
James Black famously stated in 2000 that “the best 
way to discover a new drug is to start with an old one” 
(REF. 1). Where available, a deep understanding of the 
mechanistic action of targeted drugs continues to  
inform drug discovery, clinical trials and efforts to  
overcome drug resistance. Thus, maintaining an accu-
rate and up-to-date map of approved drugs and their 
efficacy targets — that is, the targets through which the 
drugs exert their therapeutic effect (BOX 1) — is an impor-
tant activity that will guide future drug development  
and innovation.

Arguably, the first attempt to compile a definitive 
target list dates from 1996, when Drews and Ryser 
estimated the number of human molecular targets for 
approved small-molecule drugs2,3. From this article and 
subsequent analyses4–6, the concept of ‘privileged’ pro-
tein families that have had a consistent and successful 
history of drug discovery began to emerge. In 2006, we 
published a compendium of drug targets7 and identi-
fied that the then available US FDA-approved targeted 
drugs acted through 324 mechanistic protein targets. 
Alongside the well-established druggable families, we 
analysed privileged families and additionally identified 

a ‘long tail’ of diverse, structurally unrelated protein 
families with small numbers of members, as well as 
single proteins.

Several databases now provide data on drug–target  
interactions, each with different scopes and foci. 
The first was the Therapeutic Targets Database8. 
DrugBank9, the most widely used specialist drug infor-
mation resource, maps drugs to proteins that have been 
reported to bind to them, and SuperTarget10 is a text-
mining-based compilation of direct and indirect drug 
targets. More recently, Rask-Andersen et al.11 provided 
an updated view on the status of current drugs and 
the human targets believed to be responsible for their 
efficacy in their approved indications. Additionally, 
Munos12 has highlighted trends in drug classes and 
target innovation for the past decade, and Agarwal 
et al.13 have analysed the overlap and uniqueness in 
the drug targets that are being pursued by industry. 
Finally, the International Union of Basic and Clinical 
Pharmacology and British Pharmacological Society 
(IUPHAR/BPS) Guide to Pharmacology database (see 
Further information) also compiles information on 
approved drugs, together with affinity and selectivity 
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Abstract | The success of mechanism-based drug discovery depends on the definition of the drug 
target. This definition becomes even more important as we try to link drug response to genetic 
variation, understand stratified clinical efficacy and safety, rationalize the differences between 
drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug 
targets are often poorly defined in the literature, both for launched drugs and for potential 
therapeutic agents in discovery and development. Here, we present an updated comprehensive 
map of molecular targets of approved drugs. We curate a total of 893 human and 
pathogen-derived biomolecules through which 1,578 US FDA-approved drugs act. These 
biomolecules include 667 human-genome-derived proteins targeted by drugs for human disease. 
Analysis of these drug targets indicates the continued dominance of privileged target families 
across disease areas, but also the growth of novel first‑in‑class mechanisms, particularly in 
oncology. We explore the relationships between bioactivity class and clinical success, as well as 
the presence of orthologues between human and animal models and between pathogen and 
human genomes. Through the collaboration of three independent teams, we highlight some of 
the ongoing challenges in accurately defining the targets of molecular therapeutics and present 
conventions for deconvoluting the complexities of molecular pharmacology and drug efficacy.
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data, and assigns primary targets that are supported by 
experimental evidence14. However, despite the variety 
of valuable online resources, it is still a challenge to 
retrieve a consistent and comprehensive view of the tar-
gets of approved drugs (covering both small molecules 
and biologics) with their associated molecular efficacy 
targets (human and pathogen) organized by therapeutic 
use. Furthermore, although the concept of a target is a 

natural one for researchers in the field, there are sub-
stantial operational difficulties in consistently mapping 
this target concept to specific genes and gene products 
in practice.

Here, we synthesize and build on our previous 
approaches7 to systematically recompile and compre-
hensively annotate the current list of FDA-approved 
drugs (see BOX 2 and BOX 3 for details of data collection 

Box 1 | Definitions used in the article

Efficacy target
Throughout the paper, we use the term ‘target’ to refer to those proteins or other biomolecules (such as DNA, RNA, 
heparin and peptides) to which the drug directly binds, and which are responsible for the therapeutic efficacy of the drug. 
Biomolecules that the drug may also bind to, or be metabolized by, but which are not known to be responsible for its 
therapeutic effect, are not defined as targets. Although the ChEMBL database assigns identifiers to multi-chain targets 
such as protein complexes, with annotation of the subunit to which the drug binds (where known), to facilitate the 
comparison of target annotations between multiple data sets, numbers used here reflect the individual components 
comprising these targets (in most cases, proteins) with non-ligand-binding subunits of protein complexes excluded 
(where sufficient binding site annotations are available). DrugCentral uses the same definition but also requires links to 
bioactivity data.

Drug
The definition of ‘drug’ used here refers to therapeutic ingredients only, and includes all the small molecules and biologics 
that are currently approved (or have previously been approved) by the US FDA (before June 2015) to enhance human 
health, and also antimalarial drugs approved elsewhere in the world. The term drug does not include imaging agents, 
nutritional supplements, sunscreens or vaccines. Furthermore, the numbers reported in the paper refer to parent 
compounds after the removal of pharmaceutical salts. Identifying an entirely comprehensive set of drugs approved 
anywhere in the world is a highly challenging task owing to the number of different regulatory agencies involved and  
the diversity of the information sources required. Moreover, the lack of information is also a challenge; for example, the 
European Medicines Agency does not have approval data before 1995, and the Japan Pharmaceutical and Medical 
Devices Agency has published lists of approved drugs in English from 2004 only (see Further information). However, we 
have additionally identified a set of more than 1,200 drugs approved by other agencies but not currently by the FDA, 
and we discuss the novel targets within this set separately.

Prodrug
The definition of ‘prodrug’ used here refers to a drug for which the dosed ingredient is an inactive or only mildly 
efficacious entity, but once in the body it is converted to the active ingredient by either a spontaneous or an 
enzyme-catalysed reaction. It is estimated that approximately 10% of drugs fall into this category55. There are examples 
of different prodrugs resulting in the same active ingredient (for example, hydrocortisone is formulated as different 
prodrugs, including hydrocortisone sodium succinate, hydrocortisone valerate and hydrocortisone probutate) and also 
examples of prodrugs resulting in multiple active ingredients from a single dosed ingredient (such as azathioprine).  
For simplicity, we assigned efficacy target information to the inactive prodrug (parent), rather than the active ingredient, 
which is actually the molecule that interacts with the therapeutic target.

Prescribing information
Prescribing information is a document provided by the company that markets an approved drug, and includes 
consistently presented and detailed information about the approved drug, including information on clinical 
pharmacology, such as the mode of action of the drug. This information is provided in the drug label of FDA-approved 
drugs, which is available as a PDF or mark-up document in the Structured Product Labelling format. In the European 
Union, the corresponding document is the Summary of Product Characteristics.

ATC code
The Anatomical Therapeutic Chemical Classification System code (ATC code) is attributed to a drug by the WHO 
Collaborating Centre (WHOCC) for Drug Statistics Methodology. The ATC code classifies drugs according to the 
following five levels: level 1, the organ or anatomical system on which they act; level 2, the pharmacological action; 
levels 3 and 4, the chemical, pharmacological and therapeutic subgroups; and level 5, the specific single drug or drug 
combination. For example, for sildenafil, the ATC code is as follows:

•	Level 1 (G): genito urinary system and sex hormones

•	Level 2 (G04): urologicals

•	Level 3 (G04B): urologicals

•	Level4 (G04BE): drugs used in erectile dysfunction

•	Level 5 (G04BE03): sildenafil
Owing to the nature of the ATC classification, a drug can have multiple codes, especially if it acts on multiple 

anatomical systems; for example, aspirin has five different ATC codes: B01AC06, A01AD05, N02BA01, N02BA51 and 
N02BA71. A drug can also have multiple codes if it is used as a component of a single product combination therapy.
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and analysis). We assign to each drug their respective 
efficacy target or target set from the prescribing informa-
tion and/or the scientific literature. We emphasize that 
even with a well-defined concept of efficacy there are 
challenges in making a clean unambiguous assignment 
in many cases, especially regarding how to treat protein 
complexes or drugs that bind to a number of closely 
related gene products.

We also map each drug (and thereby target) to the 
WHO Anatomical Therapeutic Chemical Classification 
System code (ATC code; see Further information) as a 
way of obtaining a standard therapeutic indication for 
them. The ATC hierarchy consistently classifies drugs 
according to the organ or system on which they act, 
and their therapeutic effects, pharmacological actions 
and chemical class. With this mapping, we explore the 

Box 2 | Data collection and analysis methods

Efficacy targets assignment and comparison
A list of all US FDA-approved drugs (small molecules and biologics) and antimalarials approved elsewhere in the world 
was compiled based on the data content of ChEMBL 21, DrugCentral and canSAR (see Further information; information 
accuracy in DrugCentral was benchmarked against multiple sources including the NCATS Pharmaceutical Collection56 
— see table 2 in REF. 15). The list was further divided into small molecules and biologics. After the removal of 
pharmaceutical salts and merging the drug lists, 1,419 unique small-molecule drugs and 250 unique biologic agents 
were obtained. For each of these drugs, the efficacy target was extracted from the current version of the prescribing 
information and complemented with the scientific literature in the cases for which either the prescribing information 
was not available or the mechanism of action was not reported. The following guidelines were used when assigning the 
efficacy targets:

•	Identify the target from the “Mechanism of Action” description in the prescribing information. If it is available, assign 
the therapeutic target (or targets) to the compound.

•	If the information in the prescribing information is ambiguous, complement this with a literature search for publications 
related to the mechanism of action of the drug.

•	For conflicting cases, look at review articles, either about the biology of the disease or the pharmacology of other 
chemically related drugs, and determine the most plausible mode of action.

•	For the cases when several subunits or isoforms match the information described in the prescribing information, 
evaluate which is more likely to be the real therapeutic target by looking at its expression patterns in relevant tissues  
for the disease.

•	If the specific subunit (or subunits) or isoform (or isoforms) cannot be identified, assign all of them as targets.

•	For pathogen targets, if the prescribing information lists several microorganisms against which the drug is effective, 
pick a representative one rather than assigning all of them as targets.

•	If the mechanism is still not clear or unknown, and the literature did not provide any conclusive information on the 
molecular target, do not assign any target to the compound.
All the external data sets were retrieved in June 2015 and included only drugs approved by the US FDA before this date. 

The mapping of drugs between the data sets was based on the drug names provided by each data set and the parent drug 
name in ChEMBL 21. To improve the mapping, synonyms associated with each parent drug name were also taken into 
consideration, as well as active drug names in case of prodrugs. The mapping of targets between the data sets was based 
purely on UniProt accessions.

Mapping of drugs to the ATC code
For each drug, the respective WHO Anatomical Therapeutic Chemical Classification System code (ATC code) or codes 
was extracted from ChEMBL 21 or DrugCentral, and assigned to either its respective dosed ingredient (if applicable) or 
the parent ingredient itself. For the 1,669 drugs, 1,462 could be mapped to current ATC codes and the remaining 207 
were labelled “Unclassified”.

Target classification
The protein target classification was made using the existing classification in ChEMBL 21. Both level 1 and 2 were 
attributed to each of the human and pathogen efficacy targets. For simplicity, all the entries with level 1 labelled as 
“Cytosolic other”, “Secreted”, “Structural” and “Surface antigen” were all renamed to “Protein other”.

Efficacy targets, orthologues and ATC code mapping
The UniProt IDs of the human protein efficacy targets were mapped to Ensembl Gene IDs and Ensembl Protein IDs 
through Biomart57. Orthologues of Canis lupus familiaris (dog), Sus scrofa (pig), Rattus norvegicus (rat), Mus musculus 
(mouse), Danio rerio (zebrafish), Drosophila melanogaster (fruitfly), Caenorhabditis elegans (nematode) and Saccharomyces 
cerevisiae (yeast) were extracted from Ensembl Compara version 82 (REFS 57,58). The remaining orthologues among 
Homo sapiens (human), Plasmodium falciparum and Escherichia coli were extracted from InParanoid version 8.0 (REF. 59) 
and mapped via Ensembl Protein IDs. The UniProt IDs of the pathogen protein efficacy targets, composed of a 
representative set of E. coli proteins, were used to extract the orthologues of H. sapiens, C. l. familiaris, R. norvegicus, 
M. musculus, D. rerio, D. melanogaster, C. elegans, S. cerevisiae and P. falciparum from InParanoid version 8.0.

Each drug was clustered in an ATC level 4 category, and for each category the orthologues of the protein efficacy 
targets for those drugs were accounted for. If, within a certain ATC level 4 category, not all protein efficacy targets had 
orthologues, this would be reflected in the final plot in FIG. 5 by colouring their presence in a way that it reflects the 
percentage of efficacy targets with orthologues in a certain species.
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footprint of target classes across disease areas and inves-
tigate the success of privileged target families given the 
investment in discovery effort. We also compile a list of 
drug target orthologues for standard model organisms 
to develop a foundation for the deeper understanding of 
species differences, cross-species drug repositioning and 
applicability of animal model systems.

Complexities in defining efficacy targets
Defining the set of mechanistic drug targets requires 
unambiguous evidence of the therapeutic action of 
drugs through clear biomolecular partners. In real-
ity, this association is not always straightforward. 
Although in many cases it is possible to annotate a 
widely accepted and unambiguous target, for other 
drugs there is often disagreement or changes in 
understanding over time, which is then reflected  
in differences between primary sources. To address this 

challenge, we have reassigned efficacy targets afresh 
from the primary literature an d prescribing informa-
tion and combined annotations made by three inde-
pendent teams of curators at the European Molecular 
Biology Laboratory-European Bioinformatics Institute 
(EMBL–EBI) ChEMBL database, the University of 
New Mexico DrugCentral database15 and The Institute 
of Cancer Research canSAR knowledge base16 (see 
Further information). We defined a simple, consistent 
set of guidelines to help us assign therapeutic targets 
(the full set of guidelines is shown in BOX 2). Overall, 
we did not assign targets solely on the basis of reported 
biochemical and pharmacology data, which are now 
widely available17. Although there may be evidence for 
drugs binding with moderate or even high affinity to 
multiple additional targets, we do not consider these as 
efficacy targets unless there is evidence for their role in 
the therapeutic effect of the drug.

Box 3 | Additional details on data classification and analysis

Clinical success
A list of non-approved compounds was compiled based on the data content of ChEMBL 20. Specifically, all of the 
compounds, the maximum development phase of which differs from phase IV and which have been tested against  
a human protein, were retrieved from ChEMBL 20. In this context, the protein target was defined as a target whose target 
type was equal to the following: “single protein”, “protein complex”, “protein complex group” or “protein family”. 
Compounds were further filtered based on the source of the assay, and only compounds whose activity profile was 
extracted from the medicinal chemistry literature (assay source equal to 1) were retained for analysis and linked to the 
protein classification level 2. After the removal of pharmaceutical salts, the total number of non-approved compounds 
was 382,910. The number of unique compounds associated with a particular protein target class was counted and used to 
obtain the distribution of tested compounds per family classes. Protein targets whose level 2 classification was null or 
unclassified were grouped into one single target class named “Other”. Additionally, the following families were also 
grouped and labelled as “Other” owing to the lower number of tested compounds against members of these families: 
“Ion channel TRP”, “Ion channel KIR”, “Ion channel SUR”, “Ion channel RYR”, “Ion channel ASIC”, “Ion channel IP3”, “Ion 
channel K2P”, “Membrane receptor 7tmfz”, “Membrane receptor 7tmtas2r”, “Toll-like membrane receptor”, “Ligase” and 
“Aminoacyltransferase”.

The same procedure was used to count the distribution of approved drugs per family classes. Briefly, all drugs, the 
target of which is a human protein, were linked to the protein classification level 2. After the removal of pharmaceutical 
salts, the total number of drugs was 1,194. The number of unique drugs associated with a particular protein target class 
was counted and used to obtain the distribution of successful drugs per family class.

Antipsychotics
The list of central nervous system drugs was compiled by combining information from the WHO Anatomical Therapeutic 
Chemical Classification System code (ATC code) and the United States Pharmacopeial Convention (USP) system60. In 
summary, a drug with an ATC level 3 code equal to “N05A” and classified as antipsychotic or psychotic by the USP 
system60 was considered to be an antipsychotic.

pXC50 calculation
Mean potency (pXC50; negative logarithm of XC50) values were calculated as described in Gleeson et al.61, but with minor 
changes. In summary, bioactivity data for the antipsychotics (shown in Supplementary information S1 (box)) were 
extracted from ChEMBL 20 and filtered to include only XC50 values from assays in which the target was a human protein, 
and the standardized activity type was flagged as Ki, IC50, EC50, Kd, XC50, AC50 or potency. In the ChEMBL database, 
standardization of activity data reported in different units to nanomolar units and conversion of logged data, such as pKi 
and pIC50, to the non-log format has been performed. This standardization enables the maximum comparable bioactivity 
data to be extracted from the database for use in this analysis. XC50 values not standardized to nanomolar units or 
reported as “greater than” or “less than” were excluded. In a few cases, the target information in the original publication 
did not specify the isoform or subunit of the receptor or protein complex. In these cases, the data were kept and analysed 
independently, not being merged with the data for which the individual proteins were explicitly mentioned. Having 
extracted the data, XC50 values recorded against the same target and compound were averaged and converted to the 
pXC50 values.

Image software
All of the figures were produced using a combination of the following programs: R Project for Statistical Computing 
version 2.15 (see Further information), Circos62 and Inkscape (see Further information).
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For example, antipsychotics are considered to exert 
their effect largely by acting as antagonists of the dopa-
mine D2 receptor (encoded by DRD2) and sometimes 
as antagonists or inverse agonists of the 5‑hydroxy-
tryptamine (5‑HT; also known as serotonin) 2A recep-
tor (encoded by HTR2A)18,19. However, antipsychotics 
also bind with nanomolar affinity to other 5‑HT recep-
tor subtypes, as well as adrenergic, muscarinic and 
histamine receptors (Supplementary information S1 
(box)). Despite much speculation and investigation, 
however, the contribution of these additional targets to 
the therapeutic effect of antipsychotics has not yet been 
demonstrated. For example, the therapeutic effect of 
aripiprazole, a “dopamine–serotonin system stabilizer” 
(REF. 20), has been attributed to it acting as a partial 
agonist of D2 and 5‑HT1A receptors and an antagonist 
of the 5‑HT2A receptor21, although it also interacts 
with other proteins. However, the dopamine stabilizer 
(–)‑OSU6162 appears to occupy a subpopulation of stri-
atal D2/D3 receptors with moderate (micromolar) affin-
ity22, which suggests that a specific interplay between, 
for example, D2 receptor occupancy and tissue specific-
ity (striate nucleus) may be more therapeutically rele-
vant. Consequently, targets other than D2 and 5‑HT2A 
receptors have not been annotated as efficacy targets of 
antipsychotic drugs. The fact that a drug has high affin-
ity to an alternative target, or that different drugs from 
the same class have differentiated target binding profiles, 
can be important in developing next-generation agents.

Another challenge is how to assign targets to drugs 
reported to have broad mechanistic effects; examples 
of such drugs include muscarinic receptor antagonists, 
voltage-gated potassium channel blockers and broad-
spectrum β‑lactam antibiotics. For these drugs, one pos-
sible solution would be to list the 5 muscarinic receptors 
for the first case, the 4 α‑subunits that may form voltage-
gated potassium channels for the second case and, for 
the third case, to pick all the penicillin-binding proteins 
(PBPs) from all the bacterial species against which the 
drug is effective. However, in the case of human targets, 
a more restricted subset based on selectivity data or 
expression data could also potentially be chosen. For the 
pathogen targets, a representative pathogen species could 
be chosen and only the biomolecules or cellular compo-
nents of that species could be assigned as drug targets. In 
making our assignments, we have identified such subsets 
among the human targets for which sufficient informa-
tion was available to do so. For targets for which there 
was inadequate evidence to determine which subunits 
or family members play a key part, we listed all possible 
proteins. For example, all anti-muscarinic agents indi-
cated to treat bronchospasms have muscarinic acetylcho-
line receptor M3 (encoded by CHRM3) assigned as their 
efficacy target because this muscarinic receptor has the 
highest expression levels in the airways and is responsible 
for bronchoconstriction23,24. However, there is evidence to 
indicate that M1 and M2 receptors cannot be definitively 
excluded; for example, M1 receptors are responsible for 
bronchoconstriction in humans25, whereas tissue expres-
sion data seem to indicate that M2 receptors might be 
equally involved24.

For broad-spectrum antibacterials, Escherichia coli 
was selected as the representative species in ChEMBL. 
Thus, all broad-spectrum β‑lactam antibiotics were 
linked to the seven PBPs from E. coli, even though it 
is clear that not all PBPs are targets for all β‑lactams 
in all species26. In DrugCentral, however, suscepti-
ble pathogen species were assigned as targets based 
on antibacterial data reported as minimum inhibitory 
concentrations against well-defined pathogens. For 
example, finafloxacin, a fluoroquinolone approved  
for treating otitis caused by Pseudomonas aeruginosa 
and/or Staphylococcus aureus, was annotated as targeting 
both species. With minimum inhibitory concentration 
and species data available, a microbiologist can compare 
antibiotic potencies and susceptibilities, which are both 
important aspects of antibiotic efficacy. This strategy is 
complementary to the ChEMBL approach of annotat-
ing molecular targets; for example, all fluoroquinolo-
nes are annotated as E. coli DNA gyrase inhibitors. The 
DrugCentral approach focuses on the microorganism 
rather than the bacterial protein target because there is no 
clear evidence that the antibacterial would be efficacious 
in other species. Furthermore, bacteria have topical spec-
ificity in that some prefer the colon (for example, E. coli), 
whereas some prefer the nasopharyngeal sinus cavities, 
lung, kidney or skin. Antibiotics are prescribed differ-
ently for different infections. This difference makes target 
assignment even more complicated because particular 
antibiotics may be taken up via active transport into a 
certain tissue (where the infection is), whereas others 
may not. In addition, infections cause tissues to respond 
differently. For example, bacterial meningitis makes the 
blood–brain barrier leaky, enabling the use of antibiotics 
that otherwise do not cross this barrier but are effective 
in such infections. Such pathology-related phenomena 
are even more difficult to account for at a molecular level.

Oncology is a therapeutic area that further illus-
trates the challenges in defining efficacy targets. The 
FDA-approved drugs assigned to ATC categories L01 
(antineoplastics) and L02 (endocrine therapies) can 
be broadly divided into three groups. The first group 
are cytotoxic agents that target human DNA and/or 
RNA, such as platinum compounds. The second group 
are cytotoxic agents that act at least partially through 
protein targets, such as DNA polymerase, DNA topoi-
somerase and the proteasome. Finally, drugs in the third 
group are those that are typically considered to be tar-
geted therapeutics, such as kinase inhibitors. However, 
the assignment of a drug to the third group rather 
than the second group is complicated by the spectrum 
of targeting observed. Topoisomerase inhibitors, for 
example, are selective for their targets but are highly 
toxic. Conversely, some kinase inhibitors inhibit a wide 
range of normally functioning kinases and their asso-
ciated pathways, and adverse reactions to these drugs 
have been reported in the clinic. A further challenge 
in the assignment of efficacy targets to cancer drugs 
is the rapidly growing number of kinase inhibitors 
(37 approved small-molecule protein kinase inhibi-
tors worldwide as of June 2016). The original clinical 
hypothesis may be based on the alteration of a specific 
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gene (for example, epidermal growth factor receptor 
(EGFR)), but the resultant launched drug may inhibit 
a broad range of kinase targets, most of which function 
outside the deregulated pathway — although kinase 
signalling pathways are largely interconnected in can-
cer. For example, vandetanib, which was approved for 
the treatment of metastatic medullary thyroid cancer27, 
inhibits the kinase product of the oncogene RET, which 
is mutated in many patients with medullary thyroid 
cancer28. Vandetanib also inhibits other kinases with 
interconnecting pathways, such as EGFR and vascular 
endothelial growth factor receptor (VEGFR) pathways. 
Indeed, it is common for the prescribing information 
to list a large number of targets in the section describ-
ing the mechanism of action of the drug, and certainty 
about the importance of a single target can usually only 
be obtained when the drug is approved in conjunction 
with a companion diagnostic test (see Further infor-
mation). However, in contrast to the situation with D2 
receptor antagonists described above, the kinases listed 
as binding a drug in the prescribing information often 
act on interlinked pathways; thus, we have mechanistic 
reasons to suspect their involvement in the efficacy of 
the drug. Therefore, we attempted to include all proteins 
that are likely to contribute to the observed efficacy of 
a drug as part of our drug target list, and this list will 
change as our understanding of drug action improves.

Using these guidelines, the final assignment still 
requires substantial curation effort. For example, for 
dronedarone, an anti-arrhythmic drug approved in 
2009, the FDA label (see Further information) states 
that it has anti-arrhythmic properties belonging to all 
four Vaughan–Williams classes, and that its mecha-
nism of action is “unknown”. This statement implies 
that at a molecular level, it may have the capacity to 
modulate sodium channels (class  I), β-adrenergic 
receptors (class II), voltage-gated potassium channels 
(class III) and L‑type calcium channels (class IV)23. 
Recently, blockade of the If current (funny current) via 
HCN (hyperpolarization-activated cyclic nucleotide-
gated) channels — of which there are four subtypes, 
with HCN4 being the form most highly expressed 
in the sinoatrial node29 — was identified as the likely 
mechanism for the bradycardic effect of dronedarone30, 
rather than modulating L‑type calcium channels or 
β-adrenergic receptors. Notably, ivabradine, a recently 
approved cardiac drug, also blocks If currents via HCN 

channels29,31. However, the dronedarone study30 did not 
rule out a role for sodium channels or voltage-gated 
potassium channels in the overall efficacy of the drug, 
but focused purely on its bradycardic effect. Other 
studies have further suggested that the inhibition of 
inward-rectifier potassium channels (in particular 
Kir2.1 (REFS 32,33)) may contribute to the antifibrillatory 
efficacy of dronedarone. A recent review makes it clear 
that dronedarone has many anti-arrhythmic effects 
and has a complex mechanism of action that probably 
involves many different target classes to a greater or 
lesser extent34.

This complexity is reflected by the diversity of anno-
tations included in other databases for this drug. For 
example, Rask-Andersen et al.11 assigned one voltage-
gated potassium channel (Kv11.1; encoded by KCNH2) 
and two adrenergic receptors as targets for dronedar-
one, whereas the Therapeutic Targets Database lists only 
Kv1.5 (another voltage-gated potassium channel) as a 
target. DrugBank lists a total of 18 proteins (adrenergic 
receptors, sodium and potassium channels and L‑type 
calcium channels) for dronedarone, but all flagged with 
‘pharmacological action unknown’ because, for their 
curator, their therapeutic role is uncertain. Finally, the 
IUPHAR/BPS Guide to Pharmacology database does 
not include any primary target information (or binding 
affinity data) for dronedarone, although it does describe 
its mechanism as involving adrenergic receptors and 
sodium, potassium and calcium channels35. In January 
2016, none of these resources annotated HCN channels 
as a dronedarone target, even though this specific infor-
mation was published several years ago and at least one 
follow‑up review dedicated to dronedarone agrees that 
HCN channel blockade may be an important mechanism  
of action34.

The complex case of dronedarone highlights that our 
annotations are only a snapshot that represents current 
knowledge. We will continue to curate and update our 
assignments in the ChEMBL, DrugCentral and can-
SAR databases as more experiments are performed and 
knowledge of drug mechanisms increases. Such com-
plexity is also at the heart of the concept of network 
pharmacology — the proposal that often several simul-
taneous distinct points of intervention are required for 
drug action. It remains to be seen in practice what pro-
portion of drugs absolutely require binding to multiple 
targets for their efficacy.

Table 1 | Molecular targets of FDA-approved drugs

Targets Drugs

Drug target class Total targets Small-
molecule drug 
targets

Biologic drug targets Total drugs Small molecules Biologics

Human protein 667 549 146 1,194 999 195

Pathogen protein 189 184 7 220 215 5

Other human biomolecules 28 9 22 98 63 35

Other pathogen biomolecules 9 7 4 79 71 8

The list also includes antimalarial drugs approved elsewhere in the world.
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Drugs, targets and therapeutic areas
Target annotations were combined from the ChEMBL, 
DrugCentral and canSAR databases to provide a unified set 
of drug efficacy targets, provided in Supplementary infor-
mation S2 (table). Using this approach, we identified 667 
unique human protein efficacy targets and 189 pathogen  
protein efficacy targets (TABLE 1).

Using the ChEMBL hierarchical target classification 
system17, we then examined how the human protein 
targets distribute into homologous families and identi-
fied the most enriched ones. Rhodopsin-like G protein-
coupled receptors (GPCRs; also known as 7TM1), ion 
channels, protein kinases and nuclear hormone recep-
tors were considered to be privileged families given 
that they alone account for 44% of all human protein 
targets (GPCRs: 12%; ion channels: 19%; kinases: 10%; 
and nuclear receptors: 3% (FIG. 1a)). Moreover, owing to 
the variable number of approved drugs per target, these 
privileged families are responsible for the therapeutic 
effect of 70% of small-molecule drugs (GPCRs: 33%; 
ion channels: 18%; kinases: 3%; and nuclear receptors: 
16% (FIG. 1a)).

There is a large difference between the drug and target 
fractions for protein kinases because of the broad poly
pharmacology typical of small-molecule kinase inhibitors, 
whereas the opposite is seen for nuclear receptors. The 
area of directed protein kinase inhibitors was highlighted 
in our original 2006 publication as an emerging target 
class7, and this trend has clearly continued. The remain-
ing human protein efficacy targets are mostly unrelated 
enzymes. In the case of biologics, secreted or surface 
antigen proteins are the most important target class. This 
result is as expected given the highly restricted compart-
mental distribution of high-molecular-mass drugs within 
the body.

The number of drugs per target and the number of 
targets per drug are noteworthy in our analysis. By simple 
averaging, we obtain the figure of two drugs per target. 
However, this result is an oversimplification of complex 
pharmacology. Some targets have provided a rich ground 
for selective drugs, such as the glucocorticoid receptor  
(which has 61 approved drugs), whereas others fall into 
the opposite category, such as kinase inhibitors, for 
which few drugs act on many targets, thus contributing 

Figure 1 | Major protein families as drug targets. a | Distribution of human drug targets by gene family (left) and 
distribution by the fraction of drugs targeting those families (right); the historical dominance of four families is clear.  
b | Clinical success of privileged protein family classes. Distribution of non-approved compounds in ChEMBL 20 (extracted 
from the medicinal chemistry literature, with bioactivity tested against human protein targets) per family class, and 
distribution of approved drugs (small molecules and biologics) per human protein family class. 7TM, seven transmembrane 
family; GPCR, G protein-coupled receptor; LGIC, ligand-gated ion channel; NTPase, nucleoside triphosphatase;  
VGIC, voltage-gated ion channel.
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to the overall pharmacological response to those drugs 
(Supplementary information S3 (figure)). Another key 
developing trend is monoclonal antibody therapies, 
which are typically highly specific to a single gene prod-
uct. This contrasts with small-molecule drugs, for which 
the interaction with multiple targets (polypharmacology) 
is more common.

Kinase inhibitors provide some of the best-known 
examples of polypharmacology because their bioactivity 
is routinely profiled against many kinases (and other tar-
gets) during the drug discovery and development process. 
This profiling was made possible by the introduction of 
high-throughput (in vitro) assay technologies. However, 
for most drugs, which were approved before 1990, this 
type of target profiling was not systematic; thus, our ability 
to understand polypharmacology both within and outside 
target families is a more recent endeavour.

The highly biased distribution in successfully ‘drugged’ 
protein families is also reflected in the biased distri-
bution of bioactivity data from the ChEMBL database 
when examining the data at the target class level (FIG. 1b). 
ChEMBL is an open-access, large-scale bioactivity data-
base containing manually extracted information from 
the medicinal chemistry literature together with data 
from United States Adopted Name (USAN) applications. 
Consequently, ChEMBL provides an unbiased reflection 
of small-molecule compounds at the lead optimization 
phase of drug discovery17. The protein-family-based 
organization of the data enables detailed examination 
of attrition during clinical development at a target 
family level (specifically, potent leads can be identi-
fied, but these may then fail in clinical development). 
Pooling the data by family enables a more robust statis-
tical analysis and reduces the impact of specific targets 
on the analysis. As shown in FIG. 1b, it is clear that the 

discovery-phase investment in rhodopsin-like GPCRs 
has, at least until now, consistently paid off, because  
the fraction of approved drugs is slightly higher than the 
fraction of compounds in ChEMBL targeted to members 
of this family. The same relative enrichment (or survival) 
through clinical development is found for nuclear recep-
tors, voltage-gated ion channels (VGICs), various reduc-
tases, electrochemical transporters and ligand-gated 
ion channels (LGICs). Curiously, in the case of nuclear 
receptors, no new efficacy target belonging to this family 
has emerged in recent years, although some are currently 
in trials (Supplementary information S4 (figure)). For 
protein kinases and proteases, the return in investment 
has shown the opposite trend. However, interest in 
protein kinases as drug targets is more recent (data not 
shown), and many potential kinase-directed drugs are 
still in active clinical development. For the extensively 
explored and high-attrition families — for example, the  
trypsin-like serine proteases — these data support  
the possibility that, on average, the family has low inher-
ent druggability. Other examples from this simple data-
driven analysis point to specific target-based attrition 
in some cases; for example, more than 40 mitogen-
activated protein kinase p38α (also known as MAPK14) 
inhibitors have entered clinical trials, but have typically 
only progressed to, or stalled in, phase II trials.

To gain insight into drug innovation patterns by dis-
ease area, we linked a target to cognate drugs and then the 
drugs to their ATC codes. The number of small-molecule 
and biologic drugs per therapeutic area are shown in 
TABLE 2. We then grouped drugs per ATC level 3 code 
according to their worldwide or FDA approval year. As 
shown in FIG. 2, the maturity of the drugs targeting the 
cardiovascular system (category C) or the dermatolog-
ical system (category D) is clear. By contrast, FIG. 2 also 

Table 2 | Therapeutic areas of FDA-approved drugs

ATC category Therapeutic area Number of small 
molecules

Number of biologics

A Alimentary tract and metabolism system 158 32

B Blood and blood-forming organs 33 28

C Cardiovascular system 200 5

D Dermatologicals 141 5

G Genito urinary system 94 5

H Hormonal system 44 31

J Anti-infectives for systemic use 194 10

L Antineoplastic and immunomodulating agents 142 67

M Musculoskeletal system 62 6

N Nervous system 239 1

P Antiparasitic products, insecticides and repellents 38 1

R Respiratory system 118 4

S Sensory organs 143 11

V Various 30 12

U Unclassified 156 51

The list also includes antimalarial drugs approved elsewhere in the world. ATC, WHO Anatomical Therapeutic Chemical 
Classification System.
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illustrates the recent innovation in the oncology and 
immunology areas (category L), as well as the recent 
lack of progress and small number of drugs available in  
the antiparasitic class (category P). A similar analysis 
at the target family level reveals a higher number of 
recently approved drugs that modulate kinases com-
pared with the number of recently approved drugs that 
act through either nuclear receptors or ion channels 
(FIG. 3). Specifically, 20 protein kinase inhibitors have 
been approved by the FDA since 2011, accounting for 
28% of all kinase-modulating drugs. This fraction would 
be even higher if only small molecules were considered 

in the analysis because biologics such as insulin deriva-
tives (mainly approved before 1990) constitute a substan-
tial portion of the kinase-modulating drugs (although 
these biologics do not bind to the protein kinase cat-
alytic domain, which is typically used to define family 
membership).

Finally, to investigate the relationship between drugs, 
target classes and therapeutic areas, we again linked a 
target to cognate drugs and the drugs to their ATC 
codes, then connected drugs that share efficacy targets 
belonging to the same target class. In this way, we can 
analyse target family or functional class promiscuity 

Figure 2 | Innovation patterns in therapeutic areas. Each node in the inner ring corresponds to a drug represented by its 
WHO Anatomical Therapeutic Chemical Classification System code (ATC code) or codes (see Further information). The 
inner ring corresponds to the level 1 of the ATC code (TABLE 2) scaled to the number of drugs in that category. The outer 
ring represents the level 3 of the ATC code. Each of the subsequent histograms illustrates the number of drugs (small 
molecules and biologics) distributed per year of first approval per level 3 of the ATC code. Maximum histogram scale: 100. 
The approval year refers to the first known worldwide approval date, if available, otherwise the first US FDA approval date. 

A N A LY S I S

NATURE REVIEWS | DRUG DISCOVERY	  VOLUME 16 | JANUARY 2017 | 27

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Nature Reviews | Drug Discovery

GRCR
(7TM1)

Nuclear
receptor

Ion channel Kinase

N
um

be
r o

f d
ru

gs

400

300

200

100

0

2011–2015
2006–2010
2001–2005
1996–2000
1991–1995
Before 1990

Approval year

362

161
177

5
(2.8%)3

(1.9%)

24
(6.6%)

71

20
(28%)

across diseases or anatomical systems (FIG. 4). For exam-
ple, if we look at several of the previously identified priv-
ileged target families — membrane receptors belonging 
to rhodopsin-like GPCRs, VGICs, LGICs and protein 
kinases — we see that rhodopsin-like GPCRs are targets 
for small-molecule drugs across almost every ATC class 
(FIG. 4a), with the exception of antiparasitic products (cat-
egory P) and hormonal systems (category H). By con-
trast, protein kinases, which represent 13% of the protein 
human efficacy targets assigned to small molecules, only 
account for 2.4% of the small-molecule drugs, almost 
all of which are antineoplastic and immunomodulating 
agents (category L). This category is also represented 
when linking kinases assigned to biologic drugs, but 
for this type of drug, kinases seem to have an important 
role in other anatomical systems too. For biologics over-
all, only a small fraction of ATC categories are covered 
(FIG. 4b). As shown in FIG. 4a, the patterns created by ion 
channels are also distinct. Both VGICs and LGICs cover 
the musculoskeletal system (category M), the nervous 

system (category N), the alimentary tract and metabo-
lism (category A), the respiratory system (category R), 
and the cardiovascular system (category C). The VGIC 
family also covers the dermatological system (category 
D) and the sensory system (category S). It is interesting 
to speculate that this clustering reflects a deeply rooted 
evolutionary relationship of various signalling and con-
trol subsystems of the body, and may provide additional 
guidance and constraints in effective drug repositioning 
and side-effect liability.

Worldwide drug approvals
Although the analysis presented above is restricted to 
FDA-approved drugs and antimalarials approved in 
the rest of the world, we have also collated mechanism- 
of‑action data on an additional set of ~1,200 drugs from 
WHO International Nonproprietary Names (INN) lists 
(see Further information) combined with literature 
searches35,36 to select drugs approved by other regulatory 
agencies. The vast majority of these drugs are members 
of the same chemical classes and share the same target 
(or targets) as an FDA-approved drug. For example, 
etoricoxib, a selective cyclooxygenase 2 (COX2) inhibitor, 
is approved in more than 80 countries but has not cur-
rently received FDA approval owing to safety concerns, 
whereas fimasartan, an angiotensin II receptor antagonist, 
is approved in South Korea only. Inclusion of these drugs 
identified eight additional, novel drug efficacy targets 
(TABLE 3).

Orthologues in animal models
Selecting the best model organism to study a particular 
disease or to validate a novel target mechanism involves 
identifying an induced disease state in a model organism 
with sufficient similarities to human pathology that a relia-
ble prediction of the effects in humans may be made on the 
basis of the effects in the model organism. In practice, this 
is not straightforward. One approach that can be used to 
select a suitable model organism is to take the core human 
‘pharmacolome’ (which we define here as the set of gene 
products that are modulated by current drugs) to compile 
a list of orthologues in typical model organisms. These 
genes can then be mapped back to the respective protein 
efficacy targets, the efficacy targets to the drugs and the 
drugs to the therapeutic indication (through the ATC 
code). Thus, from these data, one can infer which thera-
peutic areas are potentially best mimicked by which model  
organism. FIGURE 5 is a visualization of this information 
in a single plot (see Supplementary information S5 (fig-
ure) for a full-sized version). As in FIG. 4, the outer ring 
corresponds to the ATC categories scaled to the number 
of approved drugs in those categories. The inner ring is 
composed of ATC level 4 categories, which indicate the 
chemical, therapeutic and pharmacological subgroup. A 
series of heatmaps per species is then shown, coloured by 
how many of the protein efficacy targets are conserved 
for that ATC level 4 category between model organisms. 
The dark blue sections in Homo sapiens or E. coli heat-
maps indicate that the drug target is a human protein or 
a bacterial protein. The conservation of efficacy targets is 
always with respect to the drug target species.

Figure 3 | Innovation patterns in privileged protein 
classes. Bar chart depicting the number of drugs (small 
molecules and biologics) that modulate four privileged 
families, distributed per year of first approval. The total 
number of approved drugs is shown on top of each bar in 
bold font, together with the number and percentage of 
drugs approved since 2011 with respect to the total number 
of drugs modulating these four families. A spreadsheet view 
of these data is provided in Supplementary information S6 
(table). “Ion channel” includes both voltage-gated and 
ligand-gated ion channels. Drugs without an ATC code 
(unclassified (U)) were excluded from this analysis.  
7TM1, seven transmembrane family 1; GPCR, G protein- 
coupled receptor.
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Overall, the vertebrates (dog, pig, rat, mouse and 
zebrafish) all provide comparatively good coverage of 
the set of human drug targets. In some cases, however, 
the apparent variation is due to the currently incom-
plete annotation in genome annotation and/or ortho-
logue assignment for more recently completed genomes. 
As would be expected, the genomes of Drosophila and 
Caenorhabditis elegans contain fewer orthologues for 
human disease targets. The differences reflect anatomical 
systems that are substantially different or missing com-
pared with humans. However, the degree of conservation 
varies significantly between the two species and between 
different therapeutic areas. For example, C. elegans retains 
many of the targets that are responsible for the efficacy 
of dermatological and genito-urinary drugs, whereas 
these appear to be absent in Drosophila. When consid-
ering even simpler unicellular organisms such as yeast 
or E. coli, generally only targets reflecting core essential 
cellular functions, such as DNA, protein and nucleotide 
synthesis, remain.

When seeking to identify novel anti-infective targets, 
it is often proposed that absence of the corresponding 
protein in the host organism (normally humans) is an 
important prerequisite for success, and such constraints 
are often applied in bioinformatics filtering of potential 
targets. However, it can be seen from FIG. 5 that although 
several pathogen targets do lack human orthologues, 
there are a number of proteins that are also present in 
humans or other mammals. If the ribosome is consid-
ered, the number of pathogen targets with human ort-
hologues increases even further. Dihydrofolate reductase 
(DHFR) inhibitors, for example, are used as antibacterial 
agents, antineoplastic agents and antiparasitic agents in 
humans. Antibacterial DHFR-targeted agents, such as 
trimethoprim, generally achieve sufficient selectivity 
and therapeutic index over the human systems to avoid 
mechanism-based toxicity.

Cancer drivers and cancer targets
A substantial proportion of drug discovery efforts in 
the past decade have involved the rational selection of 
mechanistic cancer drivers to be targeted37. Moreover, 
cancer is the area of biggest growth in large-scale sys-
tematic efforts to identify disease drivers, powered by 
major international consortia38–41, and so it is interesting 
to consider the impact of such efforts on the identifica-
tion of novel clinically validated targets. The 154 can-
cer drugs approved by the FDA can be broadly divided 
into the three groups mentioned above: 26 drugs are 
cytotoxic agents; 38 drugs are broadly cytotoxic and act 
at least partially through protein targets, such as pro-
teasome inhibitors; and 85 drugs can be assigned to 
clear mechanistic protein targets. A further 5 drugs act 
through unknown or non-protein targets. Systematic 
efforts to identify cancer drivers based on ‘omics’ data 
have contributed considerably to the growth in the num-
ber of drugs in the third category in recent years. The  
impact of such approaches is clearly illustrated by  
the discovery in 2002 of BRAF as the major driver for 
malignant melanoma, which led to the approval in 2011 
of the BRAF inhibitor vemurafenib as the first targeted 

therapy for melanoma. Subsequently, the MEK inhibitor 
trametinib, which targets the same signalling pathway as 
vemurafenib, was approved in 2013. Another example 
is the discovery of EML4–ALK driver translocation in 
non-small-cell lung cancer42, leading to the approval of 
the ALK inhibitor crizotinib in 2011.

The relationship between drug mechanisms and 
bona fide cancer drivers merits consideration. We have 
previously analysed the trends in identifying cancer 
drivers and have shown that multiple studies are con-
verging towards ~600 cancer drivers across different 
cancers43. We compared the lists of consensus 553 can-
cer drivers43 to the list of 109 protein targets of the 85 
protein-targeted cancer drugs described above (FIG. 6) 
and found a small overlap (30 proteins) between the 
two sets. There are several reasons for this small over-
lap. Despite the large numbers of patients involved in 
these studies, they can be biased in their composition 
and in the statistical methodologies used to select driv-
ers; hence, a gene may fall short of the final statistical 
prevalence cut-off. Another reason is that many of 
these drivers are newly discovered cancer-associated 
genes for which there has been little historical biolog-
ical investigation; thus, time will tell whether they can 
yield useful targets for drug discovery. Indeed, our own 
analysis indicated that at least 10% of cancer drivers 
are likely to be druggable by small-molecule drugs, 
but such investigations had not been reported in the 
medicinal chemistry literature43–45. Finally, and impor-
tantly, non-oncogene addiction has been — and will  
remain — a key aspect of cancer that can be thera-
peutically targeted46,47. This trend is exemplified by 
FDA-approved hormone-recognition- and hormone-
biosynthesis-targeting agents such as aromatase inhib-
itors for breast cancer, cytochrome P450 family 17 
subfamily A member 1 (CYP17A1) inhibitors for pros-
tate cancer, and poly(ADP-ribose) polymerase (PARP) 
inhibitors for ovarian cancer. Agents under clinical 
investigation exploiting synthetic lethality to onco-
genes include PARP inhibitors in DNA damage repair-
deficient prostate cancer48. Other agents are exploiting 
non-oncogene addiction; for example, VLX‑1570 inhib-
its proteasome 19s‑associated protein ubiquitin-specific 
peptidase 14 (USP14) to exploit 19s addiction in mul-
tiple myeloma49. Furthermore, many cancer genes are 
loss‑of‑function drivers; in such cases, the gene has been 
deleted or disabled through the genomic aberration, 
and targeting these genes will typically require a syn-
thetic lethality approach. Thus, systematic mapping of 
disease drivers can indicate future therapeutic strategies 
both by identifying potential targets and by highlighting  
key pathways that can be drugged.

Concluding thoughts and future work
In this article, we have provided an enhanced and updated 
perspective on the current diversity of approved drugs and 
their targets, with a focus on the trends and changes over 
the past 10 years7. Compiling an accurate and agreed 
list of drug efficacy targets is not a trivial task, and with 
work from three teams we have made significant pro-
gress towards this goal, as well as highlighted some of the 
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practical challenges. These challenges include resolving 
the non-trivial relationship between a gene and a drug tar-
get, assigning the target, and finally establishing a conven-
tion to deal with complexes, subunits and splice variants 
and protein isoforms when counting final effective molec-
ular targets — a major factor in the increase in the number 
of protein targets to 667 from the 324 identified in our 
previous study7. All of this is a prerequisite for analysing 
the diversity of existing drugs and targets in the light of 
their disease coverage. However, as the literature changes 
continuously in terms of the knowledge available about 
the mechanisms of action of drugs, these annotations will 
need to be updated frequently. Consequently, this data 
set will be maintained and made publicly accessible. A 
subset of the merged drug efficacy target data (referred 
to as Tclin) is currently available on the Illuminating the 
Druggable Genome website; see Further information).

Interestingly, in the 10 years since the publication of 
our previous enumeration of drug targets, privileged fam-
ilies such as rhodopsin-like GPCRs, nuclear receptors and 
VGICs have largely maintained their dominance of the 
drug target space, underlining the continuous utility of 
protein families endowed with druggable binding sites. 
The major changes over the past decade are in the propor-
tion of protein kinase and protease targets; together these 
previously made up <2% of the total target set, and now 
represent 6% (protein kinases) and 4% (proteases) of all 
targets of approved drugs. Reassuringly, the long tail of sin-
gle exemplar targets from several underrepresented fam-
ilies continues to grow, indicating our ability to innovate  
in drug discovery.

Figure 4 | Promiscuity of privileged protein family classes. Each node in the outer 
ring corresponds to a drug represented by its WHO Anatomical Therapeutic Chemical 
Classification System code (ATC code) or codes (see Further information). The outer 
ring corresponds to level 1 of the ATC code (TABLE 2) scaled to the number of drugs in 
that category. The inner ring represents level 2 of the ATC code. A node is connected to 
another when two drugs have an efficacy target that belongs to the same target class.  
a | Footprint of privileged family classes modulated by organic small-molecule drugs 
across disease. b | Footprint of privileged family classes modulated by biologic  
drugs across disease. Drugs without an ATC code (unclassified (U)) were excluded 
from this analysis.

◀ It is interesting to speculate on the relative contribu-
tion of phenotypic versus targeted screens to the discov-
ery of first‑in‑class drugs50,51. The simplest view would be 
that small-molecule drugs for which polypharmacology 
is required for their action, such as sunitinib, are more 
likely to have been discovered through phenotypic rather 
than targeted screens. However, the data may indicate 
the opposite. Because phenotypic screens are often 
optimized against mechanistic and pharmacodynamic 
biomarker modulation, there is pressure towards more 
specific pharmacology of drugs discovered in this way. 
By contrast, discovering a small-molecule drug through 
a target-based screen optimizes the activity of the drug 
against the desired target, and selectivity against a few 
identified off-targets, without properly investigating the 
broader cellular activity of the agent.

As data on tissue expression and causal models  
mapping molecular to clinical events continue to 
emerge, the relationship between drug efficacy targets 
and the tissue localization of disease will progressively  
be accounted for, because drug action is more likely to be  
exerted in the tissue of choice. For example, although the 
anti-Parkinsonian drug ropinirole is more potent at the 
D3 receptor than the D2 receptor by an order of magni-
tude, we annotate the D2 receptor as the mechanism of 
action target because D2 receptors, but not D3 receptors, 
are expressed in the substantia nigra, the pathologically 
relevant tissue for anti-Parkinsonian drugs (see Further 
information). Future efficacy target annotations are anti
cipated to make extensive use of unambiguous tissue  
colocalization data for both target and disease.

As our understanding of the causes of complex 
disease deepens, we find that such diseases involve a 
combination of environmental factors, genetic and epi-
genetic dysfunction. Thus, will a reductionist approach 
to targeted therapy still have a role in the future? 
Regardless of the initial cause, most human disease is 
either initiated or mediated by the aberrant action of 
proteins. Hence, an armoury of mechanistically sophis-
ticated and thoroughly experimentally annotated drugs 
that target this complexity is required, including incor-
poration of drug combinations52, network drugs53 and 

Table 3 | Drug efficacy targets unique to non-FDA-approved drugs

Target name UniProt accession 
number

Example drug ATC class Indication

Aldose reductase P15121 Tolrestat A10XA Diabetic complications

Melanocyte-stimulating 
hormone receptor

Q01726 Afamelanotide D02BB Erythropoietic 
protoporphyria

P2Y purinoceptor 2 P41231 Diquafosol NA Dry eye

Rho-associated protein kinase 1 Q13464 Ripasudil NA Glaucoma

Rho-associated protein kinase 2 O75116 Ripasudil NA Glaucoma

Transthyretin P02766 Tafamidis N07XX Amyloidosis

Troponin C, slow skeletal and 
cardiac muscles

P63316 Levosimendan C01CX Congestive heart 
failure

Thymidine phosphorylase P19971 Tipiracil NA Colorectal cancer

Tipiracil is an adjuvant used in the treatment of colorectal cancer to potentiate the action of trifluridine. ATC, WHO Anatomical 
Therapeutic Chemical Classification System; NA, not applicable. 
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Figure 6 | Overlap of cancer drug targets with cancer drivers. We grouped the cancer 
drugs approved by the US FDA into three categories: broadly cytotoxic agents, such as 
platinum complexes and DNA intercalating agents; cytotoxic agents that act through a 
protein, such as tubulin inhibitors that do not have biological selectivity for cancer cells; 
and targeted agents that act through clear protein function-modulating mechanisms, such 
as kinase inhibitors and nuclear hormone receptor antagonists. When we compared the 
targets of agents in the third group to a consensus reference list on cancer driver genes43, 
we observed only a small overlap between cancer drivers and current cancer drug targets.
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