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Our starting research questions were

How do proteins bind to their interacting partners
(proteins, ligands, substrate)?
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Fleming discovers Penicillin on
September 28, 1928
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Fig. 1. Photograph of a culture-plate showing the dissolution of staphylococcal col-
onies in the neighbourhood of a Penicillium colony.

Fleming A. (1929) British Journal of Experimental Pathology 10:226-36.



Penicillin resistant bacteria
detected in early 1940s

Abraham, E.P. and E. Chain. 1940.
An enzyme from bacteria

able to destroy penicillin.
Nature 3713:837.



Beta-lactamase structure

Stec et al. 2005 Acta Crystallographica D 61:1072-1079
° Elif Ozkirimli Protein — ligand interactions Jan 8, 2019




Beta-lactamase — Beta lactamase inhibitor
rotein (BLIP) complex
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MD simulations on apo + BLIP bound
beta-lactamase

Meneksedag et al. (2013) Computational Biology and Chemistry, 43:1-10
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Seqguence conservation around the allosteric
region in class A beta-lactamases
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How does beta-lactamase evolution occur?

How does the development of new antibiotics and/or
inhibitors drive beta-lactamase evolution forward?

576 unique beta-lactamase
sequences in Uniprot
> 70,000 compounds in ChEMBL

° Elif Ozkirimli Protein — ligand interactions Jan 8, 2019




Ligand centric protein networks

Our ligand centric view of protein families is built on two
basic observations:

e chemically similar compounds bind to
similar target proteins.
e target proteins that share similar binding sites
bind to similar ligands.

Protein — ligand interactions Jan 8, 2019



Ligand based beta-lactamase networks

Similarity network:
Place an edge if two beta-lactamases
share a similar ligand

Ozturk et al., Plos One 2015
0 Elif Ozkirimli Protein — ligand interactions Jan 8, 2019

Identity network:
Place an edge if two
beta-lactamases share a ligand




* Ligand binding carries functional and/or mechanistic
information about the protein
 Sequence alone is not adequate to completely understand the

mechanism.
* The relationship between fold or architecture and function can

be weak.

We propose to represent proteins
with their interacting ligands.

Martin A.C. et al. (1998) Protein folds and functions. Structure, 6, 875—884
Jan 8, 2019

° Elif Ozkirimli Protein — ligand interactions



But must first represent the ligands
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But must first represent the ligands

— Fingerprint models (e.g. ECFP6)
binary feature vectors

— Graph based models
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But must first represent the ligands
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Simplified Molecular Input Line
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Protein — ligand interactions Jan 8, 2019



Hypothesis: SMILES representation of compounds is a document
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SMILES representation is the document

SMILES: CN=C=0



Chemical words (LINGO)
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SMILES: CN=C=0

Chemical words: CN=C



Chemical words (LINGO)
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SMILES: CN=C=0
Chemical words: CN=C, N=C=



Chemical words (LINGO)
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SMILES: CN=C=0
Chemical words: CN=C, N=C=, =C=0

Vidal D, Thormann M, and Pons M (2005) Journal of chemical information and modeling 45.2 386-393.



Distributed word representations (word2vec)
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Neural networks
based learning

A King word
vectors
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“You shall know a word
by the company it
keeps!” Firth 1957

Mikolov, Tomas, et al. Advances in neural information processing systems. 2013.



Distributed word representations (SMILESVec)

SMILES: CN=C=0
words: CN=C, N=C=, =C=0

PubChem _C
2M compounds A Shl Chemical

word (cw)

Neural networks

vectors
based learning /
>

Skip gram approach
100D real valued embeddings

Oztiirk, Hakime et al., "A novel methodology on
distributed representations of proteins using their
interacting ligands." Bioinformatics, (2018).



Distributed word representations (SMILESVec)

SMILES: CN=C=0
words: CN=C, N=C=, =C=0

SMILES
Vector
_c=0 SMILESVec

CN=C=0

Oztiirk, Hakime et al., "A novel methodology on
distributed representations of proteins using their
interacting ligands." Bioinformatics, (2018).



SMILESVec-based protein representation

Protein: sialidase
Interacting ligands: DAN, SIA

DAN, CC(=0)N[C@@H]1[C@ @H](O)C=C(O[C@H]...

SIA, CC(=0)N[C@@H]1[C@@H](0)C[CR@]..

SMILES
vectors

>




SMILESVec-based protein representation

Protein: sialidase
Interacting ligands: DAN, SIA

a Siélidase

Protein
vector

>



Protein - ligand affinity prediction
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ChemBoost Ligand Representation

SMILES Word 5" chemical Words SMILESYe: o Ligand J

Identification Representation



ChemBoost Protein Representation
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Chemboost achieves high performance in comparison
to benchmark and SOTA

BDB Scores

KIBA Scores

Model Ci MSE Ci MSE
KronRLS 0.814 (0.002) 0.939 (0.004) 0.782 (0.001) 0.411
SimBoost  0.853 (0.003) 0.485 (0.043) 0.836 (0.001) 0.223 (0.003)
DeepDTA  0.863 (0.007) 0.397 (0.011) 0.846 (0.002) 0.215 (0.005)

ChemBoost 0.871 (0.002) 0.420 (0.007) 0.836 (0.001) 0.207 (0.002)

- Pahikkala et al. "Toward more realistic drug—target interaction predictions." Briefings in bioinformatics 16.2 (2014): 325-337.

- Tong, et al. "SimBoost: a read-across approach for predicting drug—target binding affinities using gradient boosting machines." Journal
of cheminformatics 9.1 (2017): 24.

- Oztiirk et al.."DeepDTA: deep drug—target binding affinity prediction." Bioinformatics 34.17 (2018):i821-i829.



but...

Predictions for novel biomolecules is a challenge.



Cold Protein




Predictions for novel biomolecules is a challenge.

Warm Cold Ligand Cold Protein Cold
Model MSE Cl MSE Cl MSE Cl MSE Cl
Model (1) 0373 0885 1.178 0.736 0.720 0.799 1.393 0.657
Model (7) 0.404 0863 1.185 0.700 1.156 0.749 1576 0.596
Model (9) 0.361 0880 1.157 0.730 0.800 0.786 1.358 0.665
DeepDTA 0345 0879 1350 0.672 0.810 0.778 1.522 0.614




DebiasedDTA: Model Debiasing to Boost Drug -Target Affinity Prediction

Ozcelik, R., Bag, A, Atil, B., Ozgiir, A., & Ozkirimli, E.. DebiasedDTA: Model
Debiasing to Boost Drug -Target Affinity Prediction submitted.



DebiasedDTA: Ensemble Learning for Novel
Drug-Target Affinity Prediction

Proteins
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DebiasedDTA: Ensemble Learning for Novel
Drug-Target Affinity Prediction
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DebiasedDTA: Ensemble Learning for Novel
Drug-Target Affinity Prediction
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Debiasing improves prediction performance

Warm Cold Ligand Cold Protein Cold Both

Model Cl R# CI R? | R? | R?

DeepDTA 1.239% 0.023 4.076% 0.004 2.899% 0.042 10.289% 0.062
BPE-DTA 0.906% 0.007 5.327% 0.098 6.891% 0.325 8.812% 0.108
LM-DTA 0913% 0.017 1.890% 0.043 0.513% 0.011 2.448% 0.044

BDB

Table 2. The gain of debiasing. The percentile improvement in Cl and increase in R2 are displayed for each model on every test set. The
statistics are computed by comparing the best DebiasedDTA score with the non-debiased one. Negative statistics are reported if the
non-debiased model outperforms every debiasing configuration.



What do | do now?

At Roche, I'm the head of data science and advanced analytics in commercial
space answering questions such as

Understanding the Dr or patient journeys

Extracting information from conversations between Drs and sales reps
Building recommendation systems for Drs, patients, sales reps

Price predictions in a complex ecosystem

Sales forecasting

Analysis of real world data for commercial decision making



Text data in the biomedical domain

® Natural Languages

® DNA sequence

Chitosan Oligosaccharide Exerts Anti-Allergic Effect against Shrimp Tropomyosin-Induced Food
Allergy by Affecting Th1 and Th2 Cytokines.

Jiang T'2, Ji H®, Zhang L*, Wang Y®, Zhou HE.
+ Author information
Abstract

BACKGROUND: Shrimp-derived allergen has a serious impact on people's health. Chitosan oli ide (COS) has anti-all
action but its function on shrimp allergen-induced allergy and related molecular mechanisms remain unclear.

g

METHODS: COS and its degrees of polymerization (DP) were selected to interact with shrimp tropomyosin (TM) and IgE was measured.

A mouse model of food allergy was established by receiving shrimp TM intraperitoneally. The models were treated with different
concentrations of COS. Fecal and serum histamine, serum IgE, IgG1 and IgG2a, and inflammatory cytokines were measured.

RESULTS: The main products for COS were DP2-6 with the contents of 6, 40, 26, 16, and 4%, respectively, and reacted with shrimp TM
increasingly when COS DP was increased. Severe symptoms of food allergy were observed in the TM group (diarrhea, anaphylactic

and rectal ire). In contrast, COS treatment improved these symptoms significantly (p < 0.05). The sensitized mice
were desensitized after they were treated with 1 mg/kg COS. COS treatment significantly reduced serum IgE and IgG1 levels, and
increased IgG2a levels (p < 0.05). COS consumption decreased fecal and serum histamine. COS treatment reduced Th2 cytokine (IL-4,
IL-5, and IL-13) levels and increased the Th1 cytokine (IFN-y) level (p < 0.05).

CONCLUSIONS: COS showed anti-allergy properties by regulating the levels of Th1 and Th2 cytokines.

TTCAGGTGCATAAGACCTTGAC...

® Protein sequence MELPNIMHPVAKLSTALAAALML...
® Chemical formula CCHC(N2CSI)C(C2=0)NC(=0)...

39



Needles in a haystack
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Needles in a haystack
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Balancing Methods for Multi-label Text Classification with
Long-Tailed Class Distribution

Huang, Y., Giledereli, B. Koksal, A., Ozgur, A., Ozkirimli, E. (2021) Balancing Methods for
Multi-label Text Classification with Long-Tailed Class Distribution EMNLP 2021.



Reuters-21578 dataset
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Loss function manipulation can address class imbalance

e Binary cross entropy is vulnerable to label imbalance due to the dominance of
head classes or negative instances.

e Resampling and re-weighting not effective when there is label dependency
because they result in oversampling of common labels.

e Multi-label classification has been widely studied in the computer vision (CV)
domain, and recently has benefited from cost-sensitive learning through

loss functions
o In object recognition (Durand et al., 2019; Milletari et al., 2016), semantic segmentation (Ge
et al., 2018), and medical imaging (Li et al., 2020a).

e Loss function manipulation has also been explored (Li et al., 2020b; Cohan et
al., 2020) in NLP as it works in a model architecture-agnostic fashion by

explicitly embedding the solution into the objective.
o For example, Li et al. (2020b) has borrowed dice-based loss function from a medical image
segmentation task (Milletari et al., 2016) and reported significant improvements over the
standard cross-entropy loss function in several NLP tasks.



Loss function manipulation can address class imbalance

e \We propose using distribution balanced (DB) loss with 3 layers: focal
loss, rebalanced weighting and negative-tolerant regularization (NTR).

e Focal loss places a higher weight of loss on “hard-to-classify” instances
predicted with low probability on ground truth while NTR addresses the
co-occurence problem.

e DB loss first reduces redundant information of label co-occurrence and
then explicitly assigns lower weight on “easy-to-classify” negative
instances.

e NTR helps to avoid over-suppression of the negative labels caused by the
dominance of negative classes in binary cross entropy (BCE)



Results

PubMed PubMed PubMed PubMed
Total Head (>50) Med (15-50) Tail (<15)
BCE 0.02 0.06 0 0
SVM 13.31 34.33 5.62 0.67
DB (Ours) 19.19 40.48 15.33 3.08

Macro F1 results with SVM and BCE baselines comparing to our model



Methods | Metrics

Micro - 11 — 2 x Precisiong; * Recall,;

(Precisionau + Recallqy)

2 x Precision; x Recall;
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DB improves classification performance even
for tail labels

PubMed PubMed PubMed PubMed
Total Head (>50) Med (15-50) Tail (<15)
SVM 58.54 60.77 19.78 6.94
BCE 26.17 27.61 0 0
DB 60.63 62.39 41.14 24.19

Micro F1 comparison of DB with SVM and BCE baselines



DB improves classification performance even
for tail labels

Model/ Reuters Reuters Reuters Reuters PubMed PubMed PubMed PubMed
Loss Total Head(>35) Med(8-35) Tail(<8) Total Head(>50) Med(15-50) Tail(<15)
Function miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF
SVM 87.60/51.63 89.87/78.47 66.92/61.00 22.54/13.83 58.54/13.31 60.77/34.33 19.78/5.62  6.94/0.67
BCE 89.14/47.32 91.75/82.81 66.28/57.26 0.00/0.00 26.17/0.02 27.61/0.06 0.00/0.00 0.00/0.00
DB 90.62/64.47 92.14/83.48 80.25/77.01 48.89/31.39 60.63/19.19 62.39/40.48 41.14/15.33 24.19/3.08




DB improves classification performance even
for tail labels

Model/ Reuters Reuters Reuters Reuters PubMed PubMed PubMed PubMed
Loss Total Head(>35) Med(8-35) Tail(<8) Total Head(>50) Med(15-50) Tail(<15)
Function miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF
SVM 87.60/51.63 89.87/78.47 66.92/61.00 22.54/13.83 58.54/13.31 60.77/34.33 19.78/5.62  6.94/0.67
BCE 89.14/47.32 91.75/82.81 66.28/57.26 0.00/0.00 26.17/0.02 27.61/0.06 0.00/0.00 0.00/0.00
FL 89.97/56.83 91.83/82.64 76.16/70.63 27.40/15.37 58.30/13.94 60.43/33.69 26.39/8.15  8.58/0.86
CB 89.23/52.96 91.56/80.44 71.64/66.61 23.08/9.93 58.57/13.67 60.75/33.40 24.50/7.39 9.92/1.01
R-FL 89.47/54.35 91.59/80.39 72.86/66.69 25.00/14.22 57.90/14.66 59.85/34.09 30.32/9.70 11.45/1.15
NTR-FL 90.70/60.70 92.37/82.65 79.35/75.34 39.51/22.33 60.92/16.99 63.15/38.85 33.14/11.39 15.86/1.82
DB 90.62/64.47 92.14/83.48 80.25/77.01 48.89/31.39 60.63/19.19 62.39/40.48 41.14/15.33 24.19/3.08

* FL: Focal loss, CB: Class balanced focal loss, R-FL: rebalanced focal loss, NTR-FL: negative tolerant regularization focal loss



DB achieves SOTA performance for Reuters

Model/ Reuters Reuters Reuters Reuters
Loss Total Head(>35) Med(8-35) Tail(<8)
Function miF/maF miF/maF miF/maF miF/maF
SVM 87.60/51.63 89.87/78.47 66.92/61.00 22.54/13.83
BCE 89.14/47.32 91.75/82.81 66.28/57.26 0.00/0.00
FL 89.97/56.83 91.83/82.64 76.16/70.63 27.40/15.37
CB 890.23/52.96 91.56/80.44 71.64/66.61 23.08/9.93
R-FL _8_9._42/54.35 91.59/80.39 72.86/66.69 25.00/14.22
NTR-FL : 90.70{60.70 92.37/82.65 79.35/75.34 39.51/22.33

| |

| |

| |
DB ; 90.62}64.47 02.14/83.48 80.25/77.01 48.89/31.39

| Mg s |

Our Reuters result outperforms prior work on this
dataset, including approaches based on Binary
Relevance, EncDec, CNN, CNN-RNN, Optimal
Compiletion Distillation or attention-based GNN,
that achieved micro-F1<89.9 (Nam et al., 2017;
Pal et al., 2020; Tsai and Lee, 2020)

* FL: Focal loss, CB: Class balanced focal loss, R-FL: rebalanced focal loss, NTR-FL: negative tolerant regularization focal loss



Results | Ablation study: DB = R + NTR + FL
A [ |

Model/ Reuters Reuters Reuters Reuters PubMed PubMed PubMed PubMed
Loss Total Head(>35) Med(8-35) Tail(<8) Total Head(>50) Med(15-50) Tail(<15)
Function miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF
H R-FL 89.47/54.35 91.59/80.39 72.86/66.69 25.00/14.22 57.90/14.66 59.85/34.09 30.32/9.70 11.45/1.15
ANNTR-FL 90.70/60.70 92.37/82.65 79.35/75.34 39.51/22.33 60.92/16.99 63.15/38.85 33.14/11.39 15.86/1.82
ADB-OFL 89.45/57.98 91.21/82.05 77.33/71.11 31.17/19.05 58.95/15.15 60.99/34.92 31.06/10.02 14.23/1.49
ANDB 90.62/64.47 92.14/83.48 80.25/77.01 48.89/31.39 60.63/19.19 62.39/40.48 41.14/15.33 24.19/3.08

* FL: Focal loss, CB: Class balanced focal loss, R-FL: rebalanced focal loss, NTR-FL: negative tolerant regularization focal loss



A novel loss
function, CB-NTR
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Results | Effectiveness against the number of labels per instance

e For the Reuters dataset, we split the test instances into two groups, 2583 instances with only one
label and 436 instances with multiple labels. On single-label instances, all functions from BCE to
DB, have similar performance; while on multi-label instances, the performance of BCE drops more
than DB. DB outperforms other functions in micro-F1 of the multi-label instance group and
macro-F1 of both groups.

e There are < 0.1% instances of PubMed dataset with a single label, so we divide instances into
3-quantiles by their number of labels. In each quantile, the novel NTR-FL, CB-NTR and DB
outperform the rest of the models in all metrics.

Reuters Reuters Reuters PubMed PubMed PubMed PubMed
Total Single-label Multi-label Total < 9l]abels 10-14 labels > 15 labels
miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF miF/maF

Loss
Function

BCE 89.14/47.32 94.11/41.44 76.26/33.11 26.17/0.02 16.48/0.01 27.36/0.02  30.36/0.03
FL 89.97/56.83 94.81/50.33  77.54/40.07 58.30/13.94 53.72/7.44 59.02/10.27 59.72/8.63
CB 89.23/52.96 94.10/44.72 77.27/38.80 58.57/13.67 54.41/7.40 59.21/10.11 59.82/8.51
R-FL 89.47/54.35 95.21/47.45 74.29/38.79 57.90/14.66 53.08/7.67 58.60/10.50 59.45/8.81
NTR-FL  90.70/60.70 95.42/51.33 78.85/44.37 60.92/16.99 58.51/9.07 61.86/12.31 61.12/10.20

DB-OFL  89.45/57.98 94.48/51.80 76.63/42.26 58.95/15.15 55.14/8.11 59.84/10.90 59.85/8.94
CB-NTR 90.74/63.31 95.17/51.08 79.56/49.94 61.07/18.40 58.29/9.67 61.72/12.97 61.72/10.77

DB 90.62/64.47 94.49/54.31 81.17/50.12 60.63/19.19 57.81/9.76 61.53/13.49 61.08/11.23

Balancing Methods for Multi-label Text Classification with Long-Tailed Class Distribution | EMNLP 2021



Results | Error Analysis

e The most common errors are due to incorrect classification to similar or linked labels for
all loss functions.

e The most common three pairs of classes confused by all loss functions for the Reuters
dataset are: platinum and gold, yen and money-fx, platinum and copper.

e For the PubMed dataset, the most common errors were: Pandemics and
Betacoronavirus, Pandemics and SARS-CoV-2, Pneumonia, Viral and Betacoronavirus,
and BCE has significantly more errors for these classes compared to the other
investigated loss functions.



3 take aways

The thread that binds all of my past work is mathematics. At the end of the
day, it's all about solving a system of equations!

The big challenge is finding the needles in a haystack. Most interesting
biology occurs at the edge of the distribution rather than the average state.
Similarly, finding the information that is rare is sometimes more valuable than
finding common knowledge.

ML, DL approaches are becoming increasingly powerful at making out of
distribution predictions.



