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● Compartment models and Hill function to model drug-target interactions

● Buttom-up study of biological networks with deterministic and 

stochastic models

● Introduction to top-down study of biological networks with omics and 

cellular models
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Biological networks interact with drugs and manifest its 
efficacy and safety



Ordinary differential equations (ODEs) model ligand-receptor 
interactions, a common type of edges in biological network
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The law of mass action

At equilibrium, no net change of [LR]



The Michaelis-Menten model of enzyme kinetics, an type of 
interaction important for drug discovery
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The law of mass action

Assuming that 



Many drugs act as competitive inhibitor to reduce the rate 
of biochemical reactions
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Competitive inhibition (CI)

Fixed drug concentration, varying 
substrate concentration

Fixed substrate concentration, 
varying drug concentration



The Hill Function is a commonly used mathematical model in 
pharmacology
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Modelling the dose-dependent effect

The general form of the Hill function



Simulation of biological networks with ordinary differential 
expression: the simplest case
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Given the reaction

According to the 
law of mass 
action

Given the initial 
values and rate 
constants

It is possible to 
simulate the 
concentration 
changes by time 
deterministically.

See Systems Engineering Wiki (tue.nl) for MATLAB/COPASI codes and 
Stochastic Modelling for Systems Biology by Darren J. Wilkinson

http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example


Chemical Master Equations (CME): a particle model of 
chemical reaction
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Given the reaction and the initial condition  (K molecules of species A and of species B respectively)

The state vector can take at any time point one of the values

Theoretically we can build an ODE system with K+1 equations to model every state of the reaction, down to every particle. In reality, the 
dimension is so high so that a simulation is not feasible.

CME is a set of ODEs, with each ODE representing one possible state of the system. Solution of the kth equation 
at time t is a real number giving the probability of system being in that particular state at that time.



Reaction Rate Equations (RRE): the compartment model that 
we have seen before

Source:   Systems Engineering Wiki (tue.nl) 
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RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time t is 
a real number representing the concentration of species j at time t.

RRE simulation of the 
Michaelis-Menten model

http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example


• The stochastic simulation algorithm (exact SSA), also called Gillespie’s 
algorithm, allows stochastic simulation of a reaction. It is done in four steps:

1. initialize the system with initial conditions
2. Given a state at time t, we can define a probability p that reaction j 

takes place in the time interval [t+τ, t+τ+dτ). It is the product of two 
density functions of two random variables: the probability of reaction j 
happens (proportional to the number of substrate molecules), multiplied 
by the time until next reaction, which is exponentially distributed. This is 
known as the Monte Carlo step.

3. Let the randomly selected reaction happen and update the time.
4. Iterate until substrates are exhausted or simulation time is over.

• Further computation tricks, .e. ‘tau-leaping’, are used to lump together 
reactions. The chemical Langevin equation (CLE) further accelerates 
stochastic simulation by approximating Poisson with normal distribution.

The Gillespie’s algorithm and the chemical Langevin equation 
allow stochastic simulation of biological networks

11

Figure source and further reading: Higham, Desmond J. 2008. “Modeling and Simulating Chemical 
Reactions.” SIAM Review 50 (2): 347–68. https://doi.org/10.1137/060666457.

https://doi.org/10.1137/060666457


Why stochastic modelling?

• Stochastic modelling can reveal individual trajectories that are otherwise ‘averaged’ by ODE models.
• Small systems and single-molecule studies show stochastic behaviour.
• It is possible to consider both extrinsic and intrinsic factors and take them into the model.
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Székely and Burrage. 2014. “Stochastic Simulation in Systems Biology.” Computational and Structural Biotechnology Journal 12 (20–21): 14–25. 
Also see Stochastic Modelling for Systems Biology by Darren J. Wilkinson.

https://doi.org/10.1016/j.csbj.2014.10.003
https://doi.org/10.1016/j.csbj.2014.10.003


Biochemical system simulator COPASI

• COPASI , freely available at 
http://COPASI.org/, supports two types of 
simulations: (1) ordinary differential 
equation (ODE) based simulation, (2) 
stochastic kinetic simulation, among 
others using the stochastic Runge–Kutta 
method (RI5) and Gillespie’s algorithm.

• Resources to learn more about stochastic 
modelling: MIT OpenCourseWare by Jeff 
Gore, and Stochastic Processes: An 
Introduction, Third Edition by Jones and Smith. 
Tutorials also available on the website of 
European Bioinformatics Institute (EBI)

• Both mathematical concept and software 
tools are important for detailed analysis 
of enzymatic reactions, especially in the 
presence of drugs and/or 
disease-relevant mutation
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Huang and Ferrell, PNAS, 2006

ODE-based simulation of dynamics

http://copasi.org/
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)
https://en.wikipedia.org/wiki/Gillespie_algorithm
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses
http://www.ebi.ac.uk/biomodels-main/courses


Five classes of mathematical models drug discovery

Compartment models
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Transport models

Particle models

Finite state models

The Lotka-Volterra 
equations modelling 
predator-prey 
relationships.

The SIR 
(S=susceptible, 
I=infectious, 
R=removed) model of 
epidemiology

Kinetics of 
ligand-target 
interaction A Study on Socio-spatial Segregation Models Based on 

Multi-agent Systems by Quadros et al. (2012). 
10.1109/BWSS.2012.14.

Statistical/machine 
learning/causal models



Modelling biological networks
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Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and Ioannis Xenarios. 2012. “Implicit Methods for 
Qualitative Modeling of Gene Regulatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited 
by Bart Deplancke and Nele Gheldof, 397–443. Methods in Molecular Biology. Totowa, NJ: Humana Press. 

https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22


● Compartment models and Hill function to model drug-target interactions

● Buttom-up study of biological networks with deterministic and 

stochastic models

● Introduction to top-down study of biological networks with omics and 

cellular models

Summary
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