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Our starting research questions were

How do proteins bind to their interacting partners 
(proteins, ligands, substrate)?
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Fleming discovers Penicillin on 
September 28, 1928

Fleming A. (1929) British Journal of Experimental Pathology 10:226-36.



Penicillin resistant bacteria
detected in early 1940s 

Abraham, E.P. and E. Chain. 1940. 

An enzyme from bacteria 

able to destroy penicillin. 

Nature 3713:837.



Beta-lactamase structure

Stec et al. 2005 Acta Crystallographica D 61:1072-1079

Active 
site
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Beta-lactamase – Beta lactamase inhibitor 
protein (BLIP) complex

Lim, et al. (2001) NSB 8: 848-852.

Beta-lactamase

BLIP
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MD simulations on apo + BLIP bound 
beta-lactamase

Meneksedag et al. (2013) Computational Biology and Chemistry, 43:1-10

H10

Active 
site
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Sequence conservation around the allosteric 
region in class A beta-lactamases

Highly conserved
PWP triad

Meneksedag et al. (2013) CBC, 43:1-10
Avci et al. (2016), JEIMC 31:33-40

Active 
site
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How does beta-lactamase evolution occur?

How does the development of new antibiotics and/or 
inhibitors drive beta-lactamase evolution forward?

576 unique beta-lactamase 
sequences in Uniprot

> 70,000 compounds in ChEMBL
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Ligand centric protein networks
Our ligand centric view of protein families is built on two 
basic observations:

• chemically similar compounds bind to 
similar target proteins.

• target proteins that share similar binding sites 
bind to similar ligands.
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Ligand based beta-lactamase networks

Identity network: 
Place an edge if two 

beta-lactamases share a ligand

Similarity network:
Place an edge if two beta-lactamases 

share a similar ligand
Ozturk et al., Plos One 2015
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Martin A.C. et al.   (1998) Protein folds and functions. Structure, 6, 875–884

• Ligand binding carries functional and/or mechanistic 
information about the protein 

• Sequence alone is not adequate to completely understand the 
mechanism.

• The relationship between fold or architecture and function can 
be weak.

We propose to represent proteins 
with their interacting ligands.
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But must first represent the ligands



– Fingerprint models (e.g. ECFP6) 
binary feature vectors

– Graph based models

1
0
0
1
0
.
.
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But must first represent the ligands



CC1(C(N2C(S1)C(C2=O)NC(=O)
C(C3=CC=CC=C3)N)C(=O)O)C

Simplified Molecular Input Line 
Entry System (SMILES) 
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But must first represent the ligands



- What are the words??

Hypothesis: SMILES representation of compounds is a document



SMILES: CN=C=O

SMILES representation is the document



Chemical words: CN=C

SMILES: CN=C=O

Chemical words (LINGO)



Chemical words: CN=C, N=C=
SMILES: CN=C=O

Chemical words (LINGO)



Chemical words: CN=C, N=C=, =C=O
SMILES: CN=C=O

Vidal D, Thormann M,  and Pons M (2005)  Journal of chemical information and modeling 45.2  386-393.

Vidal D, Thormann M,  and Pons M (2005)  Journal of chemical information and modeling 45.2  386-393.

Chemical words (LINGO)



text 
corpus

King

Queen
Neural networks 
based learning

Man

Woman

word
vectors

Mikolov, Tomas, et al. Advances in neural information processing systems. 2013.

 Distributed word representations (word2vec)

“You shall know a word 
by the company it 
keeps!” Firth 1957



CN=C

=C=O
N=C=

Chemical 
word (cw) 

vectors

SMILES
corpus

Neural networks 
based learning

 words: CN=C, N=C=, =C=O

SMILES: CN=C=O

PubChem
2M compounds

Öztürk, Hakime et al., "A novel methodology on 
distributed representations of proteins using their 
interacting ligands." Bioinformatics, (2018). 

Skip gram approach
100D real valued embeddings

 Distributed word representations (SMILESVec)



CN=C

=C=O
N=C

=

SMILES
Vector

SMILESVec

SMILES
corpus

Neural networks 
based learning

CN=C=O

PubChem
ChEMBL

Öztürk, Hakime et al., "A novel methodology on 
distributed representations of proteins using their 
interacting ligands." Bioinformatics, (2018). 

 words: CN=C, N=C=, =C=O

SMILES: CN=C=O

 Distributed word representations (SMILESVec)



SMILESVec-based protein representation



SMILESVec-based protein representation



PDB: 3Q6X

Protein - ligand affinity prediction



ChemBoost Ligand Representation



ChemBoost Protein Representation



Chemboost achieves high performance in comparison 
to benchmark and SOTA 

- Pahikkala et al. "Toward more realistic drug–target interaction predictions." Briefings in bioinformatics 16.2 (2014): 325-337.
- Tong, et al. "SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines." Journal 
of cheminformatics 9.1 (2017): 24.
- Öztürk et al.. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34.17 (2018): i821-i829.



Predictions for novel biomolecules is a challenge.

but...
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Predictions for novel biomolecules is a challenge.



DebiasedDTA: Model Debiasing to Boost Drug -Target Affinity Prediction

Özçelik, R., Bag, A., Atil, B., Özgür, A., & Ozkirimli, E.. DebiasedDTA: Model 
Debiasing to Boost Drug -Target Affinity Prediction submitted.



DebiasedDTA: Ensemble Learning for Novel 
Drug-Target Affinity Prediction

Weak Learner

Strong Learner

Idea: If dataset biases are 
outstanding, weak learners 
can learn these patterns.



DebiasedDTA: Ensemble Learning for Novel 
Drug-Target Affinity Prediction

Weak Learner

Strong Learner

Idea: If dataset biases are 
outstanding, weak learners 
can learn these patterns.

Inverted bias coefficient: 
higher for more informative 
samples



DebiasedDTA: Ensemble Learning for Novel 
Drug-Target Affinity Prediction

Weak Learner

Strong Learner

Idea: If dataset biases are 
outstanding, weak learners 
can learn these patterns.

Use inverted bias 
coefficients to guide strong 

learner training.



Debiasing improves prediction performance

Table 2. The gain of debiasing. The percentile improvement in CI and increase in R2 are displayed for each model on every test set. The 
statistics are computed by comparing the best DebiasedDTA score with the non-debiased one. Negative statistics are reported if the 
non-debiased model outperforms every debiasing configuration.



What do I do now?
At Roche, I'm the head of data science and advanced analytics in commercial 
space answering questions such as

Understanding the Dr or patient journeys

Extracting information from conversations between Drs and sales reps

Building recommendation systems for Drs, patients, sales reps

Price predictions in a complex ecosystem

Sales forecasting

Analysis of real world data for commercial decision making



Text data in the biomedical domain

39

● Natural Languages

● DNA sequence
● Protein sequence
● Chemical formula

MELPNIMHPVAKLSTALAAALML…
CC1(C(N2C(S1)C(C2=O)NC(=O)…

TTCAGGTGCATAAGACCTTGAC…



Needles in a haystack

Yakimovich, A., Beaugnon, A., Huang, Y., Ozkirimli, E., “Labels in a Haystack: Approaches
beyond Supervised Learning in Biomedical Applications”. Accepted for publication
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Balancing Methods for Multi-label Text Classification with 
Long-Tailed Class Distribution

Huang, Y., Giledereli, B. Köksal, A., Ozgur, A., Ozkirimli, E. (2021) Balancing Methods for 
Multi-label Text Classification with Long-Tailed Class Distribution  EMNLP 2021.



Reuters-21578 dataset

Long tailed distribution and co-occurrence



Loss function manipulation can address class imbalance

● Binary cross entropy is vulnerable to label imbalance due to the dominance of 
head classes or negative instances.

● Resampling and re-weighting not effective when there is label dependency 
because they result in oversampling of common labels.

● Multi-label classification has been widely studied in the computer vision (CV) 
domain, and recently has benefited from cost-sensitive learning through 
loss functions

○ In object recognition (Durand et al., 2019; Milletari et al., 2016), semantic segmentation (Ge 
et al., 2018), and medical imaging (Li et al., 2020a).

● Loss function manipulation has also been explored (Li et al., 2020b; Cohan et 
al., 2020) in NLP as it works in a model architecture-agnostic fashion by 
explicitly embedding the solution into the objective. 

○ For example, Li et al. (2020b) has borrowed dice-based loss function from a medical image 
segmentation task (Milletari et al., 2016) and reported significant improvements over the 
standard cross-entropy loss function in several NLP tasks. 



● We propose using distribution balanced (DB) loss with 3 layers: focal 
loss, rebalanced weighting and negative-tolerant regularization (NTR). 

● Focal loss places a higher weight of loss on “hard-to-classify” instances 
predicted with low probability on ground truth while NTR addresses the 
co-occurence problem.

● DB loss first reduces redundant information of label co-occurrence and 
then explicitly assigns lower weight on “easy-to-classify” negative 
instances.

● NTR helps to avoid over-suppression of the negative labels caused by the 
dominance of negative classes in binary cross entropy (BCE)

Loss function manipulation can address class imbalance



Macro F1 results with SVM and BCE baselines comparing to our model

PubMed
Total

PubMed
Head (>50)

PubMed
Med (15-50)

PubMed
Tail (<15)

BCE 0.02 0.06 0 0

SVM 13.31 34.33 5.62 0.67

DB (Ours) 19.19 40.48 15.33 3.08

Results



Methods | Metrics



Micro F1 comparison of DB with SVM and BCE baselines 

PubMed
Total

PubMed
Head (>50)

PubMed
Med (15-50)

PubMed
Tail (<15)

SVM 58.54 60.77 19.78 6.94

BCE 26.17 27.61 0 0

DB 60.63 62.39 41.14 24.19

DB improves classification performance even 
for tail labels



DB improves classification performance even 
for tail labels



DB improves classification performance even 
for tail labels

* FL: Focal loss, CB: Class balanced focal loss, R-FL: rebalanced focal loss, NTR-FL: negative tolerant regularization focal loss



Our Reuters result outperforms prior work on this 
dataset, including approaches based on Binary 
Relevance, EncDec, CNN, CNN-RNN, Optimal 
Completion Distillation or attention-based GNN, 
that achieved micro-F1<89.9 (Nam et al., 2017; 
Pal et al., 2020; Tsai and Lee, 2020)

DB achieves SOTA performance for Reuters

* FL: Focal loss, CB: Class balanced focal loss, R-FL: rebalanced focal loss, NTR-FL: negative tolerant regularization focal loss



Results | Ablation study: DB = R + NTR + FL

* FL: Focal loss, CB: Class balanced focal loss, R-FL: rebalanced focal loss, NTR-FL: negative tolerant regularization focal loss



                              DB = R + NTR + FL

CB
A novel loss 
function, CB-NTR



Balancing Methods for Multi-label Text Classification with Long-Tailed Class Distribution | EMNLP 2021

Results | Effectiveness against the number of labels per instance

● For the Reuters dataset, we split the test instances into two groups, 2583 instances with only one 
label and 436 instances with multiple labels. On single-label instances, all functions from BCE to 
DB, have similar performance; while on multi-label instances, the performance of BCE drops more 
than DB. DB outperforms other functions in micro-F1 of the multi-label instance group and 
macro-F1 of both groups. 

● There are < 0.1% instances of PubMed dataset with a single label, so we divide instances into 
3-quantiles by their number of labels. In each quantile, the novel NTR-FL, CB-NTR and DB 
outperform the rest of the models in all metrics.



Results | Error Analysis

● The most common errors are due to incorrect classification to similar or linked labels for 
all loss functions. 

● The most common three pairs of classes confused by all loss functions for the Reuters 
dataset are: platinum and gold, yen and money-fx, platinum and copper. 

● For the PubMed dataset, the most common errors were: Pandemics and 
Betacoronavirus, Pandemics and SARS-CoV-2, Pneumonia, Viral and Betacoronavirus, 
and BCE has significantly more errors for these classes compared to the other 
investigated loss functions.



3 take aways
● The thread that binds all of my past work is mathematics. At the end of the 

day, it's all about solving a system of equations!
● The big challenge is finding the needles in a haystack. Most interesting 

biology occurs at the edge of the distribution rather than the average state. 
Similarly, finding the information that is rare is sometimes more valuable than 
finding common knowledge.

● ML, DL approaches are becoming increasingly powerful at making out of 
distribution predictions.


