AMIDD Lecture 6: Statistical models and causal inference
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Recap of mechanistic modeling with compartment models

Top right: Hill-Langmuir function of target
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ODE-based mechanistic models are often used in

pharmacokinetic modelling

Pharmacokinetics (PK) describes how
the drug is absorbed, distributed,
metabolised, and excreted by the body.

A basic mathematical model of PK is a
compartment model, i.e. one or more
ordinary differential equations that describe
the relationship between drug concentration
and time. The simplest model is the decay
model of bolus (injection).

— A, initial concentration

A(t): drug concentration at time ¢

K: rate of clearance

A real-world example: PK of propacetamol, a
pro-drug of paracetamol, delivered via IV.
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Relationship between Gaussian, Poisson, and exponential KT

distributions

Histogram of #events in each time unit: Poisson distribution
-

Histogram of time intervals between events: Exponential distribution
= :
time

A ]
)

’
Histogram of #events in large time internvals: Gaussian distribution

Each triangle indicates an event that happens continuously and independently from each other at a constant
average rate A. A process in which events occur so is known as a Poisson point process. Histogram in this
plot means the probability histogram: the x axis contains count of the observed events, and the y axis contains

count of the observed events divided by the total events.

Importantly, exponential distribution displays the property of memoryless. In the context of bolus PK, the
proportion of drug degraded per time unit k is independent of previous degradation processes.



Quantitative Structure-Activity Relationships (QSARSs) as

an example of statistical modelling

QSAR is a statistical modelling of
correlation between biological activity and
physicochemical properties, or A¢=f(AS),
where ¢ indicates a biological activity and
S indicates a chemical structure
(1868-1869).
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The basic form of a QSAR model: find a
function f that predicts y from x, y~f(x)
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An example: The Free-Wilson analysis. The assumption: the biological

activity for a set of analogues could be described by the contributions that

substituents or structural elements make to the activity of a parent structure.
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Unsupervised versus supervised models
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Linear model can be used to model local effects of K

non-linear models
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The simplest linear model has three components: the

intercept, the slope, and a measure of fit

In this example, the
coefficient of
determination (R?) is used
as the measure.

R? measures the relative
fit of the linear model with
regard to a baseline
model, where the mean
value of y is used as a fit.
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A visual explanation of R?

The better the linear regression (right)
fits the data in comparison to the

average (left), the closer the value of y y
R?isto 1. A A
The areas of the blue squares °
represent the squared residuals with
respect to the linear regression. The y
areas of the red squares represent o
the squared residuals with respect to .
the average.
®
R? is defined as 1-(blue area)/(red
area). »X

Question: can R2 pe negative’? Work by Orzetto, CC-SA 3.0, from Wikimedia


https://commons.wikimedia.org/wiki/File:Coefficient_of_Determination.svg

Logistic regression is a example of generalized linear model, Bg
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which allows dependent variable defined other than real numbers

Dependent variable of a linear regression
model is defined on R.

Generalized linear models allow the dependent
variable to be defined on other domains than
real numbers, for instance binary (0/1), counts
(non-negative integers), etc.

Logistic regression maps input real numbers to
the range between 0 and 1 in two steps: (1)
building a simple linear regression, (2) applying
the logistic function to map the intermediate

dependent variable to the desired domain (0,1).
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Data come from Wikipedia’'s item on logistic regression



https://en.wikipedia.org/wiki/Logistic_regression

Hidden or skipped in the lecture

Multiple regression with regularization

We may have multiple independent variables. For
instance, in the example on the right side, we want
to predict which topics contribute to passing the
exam. In such cases, we apply multiple regression.

In multiple regressions, we often wish for a sparse
solution: i.e. we wish to know the few most
important features that contribute to the prediction.
A technique to achieve this is regularization.

Regularization penalizes large coefficients. It

effectively push coefficients towards zero. For
instance, the equation below shows the error
function of ridge regression.
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f(Y): a binary label to indicate whether
someone pass an exam

d,-g,: students
1,-gt topics
B ,-B. 4 coefficients of topics

Equation: Bishop, Christopher M. Pattern Recognition
and Machine Learning, page 10



https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

We next address two problems: (1) unknown performance
of model when new data are met, and (2) non-linearity

1.0 QQ
1.0 Aes 1.0 ’»
0.5 o
z 0.5 0.5
- — "
10 05 00 05 1.0 o _ -6 — .
¢ 1 1.0 05 00 05 1.0 1.0 -05 ofo 05 1.0
0.5 0.5 0.5 :
“% 1.0 %aé 1.0 1.0
oy . o 2 @
X X

« Left: a simple example of non-linearity: linear models cannot predict z well based on values of x and y.
We need something else.

* Right: a model is usually trained in some data, and the performance is assessed in unseen test data.
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We can use random forest to model non-linearity
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Neural network can be used to model non-linearity, too

Neural network models non-linearity by applying
multiple linear combinations subsequently in the

forward propagation.

Once the architecture (# hidden layers, # nodes, etc.) is
fixed, weights of edges neural network are initialized
with random numbers, and then optimized by iterative
forward and reverse propagation to minimize the error.

Right figure: the trained neural network with the
example data. Blue nodes indicate intercepts.

Reference

Prediction 0 1
016 6
1 0 16

Hidden layer

Error: 0.000172 Steps: 1085



Generally, well-performing models tend to be less interpretable
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Hidden or skipped in the lecture A/I<—>I\L
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For tabular data: tree-based methods are well interpretable
and generally outperform deep learning
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10 Regression (19 datasets)

The authors collected 45 10 Classification (15 datasets)

tabular datasets from varied
domains.

0.9
RandomEorest

------

They found that tree-based
models remain
state-of-the-art on
medium-sized data (~10k
samples), even without
considering the speed.

0.8 GradientBoostingTree

Normalized R2 test score of best
model (on valid set) up to this iteration

0.6 Resnet

1 10 100 1 10 100
Number of random search iterations Number of random search iterations

Normalized test accuracy of best
model (on valid set) up to this iteration

Conclusion: when working

with tabular data, consider
Grinsztajn, Léo, Edouard Oyallon, and Gaél Varoquaux. “Why Do Tree-Based Models Still Outperform

tree-based methods. Deep Learning on Tabular Data?” arXiv, July 18, 2022. https://doi.ora/10.48550/arXiv.2207.08815.
GitHub repository: https://github.com/LeoGrin/tabular-benchmark
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https://doi.org/10.48550/arXiv.2207.08815
https://github.com/LeoGrin/tabular-benchmark
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Performance neural networks improve as data amount, 4
computational power, and model size increases
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Language modeling performance improves smoothly as we increase the model size, dataset size, and amount
of compute used for training. PF-days: Peta-FLOPs. From: Kaplan, J. et al. Scaling Laws for Neural Language
Models (2020).
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https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.48550/arXiv.2001.08361

Watchout 1: Temporal validation is essential for drug discovery

Limited dataset
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Test set

.
Time

(Left) To assess the generalization ability of a supervised learning algorithm, data are separated into a
training subset used for building the model and a test subset used to assess the generalization error.

(Right) Temporal validation is especially important for drug discovery, because chemical structures used in the
training set may differ substantially from those that will be tested.



Watchout 2: Molecular sim
similarity
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Watch out biological activity cliffs:
Structural similarity does not imply
similar activity. Top: three vascular
endothelial growth factor receptor 2
(VEGFR2) ligands that represent
different similarity—activity relationships.

6 nM

2390 nM

Duran-Frigola, Miquel, Eduardo Pauls, Oriol Guitart-Pla, Martino Bertoni, Victor Alcalde, David Amat, Teresa Juan-Blanco, and Patrick Aloy. 2020. *
Small-Molecule Similarity Principle to All Levels of Biology with the Chemical Checker.”
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A1: 2D fingerprints

B1: Mechanisms of action
C1: Small molecule roles
D1: Transcription

E1: Therapeutic areas

A2: 3D fingerprints

B2: Metabolic genes

C2: Small molecule pathways
D2: Cancer cell lines

E2: Indications

A3: Scaffolds

B3: Crystals

C3: Signaling pathways
D3: Chemical genetics
E3: Side effects

A4: Structural keys

B4: Binding

C4: Biological proceses
D4: Morphology

E4: Diseases & toxicology

A5: Physicochemistry

B5: HTS bioassays

C5: Interactome

D5: Cell bioassays

E5: Drug—drug interactions

A: Chemistry

B: Targets

C: Biological network
D: Cells

E: Clinical readout
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Extending the
Nature Biotechnology, May, 1-10.

19


https://doi.org/10.1038/s41587-020-0502-7
https://doi.org/10.1038/s41587-020-0502-7

Watchout 3: Do we need correlation or causation?
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Johnson, Stephen R. “The Trouble with QSAR (or How | Learned
To Stop Worrying and Embrace Fallacy).” Journal of Chemical
Information and Modeling 48, no. 1 (January 1, 2008): 25-26.
https://doi.org/10.1021/ci700332k
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Boué, Laurent. “Real Numbers, Data Science and Chaos: How to
Fit Any Dataset with a Single Parameter.” ArXiv:1904.12320 [Cs,
Stat], April 28, 2019. http://arxiv.org/abs/1904.12320.GitHub Repo.
Also see: Drawing an elephant with four complex parameters
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http://arxiv.org/abs/1904.12320
https://github.com/Ranlot/single-parameter-fit
https://publications.mpi-cbg.de/Mayer_2010_4314.pdf

Generative models shed light on correlation and causality
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4.926791
4.479734
4.289686
4.474023
4.214551
6.057431
4.597903
5.021571
3.627323
5.622794
5.555025
4.966007
5.076791

Assumptions of the generative model.:

1. Xis arandom variable;

2. Every unit change of X induces a change of 2 units in Y.

y
10.067779

8.424283
8.835629
9.630499
8.416680
11.578080
8.283025
9.922731
6.651222
11.959972
11.727815
10.951562
9.768299

True effect: 2.0
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NXl
Correlation is caused by causation or confounding Stk
X 9 O QO
True effect: 2.0 The reverse fit True effect: 0.0
15.0

A _ I PSS A _ a1
x = 0.907+0411y, R = 0.75 y = 569+0.789 xgR” = 0.22

A 2.
y=0721+183 x, R® = 0.7
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Statistical models alone cannot derive causality from correlation 22



We learn causality by (1) listing models explicitly and (2)
manipulating a variable and observe the outcomes

Model 1 Q 0
Model 2 0 e
Model 3 €—— —— @)

Assume that the data is generated by either
Model 1, or Model 2, or Model 3. And assume
that we can manipulate the value of X by
setting it to 1.0 (the dash line).

Question: which outcomes (red stars or
blue crosses) would support which models?
Why?
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Conclusions

1. Statistical and machine learning (ML) models can model linear and nonlinear
relationships between variables.

2. Applying statistical and ML models in drug discovery needs to consider the facts that we
always work on something new, structure similarity does not warrant activity similarity,
and correlation is not causation.

3. Correlation can be caused by (1) causation, (2) confounding, (3) coincidence, (4)
conspiracy, (9) collider, and (6) chronology.
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