms (optical images), as well as nonvisible images, such as
continuous or discrete mathematical functions, or distributions of measurable
physical properties. In the remainder of this booklet, when we speak of an
image, we mean a digital image, defined as a representation obtained by tak-
ing finitely many samples, expressed as numbers that can take on only finitely
many values. In the present context of (in vivo) biological imaging, the objects
we make representations of are (living) cells and molecules, and the images
are usually acquired by taking samples of (fluorescent or other) light at given
intervals in space and time and wavelength.

Mathematically speaking, images are matrices, or discrete functions, with
the number of dimensions typically ranging from one to five and where each
dimension corresponds to a parameter, a degree of freedom, or a coordinate
needed to uniquely locate a sample value (Figure 1.1). A description of how,
exactly, these matrices are obtained and how they relate to the physical world
is outside the scope of this booklet but can be found elsewhere.®* Each sam-
ple corresponds to what we call an image element. If the image is spatially
2D, the elements are usually called pixels (short for “picture elements,” even
though the image need not necessarily be a picture). In the case of spatially
3D images, they are called voxels (“volume elements”). However, since data
sets in optical microscopy usually consist of series of 2D images (time frames
or optical sections) rather than truly volumetric images, we refer to an image
element of any dimensionality as a “pixel” here.

Image processing is defined as the act of subjecting an image to a series
of operations that alter its form or its value. The result of these operations is
again an image. This is distinct from image analysis, which is defined as the
act of measuring (biologically) meaningful object features in an image. Mea-
surement results can be either qualitative (categorical data) or quantitative
(numerical data) and both types of results can be either subjective (depen-
dent on the personal feelings and prejudices of the subject doing the measure-
ments) or objective (solely dependent on the object itself and the measurement
method). In many fields of research there is a tendency towards quantifica-
tion and objectification, feeding the need for fully automated image analysis
methods. Ultimately, image analysis results should lead to understanding the
nature and interrelations of the objects being imaged. This requires not only
measurement data, but also reasoning about the data and making inferences,
which involves some form of intelligence and cognitive processing. Comput-
erizing these aspects of human vision is the long-term goal of computer vi-
sion. Finally we mention computer graphics and visualization. These terms
are strongly related,”® but strictly speaking the former refers to the process of
generating images for display of given data using a computer, while the latter
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Figure 1.1 Images viewed as matrices. The overview is not meant to be exhaustive but reflects
some of the more frequently used modes of image acquisition in biological and medical imaging,
where the number of dimensions is typically one to five, with each dimension corresponding to an
independent physical parameter: three (usually denoted x, y, z) to space, one (usually denoted t)
to time, and one to wavelength, or color, or more generally to any spectral parameter (we denote
this dimension s here). In other words, images are discrete functions, I(x,y, z, t, s), with each set of
coordinates yielding the value of a unique sample (indicated by the small squares, the number of
which is obviously arbitrary here). Note that the dimensionality of an image (indicated in the top
row) is given by the number of coordinates that are varied during acquisition. To avoid confusion
in characterizing an image, it is advisable to add adjectives indicating which dimensions were
scanned, rather than mentioning just dimensionality. For example, a 4D image may either be a
spatially 2D multispectral time-lapse image, or a spatially 3D time-lapse image.

is more concerned with transforming data to enable rendering and exploration.
An illustration of all these terms (Figure 1.2) may help memorize their mean-
ing. In this booklet we focus mainly on image processing and image analysis
and also briefly touch upon visualization.

1.2 Historical and Future Perspectives

The idea of processing images by computer was conceived in the late 1950s,
and over the decades to follow was further developed and applied to such
diverse fields as astronomy and space exploration, remote sensing for earth
resources research, and diagnostic radiology, to mention but a few. In our
present-day life, image processing and analysis technology is employed in
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Image Formation Image Processing
object in —» image out image in — image out

Image Analysis Computer Graphics
image in —» features out numbers in —» image out
Obj Area Perim X Y I
1 324.2 98.5 -3.54 -2.32 0.50
2 406.7 140.3 -2.78 -1.90 0.12
3 487.1 159.2 =il.15 0.42 3.09
4 226.3  67.8 0.45 1.65 5.89
5 531.8 187.6 1.83 2.18 7.72
6 649.5 203.1 2.98  3.33  2.07
7 582.6 196.4 4.21 3.96 -4.58
8 498.0 162.9 5.62 4.54 -11.45
9 543.2 195.1 7.16 5.02 -3.63
Computer Vision Visualization
image in — interpretation out image in — representation out

and growth cones.
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microtubule growth
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The average speed
of the distal ends
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Figure 1.2 Illustration of the meaning of commonly used terms. The process of digital image
formation in microscopy is described in other books. Image processing takes an image as input
and produces a modified version of it (in the case shown, the object contours are enhanced using
an operation known as edge detection, described in more detail elsewhere in this booklet). Image
analysis concerns the extraction of object features from an image. In some sense, computer graph-
ics is the inverse of image analysis: it produces an image from given primitives, which could be
numbers (the case shown), or parameterized shapes, or mathematical functions. Computer vision
aims at producing a high-level interpretation of what is contained in an image. This is also known
as image understanding. Finally, the aim of visualization is to transform higher-dimensional im-
age data into a more primitive representation to facilitate exploring the data.

surveillance, forensics, military defense, vehicle guidance, document process-
ing, weather prediction, quality inspection in automated manufacturing pro-
cesses, et cetera. Given this enormous success, one might think that computers
will soon be ready to take over most human vision tasks, also in biological in-
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vestigation. This is still far from becoming a reality, however. After 50 years
of research, our knowledge of the human visual system and how to excel it is
still very fragmentary and mostly confined to the early stages, that is to image
processing and image analysis. It seems reasonable to predict that another 50
years of multidisciplinary efforts involving vision research, psychology, math-
ematics, physics, computer science, and artificial intelligence will be required
before we can begin to build highly sophisticated computer vision systems
that outperform human observers in all respects. In the meantime, however,
currently available methods may already be of great help in reducing manual
labor and increasing accuracy, objectivity, and reproducibility.



2
Image Processing

Several fundamental image processing operations have been developed over
the past decades that appear time and again as part of more involved image
processing and analysis procedures. Here we discuss four classes of opera-
tions that are most commonly used: intensity transformation, linear and non-
linear image filtering, geometrical transformation, and image restoration. For
ease of illustration, examples are given for spatially 2D images, but they eas-
ily extend to higher-dimensional images. Also, the examples are confined to
intensity (gray-scale) images. In the case of multispectral images, some oper-
ations may need to be applied separately to each channel, possibly with dif-
ferent parameter settings. A more elaborate treatment of the mentioned (and
other) basic image processing operations can be found in the cited works and
in a variety of textbooks.”1°-3%38,39,72,81

2.1 Intensity Transformation

Among the simplest image processing operations are those that pass along
each image pixel and produce an output value that depends only on the cor-
responding input value and some mapping function. These are also called
point operations. If the mapping function is the same for each pixel, we speak
of a global intensity transformation. An infinity of mapping functions can be
devised, but most often a (piecewise) linear function is used, which allows
easy (interactive) adjustment of image brightness and contrast. Two extremes
of this operation are intensity inversion and intensity thresholding. The lat-
ter is one of the easiest (and most error-prone!) approaches to divide an image
into meaningful objects and background, a task referred to as image segmenta-
tion. Logarithmic mapping functions are also sometimes used to better match
the light sensitivity of the human eye when displaying images. Another type
of intensity transformation is pseudo-coloring. Since the human eye is more
sensitive to changes in color than to changes in intensity, more detail may be
perceived when mapping intensities to colors.
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Figure 2.1 Examples of intensity transformations based on a global mapping function: contrast
stretching, intensity inversion, intensity thresholding, and histogram equalization. The top row
shows the images used as input for each of the transformations. The second row shows for each
image the mapping function used (denoted M), with the histogram of the input image shown in
the background. The bottom row shows for each input image the corresponding output image
resulting from applying the mapping function: O(x,y) = M(I(x,y)). Itis clear from the mapping
functions that contrast stretching and histogram equalization both distribute the most frequently
occurring intensities over a wider range of values, thereby increasing image contrast. The former
transformation is suitable in the case of unimodal histograms, whereas the latter is particularly
suited for images having multimodal histograms.

Mapping functions usually have one or more parameters that need to be
specified. A useful tool for establishing suitable values for these parameters is
the intensity histogram, which lists the frequency (number of occurrences) of
each intensity value in the image (Figure 2.1). For example, if the histogram
indicates that intensities occur mainly within a limited range of values, the
contrast may be improved considerably by mapping this input range to the
full output range (this operation is therefore called contrast stretching). In-
stead of being supplied by the user, mapping functions may also be computed
automatically from the histogram. This is done, for example, in histogram
equalization, where the mapping function is derived from the cumulative his-
togram of the input image, causing the histogram of the output image to be
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more uniformly distributed. In cases where the intensity histogram is multi-
modal, this operation may be more effective in improving image contrast be-
tween different types of adjacent tissues than simple contrast stretching. The
histogram may also be used to determine a global threshold value,* for exam-
ple the value corresponding to the minimum between the two major modes
of the (smoothed) histogram, or the value that maximizes the interclass vari-
ance (or, equivalently, minimizes the intraclass variance) of object (above the
threshold) and background (below the threshold) values.*

2.2 Local Image Filtering

Instead of considering just the corresponding input pixel when computing a
value for each output pixel (as in intensity transformation), one could also take
into account the values of adjacent input pixels. Image processing operations
based on this principle are called neighborhood operations, or image filtering
operations, as they are usually designed to filter out (enhance or reduce) spe-
cific image information. They can be classified into linear versus nonlinear.
Linear filtering operations compute the output pixel value as a linear combi-
nation (weighing and summation) of the values of the corresponding input
pixel and its neighbors. This process can be described mathematically as a
convolution operation, and the mask (or filter) specifying the weight factor
for each pixel value is accordingly called a convolution kernel. Examples of
kernels include averaging, sharpening, smoothing, and derivative filters of
varying sizes (Figure 2.2). The latter can be used, for example, to detect object
edges, by a procedure known as Canny edge detection.!? Convolution of an
image with a kernel is equivalent to multiplication of the respective Fourier
transformations, followed by inverse transformation of the result.!! Certain
filtering operations, for example to remove specific intensity oscillations, are
better done in the Fourier domain, as the corresponding convolution kernel
would be very large, requiring excessive computation times.

Nonlinear filtering operations combine neighboring input pixel values in
a nonlinear fashion in producing an output pixel value. They can not be de-
scribed as a convolution process. Examples include median filtering (which
for each output pixel computes the value as the median of the correspond-
ing input values in a neighborhood of given size) and min-filtering or max-
filtering (where the output value is computed as, respectively, the minimum
or the maximum value in a neighborhood around the corresponding input
pixel). Another class of nonlinear filtering operations comes from the field
of mathematical morphology®® and deals with the processing of object shape.
Of particular interest to image analysis is binary morphology, which applies
to two-valued (binary) images and is often applied as postprocessing step
to clean up imperfect segmentations. Morphological filtering is described
in terms of the interaction of an image and a structuring element (a small
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Figure 2.2 Principles and examples of convolution filtering. The value of an output pixel is com-
puted as a linear combination (weighing and summation) of the value of the corresponding input
pixel and of its neighbors. The weight factor assigned to each input pixel is given by the convo-
lution kernel (denoted K). In principle, kernels can be of any size. Examples of commonly used
kernels of size 3 x 3 pixels include the averaging filter, the sharpening filter, and the Sobel x- or
y-derivative filters. The Gaussian filter is often used as a smoothing filter. It has a free parameter
(standard deviation o) which determines the size of the kernel (usually cut off at m = 30) and
therefore the degree of smoothing. The derivatives of this kernel are often used to compute image
derivatives at different scales, as for example in Canny edge detection. The scale parameter, o,
should be chosen such that the resulting kernel matches the structures to be filtered.
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Figure 2.3 Principles and examples of binary morphological filtering. An object in the image is
described as the set (denoted X) of all coordinates of pixels belonging to that object. Morphologi-
cal filters process this set using a second set, known as the structuring element (denoted S). Here
the discussion is limited to structuring elements that are symmetrical with respect to their center
element, s = (0,0), indicated by the dot. In that case, the dilation of X is defined as the set of all
coordinates x for which the cross section of S placed at x (denoted S,) with X is not empty, and the
erosion of X as the set of all x for which Sy is a subset of X. A dilation followed by an erosion (or
vice versa) is called a closing (versus opening). These operations are named after the effects they
produce, as illustrated. Many interesting morphological filters can be constructed by taking dif-
ferences of two or more operations, such as in morphological edge detection. Other applications
include skeletonization, which consists in a sequence of thinning operations producing the basic
shape of objects, and granulometry, which uses a family of opening operations with increasingly
larger structuring elements to compute the size distribution of objects in an image.
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mask reminiscent of a convolution kernel in the case of linear filtering). Ba-
sic morphological operations include erosion, dilation, opening, and closing
(Figure 2.3). By combining these we can design many interesting filters to
prepare for (or even perform) image analysis. For example, subtracting the re-
sults of dilation and erosion yields object edges. Or by analyzing the results of
a family of openings, using increasingly larger structuring elements, we may
perform size distribution analysis or granulometry of image structures. An-
other operation that is frequently used in biological shape analysis*3>36-°1 jg
skeletonization, which yields the basic shape of segmented objects.

2.3 Geometrical Transformation

In many situations it may occur that the images acquired by the microscope
are spatially distorted or lack spatial correspondence. In colocalization exper-
iments, for example, images of the same specimen imaged at different wave-
lengths may show mismatches due to chromatic aberration. Nonlinear magni-
fication from the center to the edge of the field of view may result in deforma-
tions known as barrel distortion or pincushion distortion. In live cell exper-
iments, one may be interested in studying specific intracellular components
over time, which appear in different places in each image due to the motion
of the cell itself. Such studies require image alignment, also referred to as im-
age registration in the literature.?>%482 Other studies, for example karyotype
analyses, require the contents of images to be reformatted to some predefined
configuration. This is also known as image reformatting.

In all such cases, the images (or parts thereof) need to undergo spatial (or
geometrical) transformation prior to further processing or analysis. There are
two aspects to this type of operation: coordinate transformation and image
resampling. The former concerns the mapping of input pixel positions to out-
put pixel positions (and vice versa). Depending on the complexity of the prob-
lem, one commonly uses a rigid, or an affine, or a curved transformation (Fig-
ure 2.4). Image resampling concerns the issue of computing output pixel val-
ues based on the input pixel values and the coordinate transformation. This is
also known as image interpolation, for which many methods exist. It is impor-
tant to realize that every time an image is resampled, some information is lost.
Studies in the field of medical imaging®>® have indicated that higher-order
spline interpolation methods (for example cubic splines) are much less harm-
ful in this regard than some standard approaches, such as nearest-neighbor
interpolation and linear interpolation, although the increased computational
load may be prohibitive in some applications.

2.4 Image Restoration

There are many factors in the acquisition process that cause a degradation of
image quality in one way or another, resulting in a corrupted view of reality.
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Figure 2.4 Geometrical image transformation by coordinate transformation and image resam-
pling. The former is concerned with how input pixel positions are mapped to output pixel posi-
tions. Many types of transformations (denoted T) exist. The most frequently used types are (in
increasing order of complexity) rigid transformations (translations and rotations), affine transfor-
mations (rigid transformations plus scalings and skewings), and curved transformations (affine
transformations plus certain nonlinear or elastic deformations). These are defined (or can be ap-
proximated) by polynomial functions (with degree n depending on the complexity of the trans-
formation). Image resampling concerns the computation of the pixel values of the output image
(denoted O) from the pixel values of the input image (denoted I). This is done by using the in-
verse transformation (denoted T~1) to map output grid positions (x/,’) to input positions (x,y).
The value at this point is then computed by interpolation from the values at neighboring grid
positions, using a weighing function, also known as the interpolation kernel (denoted K).

Chromatic and other aberrations in the imaging optics may result in spatial
distortions (already mentioned). These may be corrected by image registra-
tion methods. Certain illumination modes result in (additive) intensity gra-
dients or shadows, which may be corrected by subtracting an image showing
only these phenomena, not the specimen. This is known as background sub-
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Figure 2.5 Examples of the effects of image restoration operations: background subtraction, noise
reduction, and deconvolution. Intensity gradients may be removed by subtracting a background
image. In some cases, this image may be obtained from the raw image itself by mathematically
fitting a polynomial surface function through the intensities at selected points (indicated by the
squares) corresponding to the background. Several filtering methods exist to reduce noise. Gaus-
sian filtering blurs not only noise but all image structures. Median filtering is somewhat better at
retaining object edges but has the tendency to eliminate very small objects (compare the circles
in each image). Needless to say, the magnitude of these effects depends on the filter size. Non-
linear diffusion filtering was designed specifically to preserve object edges while reducing noise.
Finally, deconvolution methods aim to undo the blurring effects of the microscope optics and to
restore small details. More sophisticated methods are also capable of reducing noise.
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traction. If it is not possible to capture a background image, it may in some
cases be obtained from the image to be corrected (Figure 2.5). Another ma-
jor source of intensity corruption is noise, due to the quantum nature of light
(signal-dependent noise, following Poisson statistics) and imperfect electron-
ics (mostly signal-independent, Gaussian noise). One way to reduce noise is
local averaging of pixel intensities using a uniform or Gaussian convolution
filter. However, while improving the overall signal-to-noise ratio (SNR), this
operation also blurs other image structures. Median filtering is an effective
way to remove shot noise (as caused, for example, by bright or dark pixels). It
should be used with great care, however, when small objects are studied (such
as in particle tracking), as these may also be (partially) filtered out. A more so-
phisticated technique is nonlinear diffusion filtering,%®> which smoothes noise
while preserving sharpness at object edges, by taking into account local image
properties (notably the gradient magnitude).

Especially widefield microscopy images may suffer from excessive blur-
ring due to out-of-focus light. But even in confocal microscopy, where most
of these effects are suppressed, images are blurred due to optical diffraction
effects.3* To good accuracy, these effects may be modeled mathematically
as a convolution of the true optical image with the 3D point-spread function
(PSF) of the microscope optics. Methods that try to undo this operation, in
other words that try in every point in the image to reassign light to the proper
in-focus location, are therefore called deconvolution methods.**%"% Simple
examples include nearest-neighbor or multi-neighbor deblurring and Fourier-
based inverse filtering methods. These are computationally fast but have the
tendency to amplify noise. More sophisticated methods, which also reduce
noise, are based on iterative regularization and other (constrained or statis-
tical) iterative algorithms. In principle, deconvolution preserves total signal
intensity while improving contrast by restoring signal position. Therefore it is
often desirable prior to quantitative image analysis.
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Image Analysis

The image processing operations described in the previous chapter are impor-
tant in enhancing or correcting image data, but by themselves do not answer
any specific biological questions. Addressing such questions requires much
more involved image processing and analysis algorithms, consisting of se-
ries of operations working closely together in “interrogating” the data and
extracting biologically meaningful information. Because of the complexity of
biological phenomena and the variability (or even ambiguity) of biological
image data, many analysis tasks are difficult to automate fully and require
expert user input or interaction. In contrast with most image processing op-
erations, image analysis methods are therefore often semi-automatic. Here
we briefly describe state-of-the-art methods for some of the most relevant and
pressing image analysis problems in biology today: colocalization analysis,
neuron tracing and quantification, and the detection or segmentation, track-
ing and motion analysis of particles and cells. Several technical challenges in
these areas are still vigorously researched.

3.1 Colocalization Analysis

An interesting question in many biological studies is to what degree two or
more molecular species (typically proteins) are active in the same specimen.
This co-occurrence phenomenon can be imaged by using a different fluores-
cent label for each species, combined with multicolor optical microscopy imag-
ing. A more specific question is whether or not proteins reside in the same
(or proximate) physical locations in the specimen. This is the problem of
colocalization. For such experiments it is of paramount importance that the
emission spectra (rather than just the peak wavelengths) of the fluorophores
are sufficiently well separated and that the correct filter sets are used during
acquisition to reduce artifacts due to spectral bleed-through or fluorescence
resonance energy transfer (FRET) as much as possible. Quantitative colocal-
ization is perhaps the most extreme example of image analysis: it takes two
images (typically containing millions of pixels) and produces only a few num-
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Figure 3.1 See description on page 21.

bers: the so-called colocalization measures (Figure 3.1). Pearson’s correlation
coefficient is often used for this purpose but may produce negative values,
which is counterintuitive for a measure expressing the degree of overlap. A
more intuitive measure, ranging from 0 (no colocalization) to 1 (full colocal-
ization), is the so-called overlap coefficient , but it is appropriate only when
the number of fluorescent targets is more or less equal in each channel. If this
is not the case, multiple coefficients (two in the case of dual-color imaging)
are required to quantify the degree of colocalization in a meaningful way.*
These, however, tend to be rather sensitive to background offsets and noise,
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Figure 3.1 Commonly used measures for quantitative colocalization analysis. The aim of all these
measures is to express in numbers the degree of overlap between two fluorophores (captured in
well separated channels), indicating the presence of the corresponding labeled molecules in the
same or proximate physical locations (up to the optical resolution of the microscope). A visual im-
pression of the co-occurrence of fluorophore intensities (I; and Iy) is given by the joint histogram
(also referred to as the scatter plot or fluorogram). Some colocalization measures are computed
over the entire images, while some are restricted to certain intensity ranges (indicated by the
squares in the joint histograms). Among the first are Pearson’s correlation coefficient (denoted
rp) and the so-called overlap coefficient (denoted » and computed from the subcoefficients k; and
k2). Both coefficients are insensitive to intensity scalings (due to photobleaching or a difference
in signal amplification), while the former is also insensitive to intensity offsets (different back-
ground levels). The value of rp may range from —1 to 1 and is therefore at odds with intuition.
Its squared value is perhaps more valuable as it expresses the quality of a least-squares fitting of a
line through the points in the scatter plot. The other measures range from 0 to 1. The value of r is
meaningful only when the amount of fluorescence is approximately equal in both channels, that
is when kq and k; have similar values. Manders’ colocalization coefficients (denoted m; and m,)
are intuitively most clear but require careful separation of signal and background in both chan-
nels: the denominators are computed over the entire images, but the numerators sum only those
intensities in one channel for which the corresponding intensity in the other channel is within a
predefined range (the left and right and the top and bottom lines of the square region indicated
in the joint histogram, for I; and I, respectively).

and require careful image restoration.*? The most important step in colocaliza-
tion analysis is the separation of signal and background, which is often done
by intensity thresholding at visually determined levels.®? The objectivity and
reproducibility of this step may be improved considerably by applying statis-
tical significance tests and automated threshold search algorithms.!” Clearly,
the resolution of colocalization is limited to the optical resolution of the mi-
croscope (in the order of 200 nm laterally and 600 nm axially), which is insuf-
ficient to determine whether two fluorescent molecules are really attached to
the same target or reside within the same organelle. If colocalization or molec-
ular interaction needs to be quantitatively studied at much higher resolutions
(less than 10 nm), FRET imaging and analysis is more appropriate.®

3.2 Neuron Tracing and Quantification

Another biological image analysis problem, which occurs for example when
studying the molecular mechanisms involved in neurite outgrowth and dif-
ferentiation, is the length measurement of elongated image structures. For
practical reasons, many neuronal morphology studies were and still are per-
formed using 2D imaging. This often results in ambiguous images: at many
places it is unclear whether neurites are branching or crossing. Tracing such
structures and building neuritic trees for morphological analysis requires the
input of human experts to resolve ambiguities. This resorting to human input
is not unique to neuron tracing but is inevitable in many other complicated
image analysis tasks and has led to the development of a variety of inter-
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Figure 3.2 Tracing of neurite outgrowth using interactive segmentation methods. To reduce
background intensity gradients (shading effects) or discontinuities (due to the stitching of scans
with different background levels), the image features exploited here are the second-order deriva-
tives, obtained by convolution with the second-order Gaussian derivative kernels (Figure 2.2) at
a proper scale (to suppress noise). These constitute a so-called Hessian matrix at every pixel in
the image. Its eigenvalues and eigenvectors are used to construct an ellipse (as indicated), whose
size is representative of the local neurite contrast and whose orientation corresponds to the local
neurite orientation. In turn, these properties are used to compute a cost image (with dark values
indicating a lower cost and bright values a higher cost) and vector field (not shown), which to-
gether guide a search algorithm that finds the paths of minimum cumulative cost between a start
point and all other points in the image. By using graphics routines, the path to the current cursor
position (indicated by the cross) is shown at interactive speed while the user selects the optimal
path based on visual judgment. Once tracing is finished, neurite lengths and statistics can be
computed automatically. This is the underlying principle of the Neuron] tracing tool, freely avail-
able as a plugin to the Image] program (discussed in the final chapter). The FilamentTracer tool,
commercially available as part of the Imaris software package, uses similar principles for tracing
in 3D images, based on volume visualization.

active segmentation methods. An example is live-wire segmentation, which
was originally designed to perform computer supported delineation of object
edges.>® It is based on a search algorithm that finds a path from a single user-
selected pixel to all other pixels in the image by minimizing the cumulative
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value of a predefined cost function, computed from local image features (such
as gradient magnitude) along the path. The user can then interactively select
the path that according to his own judgment best follows the structure of in-
terest and fix the tracing up to some point, from where the process is iterated
until the entire structure is traced. This technique has been adapted to enable
tracing of neurite-like image structures in 2D and similar methods have been
applied to neuron tracing in 3D (Figure 3.2).>° More automated methods for
3D neuron tracing have also been published.?#*>77 In the case of poor image
quality, however, these may require manual postprocessing.

3.3 Particle Detection and Tracking

One of the major challenges of biomedical research in the postgenomic era
is the unraveling of not just the spatial, but the spatiotemporal relationships
of complex biomolecular systems.® Naturally this involves the acquisition of
time-lapse image series and the tracking of objects over time. From an image
analysis point of view, a distinction can be made between tracking of single
molecules (or complexes) and tracking of entire cells (see next section). A
number of tools are available for studying the dynamics of proteins based on
fluorescent labeling and time-lapse imaging, such as fluorescence recovery af-
ter (and loss in) photobleaching (FRAP and FLIP respectively), but these yield
only ensemble average measurements of properties. More detailed studies
into the different modes of motion of subpopulations require single particle
tracking,65'75 which aims at motion analysis of individual proteins or micro-
spheres. Computerized image analysis methods for this purpose have been
developed since the early 1990s and are constantly being improved>?! to deal
with increasingly sophisticated biological experimentation.

Generally speaking, particle tracking methods consist of two stages:*! 1)
the detection of individual particles per time frame, and 2) the linking of par-
ticles detected in successive frames (Figure 3.3). Regarding the former, it has
been shown by theoretical as well as empirical studies® 656787 that the local-
ization error can be at least one order of magnitude lower than the extension
of the microscope PSF, and that the SNR is among the main factors limiting
the localization accuracy. Currently, one of the best approaches to particle de-
tection is by least-squares fitting of a Gaussian (mixture) model to the image
data. In practice, the real difficulty in particle tracking is the data association
problem: determining which particles as detected in one frame correspond to
which particles in the next is not trivial, as the number of (real or detected)
particles may not be constant over time (particles may enter or exit the field of
view, they may assemble or disassemble, or limitations in the detection stage
may cause varying degrees of under- or overdetection). Therefore, most cur-
rent particle tracking tools should be used with care!* and may still require
manual checking and correction of the results.
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Figure 3.3 Challenges in particle and cell tracking. Regarding particle tracking, currently one
of the best approaches to detection of fluorescent tags is by least-squares fitting of a model of
the intensity distribution to the image data. Because the tags are subresolution particles, they
appear as diffraction-limited spots in the images and therefore can be modeled well by a mixture
of Gaussian functions, each with its own amplitude scaling factor, standard deviation, and center
position. Usually the detection is done separately for each time step, resulting in a list of potential
particle positions and corresponding features, to be linked between time steps. The linking is
hampered by the fact that the number of detected particles may be different for each time step. In
cell tracking, a contour model (surface model in the case of 3D time-lapse experiments) is often
used for segmentation. Commonly used models consist of control points, which are interpolated
using smooth basis functions (typically B-splines) to form continuous, closed curves. The model
must be flexible enough to handle geometrical as well as topological shape changes (cell division).
The fitting is done by (constrained) movement of the control points to minimize some predefined
energy functional computed from image-dependent information (intensity distributions inside
and outside the curve) as well as image-independent information (a priori knowledge about cell
shape and dynamics). Finally, trajectories can be visualized by representing them as tubes (seg-
ments) and spheres (time points) and using surface rendering.
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3.4 Cell Segmentation and Tracking

Motion estimation of cells is another frequently occurring problem in biolog-
ical research. In particle tracking studies, for example, cell movement may
muddle the motion analysis of intracellular components and needs to be cor-
rected for. In some cases, this may be accomplished by applying (nonrigid) im-
age registration methods.?*?%7082 Cell migrations and deformations are also
interesting in their own right, however, because of their role in a number of
biological processes, including immune response, wound healing, embryonic
development, and cancer metastasis.!® Understanding these processes is of
major importance in developing drugs or therapies to combat various types
of human disease. Typical 3D time-lapse data sets acquired for studies in this
area consist of thousands of images and are almost impossible to analyze man-
ually, both from a cost-efficiency perspective and because visual inspection
lacks the sensitivity, accuracy, and reproducibility needed to detect subtle but
potentially important phenomena. Therefore, computerized, quantitative cell
tracking and motion analysis is a requisite.?>

Contrary to single molecules or molecular complexes, which are subreso-
lution objects appearing as PSF-shaped spots in the images, cells are relatively
(with respect to pixel size) large objects, having a distinct shape. Detecting
(or segmenting) entire cells and tracking position and shape changes requires
quite different image processing methods. Due to noise and photobleaching
effects, simple methods based on intensity thresholding are generally inade-
quate. To deal with these artifacts and with obscure boundaries in the case
of touching cells, recent research has focused on the use of model-based seg-
mentation methods,*"#® which allow the incorporation of prior knowledge
about object shape. Examples of such methods are active contours (also called
snakes) and surfaces, which have been applied to a number of cell track-
ing problems.??2% They involve mathematical, prototypical shape descrip-
tions having a limited number of degrees of freedom, which enable shape-
constrained fitting to the image data based on data-dependent information
(image properties, in particular intensity gradient information) and data-inde-
pendent information (prior knowledge about the shape). Tracking is achieved
by using the contour or surface obtained for one image as initialization for the
next, and repeating the fitting procedure (Figure 3.3).
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Visualization

Advances in imaging technology are rapidly turning higher-dimensional im-
age data acquisition into the rule rather than the exception. Consequently,
there is an increasing need for sophisticated visualization technology to en-
able efficient presentation and exploration of this data and associated image
analysis results. Early systems supported browsing the data in a frame-by-
frame fashion,® which provided only limited insight into the interrelations of
objects in the images. Since visualization means generating representations
of higher-dimensional data, this necessarily implies reducing dimensionality
and possibly even reducing information in some sensible way. Exactly how to
do this optimally depends on the application, the dimensionality of the data,
and the physical nature of its respective dimensions (Figure 1.1). In any case,
visualization methods usually consist of highly sophisticated information pro-
cessing steps that may have a strong influence on the final result, making them
very susceptible to misuse. Here we briefly explain the two main modes of vi-
sualization and point at critical steps in the process. More information can be
found in textbooks on visualization and computer graphics.”’”

4.1 Volume Rendering

Visualization methods that produce a viewable image of higher-dimensional
image data without requiring an explicit geometrical representation of that
data are called volume rendering methods. A commonly used, flexible and
easy to understand volume rendering method is ray casting, or ray tracing.
With this method, the value of each pixel in the view image is determined by
“casting a ray” into the image data and evaluating the data encountered along
that ray using a predefined ray function (Figure 4.1). The direction of the rays
is determined by the viewing angles and the mode of projection, which can
be orthographic (the rays run parallel to each other) or perspective (the rays
have a common focal point). Analogous to the real-world situation, these are
called camera properties. The rays pass through the data with a certain step
size, which should be smaller than the pixel size to avoid skipping impor-
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Figure 4.1 Visualization of volumetric image data using volume rendering and surface rendering
methods. Volume rendering methods do not require an explicit geometrical representation of
the objects of interest present in the data. A commonly used volume rendering method is ray
casting: for each pixel in the view image, a ray is cast into the data, and the intensity profile
along the ray is fed to a ray function, which determines the output value, such as the maximum,
average, or minimum intensity, or accumulated “opacity” (derived from intensity or gradient
magnitude information). By contrast, surface rendering methods require a segmentation of the
objects (usually obtained by thresholding), from which a surface representation (triangulation)
is derived, allowing very fast rendering by graphics hardware. To reduce the effects of noise,
Gaussian smoothing is often applied as a preprocessing step prior to segmentation. As shown,
both operations have a substantial influence on the final result: by slightly changing the degree
of smoothing or the threshold level, objects may appear (dis)connected while in fact they are not.
Therefore it is recommended to establish optimal parameter values for both steps while inspecting
the effects on the original image data rather than looking directly at the renderings.
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tant details. Since, as a consequence, the ray sample points will generally not
coincide with grid positions, this requires data interpolation. The ray func-
tion determines what information is interpolated and evaluated and how the
sample values are composited into a single output value. For example, if the
function considers image intensity only and stores the maximum value found
along the ray, we obtain a maximum intensity projection (MIP). Alternatively,
it may sum all values and divide by the number to yield an average inten-
sity projection. These methods are useful to obtain first impressions, even in
the case of very noisy data, but the visualizations are often ambiguous due to
overprojections. More complex schemes may consider gradient magnitude,
color, or distance information. They may also include lighting effects to pro-
duce nicely shaded results. Each method yields a different view of the image
data and may give rise to a slightly different interpretation. It is therefore
often beneficial to use multiple methods.

4.2 Surface Rendering

In contrast with volume rendering methods, which in principle take into ac-
count all data along rays and therefore enable the visualization of object in-
teriors, surface rendering methods visualize only object surfaces. Generally,
this requires a mathematical description of the surfaces in terms of primitive
geometrical entities: points, lines, triangles, polygons, or polynomial curves
and surface patches, in particular splines. Such descriptions are derived from
a segmentation of the image data into meaningful parts (objects versus back-
ground). This constitutes the most critical aspect of surface rendering: the
value of the visualization depends almost entirely on the correctness of the
segmentation (Figure 4.1). Once a correct segmentation is available, however,
a representation of the object surfaces in terms of primitives, in particular a
surface triangulation, is easily obtained by applying the so-called marching
cubes algorithm.* Having arrived at this point, the visualization task has re-
duced to a pure computer graphics problem: generating an image from num-
bers representing primitive geometrical shapes. This could be done, again,
by ray tracing: for each pixel in the view image, a ray is defined and its in-
tersections with the surfaces are computed, at which points the effect of the
light source(s) on the surfaces (based on their orientation, opacity, color, tex-
ture) are determined to yield an output pixel value. This is called image-order
rendering (from pixels to surfaces). Most modern computer graphics hard-
wares, however, use object-order rendering (from surfaces, or primitives, to
pixels). Note that using such methods, we can visualize not just segmented
image data, but any information that can be converted somehow to graphics
primitives. Examples of this are tracing and tracking results, which can be
represented by tubes and spheres (Figures 3.2 and 3.3).
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Software Tools

It will be clear from the previous chapters that despite the host of image pro-
cessing, analysis, and visualization methods developed over the past decades,
there exists no such thing as a universal method capable of solving all prob-
lems. Although it is certainly possible to categorize problems, each biological
study is unique, in the sense that it is based on specific premises and hypothe-
ses to be tested, giving rise to unique image data to be analyzed, and requiring
dedicated image analysis methods in order to take full advantage of this data.
As a consequence, there is a great variety of software tools. Roughly, they
can be divided into four categories, spanning the entire spectrum from least
to most dedicated. On the one end are tools that are mainly meant for im-
age acquisition but that also provide basic image processing, measurement,
visualization, and documentation facilities. Examples include some tools pro-
vided by microscope manufacturers, such as LSM Image Browser,'> QWin,*
and analySIS.> Next are tools that, in addition to offering basic facilities, were
designed to also address a range of more complicated biological image analy-
sis problems. Often, these tools consist of a core platform with the possibility
to add modules developed for dedicated applications, such as deconvolution,
colocalization, filament tracing, image registration, or particle tracking. Exam-
ples of these include Imaris,’ AxioVision,'> Image-Pro Plus,* MetaMorph,>
and Image].®® On the other end of the spectrum are tools that are much more
dedicated to specific tasks, such as Huygens” or AutoDeblur* for deconvo-
lution, Amira® for visualization, Volocity®” for tracking and motion analysis,
and Neurolucida® for neuron tracing, et cetera.

As a fourth category we mention software packages offering researchers
much greater flexibility in developing their own, dedicated image analysis
algorithms. An example of this is Matlab,* which offers an interactive devel-
oping environment and a high-level programming language for which exten-
sive image processing toolboxes are available, such as DIPimage.® It is used
by engineers and scientists in many fields for rapid prototyping and valida-
tion of new algorithms but has not (yet) gained wide acceptance in biology.
A software tool that is rapidly gaining popularity is Image]J, already men-
tioned. It is a public-domain tool and developing environment based on the
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Java programming language® which can be used without the need for a li-
cense, runs on any computer platform (PC/Windows, Macintosh, Linux, and
other Unix variants), and its source code is openly available. The core dis-
tribution of the program supports most of the common image file formats
and offers a host of facilities for manipulation and analysis of image data
(up to 5D), including all basic image processing methods described in this
booklet. Probably the strongest feature of the program is its extensibility: ex-
isting operations can be combined into more complex algorithms by means
of macros, and new functionality can easily be added by writing plugins.!
Hundreds of plugins are already available, considerably increasing its im-
age file support and image processing and analysis capabilities, ranging from
very basic but highly useful pixel manipulations to much more involved al-
gorithms for image segmentation, registration,® transformation, mosaicking,
visualization,*”! deconvolution, depth-of-field extension,?® neuron tracing,*
FRET analysis,® manual®® and automated’*”® particle tracking, colocaliza-
tion, texture analysis, cell counting, granulometry, and more.

Finally we wish to make a few remarks regarding the use and develop-
ment of software tools for biological image analysis. In contrast with diagnos-
tic patient studies in clinical medical imaging practice, biological investigation
is rather experimental by nature, allowing researchers to design their own ex-
periments, including the imaging modalities to be used and how to process
and analyze the resulting data. While freedom is a great virtue in science, it
may also give rise to chaos. All too often, scientific publications report the use
of image analysis tools without specifying which algorithms were involved
and how parameters were set, making it very difficult for others to reproduce
or compare results. What is worse, many software tools available on the mar-
ket or in the public domain have not been thoroughly scientifically validated,
at least not in the open literature, making it impossible for reviewers to verify
the validity of using them under certain conditions. It requires no explanation
that this situation needs to improve. Another consequence of freedom, on
the engineering side of biological imaging, is the (near) total lack of standard-
ization in image data management and information exchange. Microscope
manufacturers, software companies, and sometimes even research laborato-
ries have their own image file formats, which generally are rather rigid. As
the development of new imaging technologies and analytic tools accelerates,
there is an increasing need for an adaptable data model for multidimensional
images, experimental metadata, and analytical results, to increase the compat-
ibility of software tools and facilitate the sharing and exchange of information
between laboratories. First steps in this direction have already been taken by
the microscopy community by developing and implementing the open mi-
croscopy environment (OME), whose data model and file format, based on
the extended markup language (XML), is gaining acceptance.’>84
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Active contour, 25
Averaging, 12,13, 18

Background subtraction, 17, 18
Blurring, see Smoothing

Canny edge detection, 12, 13
Cell tracking, 24, 25

Closing, 14, 15
Colocalization, 19ff
Computer graphics, 6, 8
Computer vision, 6, 8
Contrast stretching, 11, 12
Convolution, 12, 13
Coordinate, 6, 7

Deblurring, see Deconvolution
Deconvolution, 17, 18
Denoising, see Noise reduction
Derivative, 12,13, 22
Dilation, 14, 15
Dimension, 6, 7

spatial, 7

spectral, 7

temporal, 7

Edge detection
Canny, 12,13
morphological, 14, 15

Erosion, 14, 15

Filter, 12
averaging, 12,13
derivative, 12, 13, 22
Gaussian, 13, 17
linear, 12
maximum, 12
median, 12,17, 18
minimum, 12
morphological, 12, 14
nonlinear, 12, 17
sharpening, 12, 13
smoothing, 12, 13

Fluorogram, 21

Gaussian
derivative, 22
filtering, 13, 17
mixture model, 23, 24
smoothing, 13, 27
Granulometry, 14, 15

Histogram, 11
cumulative, 11
equalization, 11
multimodal, 11, 12
thresholding, 12
unimodal, 11

Image, 5
analysis, 6, 8, 19ff
objective, 6
qualitative, 6
quantitative, 6
subjective, 6
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binary, 12
brightness, 10
classes, 6
contrast, 10
derivative, 13, 22
digital, 6
element, 6
filtering, 12
formation, 8

interpolation, see Interpolation

matrix, 6, 7
multispectral, 7, 10
processing, 6, 8, 10ff
reformatting, 15
registration, 15, 25
resampling, 15, 16
restoration, 15ff

segmentation, see Segmentation

time-lapse, 7

understanding, 6, 8
Interpolation, 15, 16

kernel, 16

linear, 15

nearest-neighbor, 15

spline, 15

Kernel, 12, 13, see also Filter

Manders’ coefficients, 21

Maximum intensity projection, 27, 28

Median filtering, 12, 17, 18
Morphology
binary, 12, 14
mathematical, 12
neuronal, 21

Neighborhood operation, 12
Neuron tracing, 21ff
Noise reduction, 17, 18

Nonlinear diffusion filtering, 17, 18

Opening, 14, 15
Overlap coefficient, 20, 21

Particle tracking, 23, 24

Pearson’s correlation coefficient, 20, 21

Picture, 6
Pixel, 6

Point operation, 10

Projection
accumulated opacity, 27
average intensity, 27, 28
maximum intensity, 27, 28
minimum intensity, 27
orthographic, 26
perspective, 26

Ray tracing, 26, 27
Reformatting, 15
Registration, 15, 25
Rendering
image-order, 28
object-order, 28
surface, 27, 28
volume, 26, 27
Resampling, 15, 16

Sample, 6

Segmentation, 10
interactive, 22
live-wire, 22
model-based, 25

Sharpening, 12, 13

Skeletonization, 14, 15

Smoothing, 12, 27

Snake, see Active contour

Software tools, 29ff

Structuring element, 12, 14

Surface rendering, 27, 28

Thresholding, 10-12, 27

Tracking, 23ff

Transformation
affine, 15, 16
coordinate, 15, 16
curved, 15, 16
Fourier, 12
geometrical, 15, 16
intensity, 10ff
rigid, 15, 16
spatial, 15

Visualization, 6, 8, 26ff
Volume rendering, 26, 27
Voxel, 6
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