AMIDD Lecture 9: From individual interactions to networks

Left: A physical model of DUSP5 (bottom) binds to ERK2 (top), which is one interaction in the biological network

induced by VEGF signaling. Right: Vascular Endothelial Growth Factor (VegF) Signaling, David S. Goodsell, 2011

Dr. Jitao David Zhang, Computational Biologist

" Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche
2 Department of Mathematics and Informatics, University of Basel


https://iubmb.onlinelibrary.wiley.com/doi/10.1002/bmb.20706
https://pdb101.rcsb.org/sci-art/goodsell-gallery/vascular-endothelial-growth-factor-vegf-signaling

Topics

* Ligand-based and structure-based drug discovery
 Thermodynamic and kinetic views of ligand-protein binding

- From individual interactions to biological networks
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Selected commonly used molecular descriptors

Molecular Weight (MW).
for example, adenosine
triphosphate (ATP), the
energy molecule, has a
MW of 507.

logP (partition
coefficient) quantifies
the hydrophilicity and
hydrophobicity of a
molecule. The
calculated version
(cLogP) exists as well.

log Poct_,"'wat = log (

Molecular
fingerprints: a set of
techniques to
represent molecules in
a bit array.

RN
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Extended-connectivity fingerprints (ECFPs) and
Functional-class fingerprints (FCFPs) extract and compare
(multi-)sets of subgraphs

hash (Daylight atomic
invariants*)

*# non-H neighbors, bond
order, atom number, atom

mass, atom charge,
attached Hs.

A bit array as
output:/0,0,0,0,0, .., 1,
Iteration O Iteration 1 Iteration 2 o, 0,..., 1,0,...]

Implemented in RDKit and other software. Publication and tutorials: (1) Rogers, David, and Mathew Hahn. “Extended-Connectivity Fingerprints.” Journal of Chemical
Information and Modeling (2010). (2) Tutorial by Manish Kumar and (3) Tutorial by Leo Klarner.



http://rdkit.org/
https://doi.org/10.1021/ci100050t
https://chemicbook.com/about-me
https://www.blopig.com/blog/2022/06/exploring-topological-fingerprints-in-rdkit/

Number of hydrogen bond acceptors and donors are

important descriptors, too

A hydrogen bond: an
electrostatic force of attraction II{/H = H
between a hydrogen (H) atom H/O\H/N\H !
which is covalently bonded to I 1
a more electronegative boid bond

N
H/O‘~~ H/u-\H

hydrogen  hydrogen
bond bond

donor aceptor acceptor donor
"donor" atom or group (Dn),
and another electronegative hyscfﬁﬁen

acceptor

atom bearing a lone pair of = }y40gen =

electrons—the bond
acceptor

hydrogen-bond acceptor.

and/or donor

Hydrogen bonds (H-bonds)
both influence the structure of
the molecule and its binding
to the target.

hydrogen
bond
acceptor

prozac

@15)5:0 - HQFO

OHN *HN  OH

=( =(
Cl Ci
3 4
IC5,=94.3 uM IC5, =180 nM

()

Effect of adding a hydrogen bond in a thrombin
inhibitor: a) chemical structure of a pair of thrombin
inhibitors; b) crystal structure of molecule 4 (cyan
carbons) in complex with thrombin (PDB: 2ZC9).
Hydrogen bonds are displayed in dotted green lines.
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Lipinski’s Rule of Five of small-molecule drugs X

HBD<=5: No more than 5 hydrogen-bond ° - 3%y OOO‘ OO

donors, e.g. the total number of 2! TR _
nitrogen—hydrogen and oxygen—hydrogen P ATP (MW=507)
bonds. ,L'\|,|\~;

HBA<=10: No more than 10 hydrogen-bond
acceptors, e.g. all nitrogen or oxygen atoms

MW<500: A molecular weight less than 500 logP

543—2401234'6789101112131415 I

logP<=5: An octanol-water partition R
coefficient (log P) that does not exceed 5. Elialosidng
(10-based) o ket i

Source: cheminfographic.com



https://cheminfographic.files.wordpress.com/2020/05/partition-coefficient-logp.jpg?w=1194

Rules are made to be broken: more drugs are now beyond

the space of Ro5

Table 1. New FDA Approvals (2014 to Present)a of Oral bRo5 Drugs

drug
velpatasvir
venetoclax
elbasvir
grazoprevir
cobimetinib
daclatasvir
edoxaban
ombitasvir
paritaprevir
netupitant
ledipasvir

ceritinib

year approved
2016
2016
2016
2016
2015
2015
2015
2014
2014
2014
2014

2014

therapeutic area
HCV

oncology

HCV

HCV

oncology

HCV
cardiovascular
HCV

HCV

nausea from chemotherapy
HCV

oncology

MW

883.02

868.44

882.0

766.90

531.31

738.88

548.06

894.13

765.89

578.59

889.00

558.14

cLogP
2.5
10.4
2.6
-2.0
52

1.3

1.3
1A
6.8
0.9

6.5

HBD

N+O

16

14

16

15

14

11

15

14

14

DeGoey, et al.. 2018. “Beyond the Rule of 5: Lessons
Learned from AbbVie’s Drugs and Compound
Collection.” Journal of Medicinal Chemistry 61 (7):
2636-51.



https://doi.org/10.1021/acs.jmedchem.7b00717
https://doi.org/10.1021/acs.jmedchem.7b00717
https://doi.org/10.1021/acs.jmedchem.7b00717

Molecular similarity and similarity measures

Mol. LogP Rotatable | Aromatic | Heavy Table 2 Formulas for the various similarity and distance metrics
: weight bonds rings atoms - = - - . g
Chemical = c Distance metric Formula for continuous variables® Formula for dichotomous variables®
similarity A 341.4 5.23 4 4 26
n
B 463.5 443 1 > =B Manhattan distance Da,s = le,m— ,s| Dpg=a+b-2c

Molecular B
similarity N Euclidean distance Das = {Z(X;F )7} Dag=|a +b—2c]"’/‘
Ui /NYn =
20 L'N \Q/ 5 ; 2
similarity A Cosine coefficient Snp = {ZX A% s:| /i [ (x4 EZ(X/H)Z] Sag = ”ﬂ. -
—1 =1 lab] /2
n
o Dice coefficient Sne = l:szMXJB] / |:Z xa)” + Z Xj8 ] Sap=2c/la+b]
3D - ‘
similarity n
& ‘ J Tanimoto coefficient Ly . [Zf”:“““] - Sas=c/la+b—d
A ; [Z/ Y (o)’ Zf]
Vascular endothelial | Tyrosine-protein kinase TIE- ) -
Biological growth factor receptor 2 2 Soergel distance” Das= {;h’/‘* 15‘] / {Zmax Xjns Xe) ] Dag = 1G5
S’m||ar|ty A active inactive
B active active
S denotes similarities, while D denotes distances. The two can be converted to each other by
Global similarity=1/(1+distance). X, means the j-th feature of molecule A. a is the number of on bits in
similarity molecule A, b is number of on bits in molecule B, while ¢ is the number of bits that are on in both

molecules.

(Left) Maggiora, Gerald, Martin Vogt, Dagmar Stumpfe, und Jurgen Bajorath. ,Molecular Similarity in
Medicinal Chemistry“. Journal of Medicinal Chemistry 57, Nr. 8 (24. April 2014): 3186-3204. (Right)
Bajusz, David, Anita Racz, and Karoly Héberger. 2015. “Why Is Tanimoto Index an Appropriate Choice
for Fingerprint-Based Similarity Calculations?” Journal of Cheminformatics 7 (1): 20.

Local similarity



https://doi.org/10.1021/jm401411z
https://doi.org/10.1021/jm401411z
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1186/s13321-015-0069-3

Pharmacore models and machine learning for ligand-based drug discovery
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Left: Ligand-based pharmacophore modeling workflow, starting from a set of known
active compounds. Right: Machine-learning model to predict the activity of unseen
compound, starting from a set of known active and inactive compounds. Applied
chemoinformatics: achievements and future opportunities. (Wiley-VCH, 2018), p271.
TeachOpenCADD, T007, Ligand-based screening with machine learning
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https://projects.volkamerlab.org/teachopencadd/talktorials/T007_compound_activity_machine_learning.html

Molecular similarity does not equal biological similarity o

O

6 nM

\x

Z
N
LM
2390 nM U \Q/
N

Watch out for biological activity
cliffs! Similarity does not imply activity.
Three vascular endothelial growth factor
receptor 2 (VEGFR2) ligands are shown
that represent different
similarity—activity relationships.

A1: 2D fingerprints

B1: Mechanisms of action
C1: Small molecule roles
D1: Transcription

E1: Therapeutic areas

A2: 3D fingerprints

B2: Metabolic genes

C2: Small molecule pathways
D2: Cancer cell lines

E2: Indications

A3: Scaffolds

B3: Crystals

C3: Signaling pathways
D3: Chemical genetics
E3: Side effects

Ad4: Structural keys

B4: Binding

C4: Biological proceses
D4: Morphology

E4: Diseases & toxicology

AS5: Physicochemistry

B5: HTS bioassays

C5: Interactome

D5: Cell bioassays

E5: Drug—drug interactions

A: Chemistry
B: Targets
C: Biological network

D: Cells
E: Clinical readout

:

St ] . 8
o' e . — &H ; ‘
::' L] d > [ :
;' 7 13 DR R Sy
6 ive K 14 S
= Transcriptomics = Cancer cells # Structural keys = Structural keys = MoA # Transcriptomics

o B @3 B¢ o1

Pt R e 16y AT e T
123
9 TS .
Ny 16X _
10 y
# Structural keys = Transcriptomics = MoA # Binding = Interactome = Transcriptomics

Duran-Frigola, Miquel, Eduardo Pauls, Oriol Guitart-Pla, Martino Bertoni, Victor Alcalde, David Amat, Teresa Juan-Blanco, and Patrick Aloy. 2020. “Extending the
Small-Molecule Similarity Principle to All Levels of Biology with the Chemical Checker.” Nature Biotechnology, May, 1-10.
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https://doi.org/10.1038/s41587-020-0502-7
https://doi.org/10.1038/s41587-020-0502-7

H2

H1i

l Linking
Building

)
Ligand
Rigid or flexible
| G

S

Protein
Rigid or flexible

)

Conformational
sampling

Matching algorithms
Incremental construction

* Genetic algorithms

Monte Carlo methods

Protein ligand docking is a commonly used method for
structure-based drug design

Pose evaluation

Force field-based
Emperical
Knowledge-based
ML/DL-based

Post-processing

Docking is like a discotheque: it is all about
posing and scoring

Roger Sayle (NextMove Software Limited)

Left: Different strategies to design a ligand in target-based drug discovery: docking (left), building (center), and linking
(right). D = H-bond donor, A = H-bond acceptor, H1, H2 = hydrophobic regions of the protein.Applied chemoinformatics:
achievements and future opportunities. (Wiley-VCH, 2018), p180. Right: TeachOpenCADD, T015, Protein-ligand docking



https://projects.volkamerlab.org/teachopencadd/talktorials/T015_protein_ligand_docking.html
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The principle of molecular docking ¥,
Ny Ng 94, Coulombic interactions
Ecoulr) = Z ame,rs (electrostatic iqteractions
=1 4=1 between electric charges)

Three basic methods to represent target and
ligand structures in silico

» Atomic: used in conjunction with a potential
energy function, computational complexity high

» Surface: often used in protein-protein docking

» Grid representation: the basic idea is that to
store information about the receptor’s energetic
contributions on grid points so that it only
needs to be read during ligand scoring.

In the most basic form, grid points store two types
of potentials: electrostatic and van der Waals
forces, for instance using Coulombic interactions
and L-J 12-6 function.

Lennard-Jones 12-6
11 Oij 12 Gij 6 function
Evawdr) :.2 Z = {(;_,,) - (t_,,) (intermolecular interactions
without charge)

» ¢ is the well depth of the potential

» o is the collision diameter of the respective atoms jand j.

Van der Waals energy

Energy
|

c Ie

Distance

Kitchen, Douglas B., Héléne Decornez, John R. Furr, und Jirgen Bajorath. ,Docking and
Scoring in Virtual Screening for Drug Discovery: Methods and Applications®. Nature Reviews
Drug Discovery 3, Nr. 11 (November 2004): 935—49. https://doi.org/10.1038/nrd1549.



https://doi.org/10.1038/nrd1549

Posing: dealing with flexibility of ligand and of protein

Lock and key

+ - @

-

Conformational isomerism

= +m= "
Induced fit
rm— =@
Conformational selection
(o)

TRENDS in Pharmacological Sciences
Chen, Yu-Chian. ,Beware of docking!" Trends in

Pharmacological Sciences 36, Nr. 2 (1. Februar 2015): 78-95.

https://doi.org/10.1016/j.tips.2014.12.001.

Flexible side chains

/JCE‘C ,/—

m/ y

Sge————————= Rigid core

Methods to deal with ligand and protein flexibility

» Systematic search

* Random search, such as Monte-Carlo and genetic

algorithms

» Simulation methods, such as molecular dynamics

13


https://doi.org/10.1016/j.tips.2014.12.001

Four types of scoring functions

Molecular docking

Receptor U

Scoring Functions — |

—

—>

Docking Scoring

\v,

Physics-based

: N R (A By  qig;
DOCK: El,.-,,d—zmzl_ﬂ(,.&z =S e L)

Uj

Empirical

X-Score:  Eping = Wo + W1 AGuqw + W2 AGhpona 2)

+ W3 AGrot o+ Wy AGhydra
Knowledge-based

L R
PMF:  Epina =Z_ IZ_ 1—kBTln[g(r)] ®)
i=1 4=

Machine learning-based

Ebind = fRF (xm)

L
RF-Score: (4)

L R
Xij = Z z (')Idcutof[ o dij]
i=1 j=1

Physics-based (force-field based) scoring:
calculating the energy of individual interactions with
force fields.

Empirical scoring: use coefficients to estimate the
total energy. The coefficients are estimated from
regression analysis of known protein-ligand
complexes.

Knowledge-based scoring: integrate results from
solved protein-ligand structures, which contains
atom-atom contact frequencies and distances. Poses
score higher if they show contact characteristics that
are often observed in the statistical analysis.

Machine learning-based scoring: use fingerprints
or graph. It is usually used in post-processing for
rescoring to improve the initial docking.

Li, Jin, Ailing Fu, und Le Zhang. ,An Overview of Scoring Functions Used for Protein-Ligand
Interactions in Molecular Docking®. Interdisciplinary Sciences: Computational Life Sciences
11, Nr. 2 (1. Juni 2019): 320-28. https://doi.org/10.1007/s12539-019-00327-w.



https://doi.org/10.1007/s12539-019-00327-w

A general architecture of analysis pipeline for

structure-based virtual screening

Protein Structure
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Lead Compound

Ariamajd, Vogel, Volkamer, Sydow, Taylor, TeachOpenCADD Taltorial T018:

/ Binding-Site Detection \

!ﬂlﬂ!ﬂﬂﬂ:ﬂ

Similarity ‘ Search

- ]1] Jolololalolol. |
- Jololol1lolololol. |
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Binding Pocket

Similar Ligands

7

Molecular Docking

Protein-Ligand Interaction Analysis

B

Visualization

Automated pipeline for lead optimization

Optimized Lead


https://projects.volkamerlab.org/teachopencadd/talktorials/T018_automated_cadd_pipeline.html

Structure-based and ligand-based drug design 3

Target and its protein structure

Not Available Available

Not Available Solving protein structure )  Target-based screening

3

Ligand-based drug design,
Available e.g. similarity and QSAR, and
target/MoA identification

Structure-based drug design,
e.g. drug design

Phenotypic screening

Ligand (chemical starting point)

QSAR= quantitative structure activity relationship; MoA= mechanism of action, or mode of action
16



Thermodynamics and kinetics of ligand-target binding

The dynamics view of binding: The rate of
binding is called affinity, often expressed in K (the
Dissociation constant), written as K. for inhibitors.

The thermodynamics view of binding: Both enthalpy
(heat transfer) and entropy (disorder) contribute to the
binding energy (AG=AH-TAS).

Free rotation Ligand in solution
ASint \Asn k1 kg
o L+R=LR E—I—SAES—>E+P
d ® o ko kr
AH\w Loosely associated Free water
water molecules ° @ o
oAswo Kp =ky/k; P _ kol E
Boning o o P == ]\’f max — MNeat 0
ed .
water
l% Q AHpw ‘ ‘ O\O ‘ LR Rtotal] [L] - Vmax[S]
. (L] + Kp Kp + 9]
Receptor Receptor-ligand complex

17



vitro pharmacology

The Hill function is one of the mostly
useful non-linear functions to model
biological systems.

In its general form, Hmax indicates the
maximal value to which the function
is asymptotic, n is the shape
parameter (known as the Hill’'s
coefficient), and k is the reflection
point, often abbreviated as XC50 (X=l,
E, C, ...), the half-saturation
constant.

The Michaelis-Menten model is a
special case of the Hill function (n=1).

€T n

H = Hmax

The general form of the
Hill function

[L] n
ECg + [L]"
1

EC5 n
(L] )

E — Ema:v

— E’ITLQI
14

Modelling the
dose-dependent effect

kn + xn

Viability (% control)

Effect

The dose-response curve and IC50: The Hill function and in
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Parental and BRAFi-resistant
BRAF-mutant melanoma
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-~ A375BR (Acquired KRASS13D)
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80 80 Morris et al. Cancer

604 a0 Discov: 3(7); 742-50.

©2013 AACR.
40 40
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A B Reduced Emax
C
D
EC,, White. J Clin Invest.
2004;113(8):1084-1092.
| Altered slope  -//doi.org/10.1172/JC

J 121682.
s

Log concentration

Suppose it is an antiviral drug, compared with curve B, what does curve A, C, and D suggest?



https://cancerdiscovery.aacrjournals.org/content/3/7/742
https://cancerdiscovery.aacrjournals.org/content/3/7/742
http://www.jci.org/113/8
https://doi.org/10.1172/JCI21682
https://doi.org/10.1172/JCI21682

Biological networks interact with drugs and manifest its
efficacy and safety

Cell Nuclear membrane  Gene expression
membrane modulated by TFs

Ligand/Drug Protein

translation

Phenotype

(off-target) ' ‘
Transcription

Factors (TFs)
19
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Reaction Rate Equations: a compartment/ODE model of R
biological chemical reaction
RRE simulation of the
% — _ky{E][S] + k. [ES] + ke[ ES), Michaelis-Menten model
d[fﬂ x10”
kf kcat W = _kf[E] [S] + kT[Es]v 5 H
k, dt = kf[EHS} _kr[ES} _kcat[ES]v 4t _[P]
| o
d[P o :
* % = kcat[ES]7 § 3
c
- Vmaz[s] * kf[E] [S] = k,[ES] % 2
Kp + 5] ki([Elo — [ES)[S) = k,[ES] 2y
Vinaz = keat|E) kf[E]O[S] - kf[ES][S] . kr[ES]
e e ATlS] = kB8] + kyBSIIS) @ =]
d[P] kcat[E]olS] k¢[Eo[S] = [ES](k, + k[S]) )
L 9] - A5 "
T f
[ES] = M Source: Systems Engineering Wiki (tue.nl)
ke +15)

RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time tis

a real number representing the concentration of species j at time t.

20


http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

Simulation of biological networks with ordinary differential
expression

e 5(0) =5e"
o E(0) =2¢7
ki ks Given the initial val « C(0)=P(0)=0
Given the reaction S+ B s—=C—P+ B ven ine Infia: vaies o by = 1e°
foo and rate constants 1
B o ky = 16—
e k3 =0.1
d|S
23— _kimis] + i),
—d[E} = —k,|E||S ky + k3)|C
According to the law dt t[B[8]t(ez+-ks)C, It is possible to c
of mass action d[C} simulate the %
dt k1 [E][S] — (k2 + k) [C], concentration ‘g
d[P] changes by time 2
> s k3[C], deterministically. 3

See Systems Engineering Wiki (tue.nl) for MATLAB/COPASI codes and
Stochastic Modelling for Systems Biology by Darren J. Wilkinson



http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

Simulating behavior of complex ODE systems with COPASI 4

« COPASI, freely available at
http://COPASI.org/,
supports both ordinary
differential equation
(ODE) based simulation as
well as stochastic kinetic
simulation.

« Such tools are important
for detailed analysis of
enzymatic reactions, for
instance in the presence of
drugs and/or
disease-relevant mutation.

INPUT
€1)

v
MAPKKK <> MAPKKK"

L

MAPKK %> MAPKK-P ©_> MAPKK-PP

t 3

MAPKK P'ase
MAPK ©_> MAPK-P T_> MAPK-PP
MAPK P'ase J

OuTPUT

Figure: Huang and Ferrell, PNAS, 2006. Resources to learn more about
stochastic modelling: MIT OpenCourseWare by Jeff Gore, and Stochastic

Processes: An Introduction, Third Edition by Jones and Smith. Tutorials also
available on the website of European Bioinformatics Institute (EBI)

Concentrations, Volumes, and Global
Quantity Values 1

| Values[MAPKKK_phosphorylation_ratio] |— [E1] =
[~ E21 [~ mAPK-pase]

[~ MAPK-Pase_P-MAPK] | MAPK-Pase_PP-MAPK]

[~ (MAPKK-Pase] [~ IMAPKK-Pase_P-MAPKK]

I [MAPKK-Pase_PP-MAPKK] [ [MAPKKK]

[~ maPKKK _E11 [ markk

[~ mark) [ = Tp-MAPKKK]

ODE-based simulation of dynamics


http://copasi.org/
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses

Modelling biological networks X

2 8
E % S=
£ Qualitative Quantitative  © g
@5 2o
(5] <
Static Boolean Kinetic
Networks ® Models
i Y -
% 8 A+B =K=-‘= c
Static models Dynamic models Dynamic models
No stoichiometry No stoichiometry Stoichiometry
No parameters No parameters Kinetic parameters

1

Concentration
o
o

% 0.5 1
Time
Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and loannis Xenarios. 2012. “Implicit Methods for Qualitative
Stéphane CHEDIN & Jean LABARRE, www-dsv.cea fr Modeling of Gene Regulatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited by Bart

Deplancke and Nele Gheldof, 397-443. Methods in Molecular Biology. Totowa, NJ: Humana Press.
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https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22

Offline activities

Read selected pages of Computational Methods in Drug Discovery by Sliwoski et al.

submit your results by using this Google Form by December 1st.
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https://forms.gle/RWyPctumbPHKdBoz9

Backup slides



Resources for learning more about molecular modelling X

[PROTOCOL |

Computational protein-ligand docking and virtual
drug screening with the AutoDock suite

Stefano Forli, Ruth Huey, Michael E Pique, Michel F Sanner, David S Goodsell & Arthur J Olson

Caution: Binding predicted by
docking should always be

Depa tof ive Structural and C tational Biology, The Scripps Research Institute, La Jolla, California, USA. Correspondence should be addressed '
toef\‘I]I'I)l‘n'e\l:]\\(:n(;]\l‘e’g‘;al:i\jdu:’U tural an ompu ational 10 05) € rl}}S esearch Institute, La Jolla, alirornia. OFTES[, ondence shou. € al resse Challenged and Verlfled by
Published online 14 April 2016; doi:10.1038/nprot.2016.051 experli mental testi ng' Docki ng
Computational docking can be used to predict bound conformations and free energies of binding for small-molecule ligands scores Se|d0m|y Cco I’relate W|th
to macromolecular targets. Docking is widely used for the study of biomolecular interactions and mechanisms, and it is applied b d ﬁ_- t

to structure-based drug design. The methods are fast enough to allow virtual screening of ligand libraries containing tens of in |ng arrini y

thousands of compounds. This protocol covers the docking and virtual screening methods provided by the AutoDock suite of
programs, including a basic docking of a drug molecule with an anticancer target, a virtual screen of this target with a small
ligand library, docking with selective receptor flexibility, active site prediction and docking with explicit hydration. The entire
protocol will require ~5 h.

» Try docking yourself by following this protocol: Forli, Stefano, Ruth Huey, Michael E. Pique, Michel F. Sanner, David S. Goodsell, und Arthur J. Olson.
»,Computational Protein—Ligand Docking and Virtual Drug Screening with the AutoDock Suite“. Nature Protocols 11, Nr. 5 (Mai 2016): 905—-19.
https://doi.org/10.1038/nprot.2016.051.

* In-depth reading: Sliwoski, Gregory, Sandeepkumar Kothiwale, Jens Meiler, und Edward W. Lowe. ,Computational Methods in Drug Discovery“. Pharmacological
Reviews 66, Nr. 1 (1. Januar 2014): 334-95. https://doi.org/10.1124/pr.112.007336.

» A more advanced talk by Arthur Olson can be found here, Workshop on the Mathematics of Drug Design/Discovery, June 4 - 8, 2018, The Fields Institute.
Courses available at the University of Basel and beyond.


https://doi.org/10.1038/nprot.2016.051
https://doi.org/10.1124/pr.112.007336
http://www.fields.utoronto.ca/video-archive/event/2364/2018

Summary of basic concepts 4

Ligand: the binding partner of a macromolecule (often proteins), for instance other proteins (in case of
protein-protein inaction), substrates and allosteric modulators (in case of enzymes). Many drugs are ligands of
proteins.

Binding: the formation of interactions between a protein and its ligand. In drug discovery, we encounter more often
transient and non-covalent interaction (i.e. no sharing of electrons between atoms), but there are drugs form
reversible or irreversible covalent bonds.

Non-covalent interaction: electromagnetic interactions between molecules or within a molecule without forming a
chemical bond, i.e. no sharing of electrons between atoms. Non-covalent interactions are classified into four
categories: electrostatic, van der Waals forces, hydrophobic effects, and mr-effects. See Wikipedia for more details of
these interactions.

Conformational change: ligand binding often triggers a change in the shape of the protein, which alters its cellular
function

Agonist versus antagonist: an agonist activates the function of its target by binding, and an antagonist blocks the
action of the target by binding.

Active site versus allosteric site: active site is where the enzyme-substrate interaction happens, example: at the
active site oxygen binds to heme, and CO can compete with oxygen for heme binding. Allosteric site (i.e. regulatory
site) is any other site than the active site where a ligand can bind to modulate the protein function.


https://en.wikipedia.org/wiki/Non-covalent_interaction

From the law of mass action to ligand-target interaction s

kl The law of mass action d[LR]
4R = IR *» —— = ki[L][R] - k2[LE]
ks

* At equilibrium, no net change of [LR]

Roall[L] 2= k1 [L|([Riotal] — [LR]) = ko LR],

L K +—— [LR] o kl[L] [Rtotal]
| Bl T k[L] + ko

[LR]
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Theoretical and practical considerations about the Hill

function

The Hill function can be deduced from statistical mechanics of
binding, a particle modelling approach. See for instance an
article on Biophysics Wiki by Andreas Piehler for details.

The Hill function is often used to model either target occupancy

or tissue response (pharmacology).

The Hill function can be approximated by a step function when
n goes towards infinity (top panel). This can be seen as one of
the theoretical foundations of Boolean network modelling.

Dose-response data may look quite different from the ideal

curve (bottom panel). By using a Bayesian inference approach,

it is possible to perform inference even with ill-looking data.

The Bayesian inference approach versus the non-Bayesian
Marquardt-Levenberg algorithm for non-linear regression fitting. Labelle,

Caroline, Anne Marinier, and Sébastien Lemieux. 2019. “Enhancing the Drug

Discovery Process: Bayesian Inference for the Analysis and Comparison of
Dose—Response Experiments.” Bioinformatics 35 (14): i464—73.
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From the biophysics wiki arﬁcle by Andreas Piehler

Bayesian Inference

Marquardt-Levenberg 4P

Marquardt-Levenberg 2P
(HDR =100, LDR = 0)

3 %011 0.1 747
50 P i -';‘
/
6 j j e
0 10 0 10 0 10
100i(12,5 10.34 12.97)
50 —— yu|
. B £
0 5 10 0 10 0 10
100/{72.13 7 f 11388
50 i {Unable to Converge |
,,,,,,,,,,,,,,, ;-:// o I on
0 =t === ™ . gt
L .. .
0 5 10 0 5 10 0 5 10
Dose log1o Dose logio Dose logio


http://www.bio-physics.at/wiki/index.php?title=Statistical_Mechanics_of_Binding
http://www.bio-physics.at/wiki/index.php?title=Statistical_Mechanics_of_Binding
http://www.bio-physics.at/wiki/index.php?title=Hill_Function
https://doi.org/10.1093/bioinformatics/btz335
https://doi.org/10.1093/bioinformatics/btz335
https://doi.org/10.1093/bioinformatics/btz335
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Drug-induced phospholipidosis is correlated with amphiphilicity s
* Phospholipidosis is a lysosomal storage N

disorder characterized by the excess Cationic

accumulation of phospholipids in tissues. \

N

+ Drug-induced phospholipidosis is caused by &= Hydiophobic

cationic amphiphilic drugs and some cationic

hydrophilic drugs. Perhexline / §d
* Clinical pharmacokinetic characteristics of Ldllmann et al., Drug Induced Anderson and Borlak, Drug-Induced

drug-induced phospholipidosis include (1) Phospholipidosis, Crit. Rev. Toxicol. 4, Phospholipidosis,. FEBS Letters

very long terminal half lives, (2) high volume 185, 1975 580, Nr. 23 (2006): 5533-40.

of distribution, (3) tissue accumulation upon
frequent dosing, and (4) deficit in drug
metabolism.

Fischer et al. (Chimia 2000) discovered that it is
possible to predict the amphiphilicity property of
druglike molecules by calculating the amphiphilic
moment using a simple equation.

L

A: Caculated amphiphilic moment

d: distance between the center of gravity of the charged part of a molecule
and the hydrophobic/hydrophilic remnant of the molecule

a;: the hydrophobic/hydrophilic contribution of atom/fragment /

In silico calculation of amphiphilicity property may be used to predict phospholipidosis induction potential




In silico prediction of amphiphilicity

Development of CAFCA (CAlculated Free energy of amphiphilicity of small Charged Amphiphiles) s

0 -0
1 AAGAM = -2.52 kJ/mol
g -2 —= ZN
i O
2 7 \h
g -4
55 b
S
£
& B N | AAGy (exp.)= -8.62 k)/mol |
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% o o 0 o
G - \ /
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g 9 ¢ 5
(=] -~
] q N
8 10 ‘ (o}
a1 AAGay = -8.24 kJ/mol —o
- AAGAM = -7.55 kJ/mo .1 /
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Calculated Amphiphilic Moment (CAM) [a.u.] /o

Iterative model building, experimentation, and model refining led to the predictive tool CAFCA
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Validation of in silico phospholipidosis prediction

Model Validation from 1999-2004
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Plot of amphiphilicity (AAG,,,) versus calculated basic pK_ for the
training set of 24 compounds. The red area defines the region where
phospholipidosis is expected, and the green area defines where a
negative response is expected according to the tool.

in vitro/ in silico/ | Exp. PC/ |Insilico/ |n=36
in vivo in vivo in vivo in vitro

94% 81% 89% 89%
Accuracy Sensitivity Specificity Precision
[(TP+TN)/ [True Positive [True Negative [TP/(TP+FP)]
(P+N)] Rate] Rate]
86% 80% 90% 84%

Fischer et al., J. Med. Chem, 55 (1), 2012

We gained mechanistic insights of phospholipidosis induction by cationic amphiphilic drugs with the model



Phospholipidosis: lessons learned
(and lessons not yet learned)

Cationic amphiphilic properties of a molecule is an early
marker for safety in drug discovery and early development.

Phospholipidosis in dose range finding studies

Cardiac ion channel interactions (hERG, natrium
channel, ...)

Receptor binding promiscuity
P-gp inhibition

Mitochondrial toxicity in case of safety relevant findings,

e.g. in dose range finding studies

Extreme basic amphiphilic properties should be avoided
because of a higher risk of PLD, QT-prolongation,
mitochondrial toxicity. However, basic compounds with
moderate amphiphilic properties are still a preferred scaffold
for many therapeutic areas (especially CNS).

Safety liabilities caused by physicochemical properties o

the drugs may be well predicted by molecular modelling
inspired by simple models.
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Fig. 1. Representative examples of CADs that are identified in SARS-CoV-2 drug repurposing screens.

f Tummino, Tia A., Veronica V. Rezelj, Benoit Fischer, Audrey
Fischer, Matthew J. O’Meara, Blandine Monel, Thomas Vallet, et al.
“Drug-Induced Phospholipidosis Confounds Drug Repurposing for
SARS-CoV-2.” Science 373, no. 6554 (July 30, 2021): 541-47.
https://doi.org/10.1126/science.abi4708.
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Chemical Master Equations (CME): a particle model of o
chemical reaction

ks K
Given the A+B+=C+D and the initial condition X' (0) = i (K molecules of species A and of species B respectively)
reaction ko 0
0
K K-1 K-2 0
K K -1 K -2 0
The state vector X (t)  can take at any time point one of the values ol ) , ) oo | g |
0 1 2 i

Theoretically we can build an ODE system with K+7 equations to model every state of the reaction, down to every particle. In reality,
the dimension is so high so that a simulation is not feasible.

CME is a set of ODEs, with each ODE representing one possible state of the system. Solution of the kth equation

at time tis a real number giving the probability of system being in that particular state at that time.




The Gillespie’s algorithm and the chemical Langevin
equation allow stochastic simulation of biological networks

» The stochastic simulation algorithm (exact SSA), also called Gillespie’s
algorithm, allows stochastic simulation of a reaction. It is done in four steps:

1.
2.

3.
4.

initialize the system with initial conditions

Given a state at time ¢, we can define a probability p that reaction j
takes place in the time interval [t+1, t+7+d7). It is the product of two
density functions of two random variables: the probability of reaction j
happens (proportional to the number of substrate molecules),
multiplied by the time until next reaction, which is exponentially
distributed. This is known as the Monte Carlo step.

Let the randomly selected reaction happen and update the time.
Iterate until substrates are exhausted or simulation time is over.

Molecules

» Further computation tricks, .e. ‘tau-leaping’, are used to lump together
reactions. The chemical Langevin equation (CLE) further accelerates
stochastic simulation by approximating Poisson with normal distribution.

Figure source and further reading: Higham, Desmond J. 2008. “Modeling and Simulating Chemical Reactions.”
SIAM Review 50 (2): 347-68. https://doi.org/10.1137/060666457.
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Why stochastic modelling?
1. Molecular dynamics
4.1a Master equation® g 2. Individual-based
800 . . . . 4.1b SSA*
4.2 Tauleap/higherorder
600 4. Discrete stochastic
X 400
200 ' 1
P Advantages and disadvantages of several modelling/simulation methods.
0 . . . . imulation method Cat. Advantages Disadvantages References Software
Master equation 4 Exact Very computationally intensive [85,143]
SSA 4 Statistically exact Very computationally intensive [82,109] COPASI [144]
StochKit [145]
. . . .. STOCKS [146]
+ Stochastic modelling can reveal individual BioNets [147]
Tau-leap 4 Relatively fast Approximate; too slow for large systems [83,113,118] StochKit [145]
1 1 1 ¢ ’ or frequent/multiscale reactions
traj eCtO rnes th at are Oth erwise avera g ed by O D E Higher-order 4 Relatively fast; accurate Approximate; too slow for large systems or [83,121,122,124,125]
mo d e I S frequent/multiscale reactions
- Multiscale/hybrid 4 Fast; good for systems with disparate Approximate; problems with coupling [131,132,137,139,148] COPASI [144]
. . reaction scales different scales BioNetS [147]
+ Small systems and single-molecule studies show , - o , —
Brownian dynamics 2 Tracks individual molecules Slow; molecule size must be artificially added [149,150] Smoldyn [149,151]
H H MCell [152]
StOChaStIC behaVIOU r. Compartment-based 3 Accounts for diffusion between Slow; compartment size must be set manually; [150,153,154] MesoRD [153]
H H H H H homogeneous compartments each compartment is homogeneous URDME [155]
* It IS pOSSIble to ConSIder bOth eXtrInSIC and SDE 5 Fast Continuous; Gaussian noise [76] BioNetS [147]
. o . . PDE (R-D) 6 Very fast; spatial Continous; no noise [156]
intrinsic factors and take them into the model. ODE 6 Veryfast Continuous; no noise [157]
Székely and Burrage. 2014. “Stochastic Simulation in S\ :stems BioIog} !_" Cat. represents Category from Fig. 2. Abbreviations: SSA, stochastic simulation algorithm; SDE, stochastic differential equation; PDE (R-D), partial differential equation (classical reaction-

diffusion equations); ODE, ordinary differential equation.
Computational and Structural Biotechnology Journal 12 (20-21): 14-25.

Also see Stochastic Modelling for Systems Biology by Darren J. Wilkinson. 36
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More about molecular interactions and drug design o

* Molecular interactions for drug discovery

Bissantz, Caterina, Bernd Kuhn, and Martin Stahl. “A Medicinal Chemist’'s Guide to Molecular
Interactions.” Journal of Medicinal Chemistry 53, no. 14 (July 22, 2010): 5061-84.
https://doi.org/10.1021/jm100112j. A comprehensive introduction to common types of interactions, their

applications, and caveats of blindly following rules in drug design.

Persch, Elke, Oliver Dumele, and Frangois Diederich. “Molecular Recognition in Chemical and
Biological Systems.” Angewandte Chemie International Edition 54, no. 11 (2015): 3290-3327.
https://doi.org/10.1002/anie.201408487. A comprehensive introduction to molecular recognition.

* How drug design help with drug discovery: ten real-life stories

Kuhn, Bernd, Wolfgang Guba, Jéréme Hert, David Banner, Caterina Bissantz, Simona Ceccarelli,
Wolfgang Haap, et al. “A Real-World Perspective on Molecular Design.” Journal of Medicinal Chemistry
59, no. 9 (May 12, 2016): 4087-4102. https://doi.org/10.1021/acs.jmedchem.5b01875. The common
themes summarized in the Conclusion are helpful in my opinion for any scientist working in quantitative
aspects of drug discovery: (1) value of qualitative statements, (2) shaping chemical space, (3) the
principle of parsimony, (4) annotation is half the battle, and (5) staying close to experiment.
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