
Feedback of lecture 6

…in lecture 6 I felt run over. I did not get the 
golden thread. At first we talked about 
poisson and exp distributions and suddenly 
we had a look on several ML methods until 
we end up with the correlations. I know 
those topics are related to each other since 
we are dealing with statistical methods. 
Maybe one single "representative" ML 
method would have been enough (at least 
for me) to understand the statistical nature 
of data driven models. I think we had 
QSAR, Random Forest and Neuronal 
Networks.

Thanks so much for your effort and I hope 
this feedback helps!



AMIDD 2024 Lecture 7: causal inference

Dr. Jitao David Zhang, Computational Biologist
1 Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche
2 Department of Mathematics and Informatics, University of Basel 2

Temporality

PlausibilityStrength

Reversibility

Consistency

Specificity

Coherence

Experiment

Analogy

Dose response
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Association or Causation?” (1965) by A. B. Hill.



The simplest linear model has three components: the 
intercept, the slope, and a measure of fit

In this example, the 
coefficient of 
determination (R2) is 
used as the measure.

R2 measures the relative 
fit of the linear model with 
regard to a baseline 
model, where the mean 
value of y is used as a fit.
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Generative models shed light on correlation and 
causality

Assumptions of the generative model:
1. X is a random variable;
2. Every unit change of X induces a change of 2 units in Y. 4



Correlation may be coincidence, or causation, or 
confounding (common cause)

Statistical models alone cannot derive causality from correlation 5



We learn causality by (1) listing models explicitly and (2) 
manipulating a variable and observe the outcomes

Assume that the data is generated by either 
Model 1, or Model 2, or Model 3. And assume 
that we can manipulate the value of X by 
setting it to 1.0 (the dash line).
Question: which outcomes (red stars or blue 
crosses) would support which models? Why?

Model 1

Model 2

Model 3
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A very good question

It is still unclear to me why sometimes the blue crosses are predicted so high 
when we set X=1. If there is the following relationship " X <-- U --> Y " wouldn't X 
and Y still be correlated? Let's use the ice cream/temperature/wildfire example 
where the relationship is "ice cream <-- temperature --> wildfire". If X is lower, Y is 
also lower, even though it's not causal. If we have one wildfire, we can't conclude 
anything about the temperature at that time. But if we have an overall low number 
of wildfires (Y) in a given time period, couldn't we assume the temperature during 
this given time period was low? And through correlation assume that the ice cream 
sales during this given time period was also low? Wouldn't this look like the red 
stars?



Variables in models can be either continuous or discrete

Model 1

Assumptions of the generative model:
1. X is a random variable taking the value 

of either 0 or 1 with equal probability 
p=0.5.

2. Y is a random variable following 
Gaussian distributions:
a. Mean(Y|X=0)=0
b. Mean(Y|X=1)=2.0
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Common Directed Acylic Graph (DAG) structures (1): the Pipe

Assumptions of the generative model:
1. X is a random variable following Gaussian distribution N(5,1)
2. Z takes the value of -1 if X is smaller than 5, and 1 if X is equal to or larger than 5.
3. Y is a random variable with mean defined by Z*1.5. 9



Conditional on the mediator in a pipe, the effect of the 
cause is blocked

Assumptions of the generative model:
1. X is a random variable following Gaussian 

distribution N(5,1)
2. Z takes the value of -1 if X is smaller than 5, and 1 if 

X is equal to or larger than 5.
3. Y is a random variable with mean defined by Z*1.5.
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Common DAG structures (2): The Fork

Assumptions of the generative model:
1. Z is a random variable taking the value of either 0 or 1.
2. Both X and Y are random variables following Gaussian distribution with mean equal to Z.
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Conditioning on the fork breaks the correlation

Given a fork structure, both children of the common cause are correlated. The 
correlation disappears when we condition on the common cause (i.e. 
stratification by the common cause in the case of discrete variables, or including 
the variable in the regression in the case of continuous variables). 12



Common DAG structures (3): The Collider

Assumptions of the generative model:
1. X and Y are random variables following Gaussian distribution N(0,1)
2. The value of Z is 1 if X+Y>0, and -1 if X-Y<=0. 13



Conditioning on the collider introduces spurious 
correlations

In a collider structure, the parents of the collider can be independent from each 
other.  However, they become correlated when we condition on the collider. 
Collider is everywhere! 14



A summary so far

■ Data alone cannot tell causality, 
though in most cases we are 
interested in causal questions.

■ Correlation between two 
variables can be caused by 
coincidence, causality, or 
common cause.

■ Most common structures in a 
graph causal model are pipes, 
forks, and colliders. Stratifying by 
or regressing out variables may 
remove or create correlation.

The pipe

The fork

The collider

X 
correlated 
with Y?

When 
conditioning 
on Z?

Yes No

Yes No

No Yes
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Stop exploitative data analysis, build generative models

The descendant

?

?

?

?

We need to build models (knowledge + assumptions) to infer causality

Biomarker, tox study, pathology, 
omics data, real-world data, EHR, ...
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Claim: running enhances spatial pattern separation in mice
Creer et al., PNAS 2010

Creer, David J., Carola Romberg, Lisa M. Saksida, Henriette van Praag, and Timothy J. Bussey. “Running Enhances Spatial Pattern Separation in Mice.” 
Proceedings of the National Academy of Sciences 107, no. 5 (February 2, 2010): 2367–72. https://doi.org/10.1073/pnas.0911725107.

Lazic Stanley E. “Using Causal Models to Distinguish between Neurogenesis-Dependent and -Independent Effects on Behaviour.” Journal of The Royal Society 
Interface 9, no. 70 (May 7, 2012): 907–17. https://doi.org/10.1098/rsif.2011.0510.

Running increases 
neurogenesis

Running improves 
spatial pattern 

separation

Neurogenesis improves 
spatial pattern 

separation
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Question: does pharmaceutical modulation of 
neurogenesis benefit pattern separation?

Lazic Stanley E. “Using Causal Models to Distinguish between Neurogenesis-Dependent and -Independent Effects on Behaviour.” Journal of The Royal Society 
Interface 9, no. 70 (May 7, 2012): 907–17. https://doi.org/10.1098/rsif.2011.0510.

M1 (the pipe model) suggests 
that conditioned on 
neurogenesis, exercise and 
behaviour are independent 
(not correlated).

M2 (the fork model) suggests 
that conditioned on exercise, 
neurogenesis and behaviour 
are independent.
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Behaviour and neurogenesis even shows negative correlation 
conditional on exercise- an example of Simpson’s Paradox

Rotation/
mirroring

Regression 
conditional on 
treatment

Causal inference reduces bias in analysis by listing models explicitly

Based on the analysis, I believe model M2 is more likely to be true than M1.
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Causal inference is important for both randomized 
experiments and observational studies

● In drug discovery and development, we often care 
about potential outcomes or counterfactuals: 
what had if the patient received the alternative 
treatment, keeping everything else constant?

● Randomized experiments and controlled trials 
are gold-standard methods to address causal 
questions. Non-compliance and intermittent events 
call for causal analysis of the data even in 
randomized trials.

● Given causal models, it is sometimes possible to learn 
causal relationships from observational data as well. 

t0 t1
✅

✅

❌

❌

❔

❔

❔

❔
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Causal inference is a missing data problem

Individual Treatment Value (AU)

1 Control 75

2 Control 73

3 Control 74

4 Treatment 55

5 Treatment 45

6 Treatment 60

Individual Value (AU) with 
Control

Value (AU) with 
Treatment

1 75 ?

2 73 ?

3 74 ?

4 ? 55

5 ? 45

6 ? 60

A classical textbook A classical textbook in 50 years
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Assignment mechanism determines which data are 
missing, and determine the statistical technique to be 
used

■ Classical Randomized Experiments: 
we control the assignment 
mechanism;

■ Regular assignment (observational 
studies): we know part but not all of 
the assignment mechanism;

■ Regular assignment with 
non-compliance: we need an 
instrumental variable.

Individual Value (AU) 
with Control

Value (AU) with 
Treatment

1 75 ?

2 73 ?

3 74 ?

4 ? 55

5 ? 45

6 ? 60
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Instrumental variable helps to dissect causal from 
confounding effects

https://www.nobelprize.org/prizes/economic-sciences/2021/popular-information/

Z: Birthday
X: Education
Y: Income
U: Socioeconomic and 
individual factors
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Instrumental variable is critical for both Mendelian 
Randomization (MR) and handling with non-compliance

Noyce, Alastair J., Demis A. Kia, Gibran Hemani, 
Aude Nicolas, T. Ryan Price, Eduardo De 
Pablo-Fernandez, Philip C. Haycock, et al. 
“Estimating the Causal Influence of Body Mass 
Index on Risk of Parkinson Disease: A Mendelian 
Randomisation Study.” PLoS Medicine 14, no. 6 
(June 2017): e1002314. 
https://doi.org/10.1371/journal.pmed.1002314.

Cinelli, Carlos, Andrew Forney, and Judea 
Pearl. “A Crash Course in Good and Bad 
Controls.” SSRN Scholarly Paper. Rochester, 
NY: Social Science Research Network, 
September 9, 2020. 
https://doi.org/10.2139/ssrn.3689437.

Z: Assignment (Placebo/Drug)
X: Treatment
Y: Value of interest
U: unobserved factors
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Consequences
1. Data alone does not answer causal questions: whenever we are interested in 

interventions (modulating a target, changing the structure of a molecule, etc.), 
predictive tools such as linear regression, machine learning, and artificial intelligence 
models must be embedded in the causal framework.

2. Addressing causal questions when necessary:
a. Derive causal models using science, making assumptions transparent
b. Program the model as a generative simulation
c. Design research and validate statistical analysis using (b)
d. Confront the model with data, share both wins and losses transparently with 

others
e. Revise and repeat

3. Model first, data second: From DA (Data and Analytics) to MADAM (Model 
construction, Analysis of the model, Data collection, Analysis of the data with the 
model, and Model refinement)
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Ten Simple Rules of Causal Inference

1. Clarify whether correlation or causation is of interest.
2. Draw models of knowledge, assumptions, and data-generation 

processes as graphs. 
3. Formulate the causal question by identifying the target estimand.
4. Collect, check the quality of, and filter data. 
5. Estimate the causal effect with software.
6. Challenge and refute the causal model.
7. Compare results with estimates from alternative methods. 
8. Share model, data, and analysis. 
9. Design, perform, and analyze new experiments.

10. Apply learnings from causal inference in the real world. 26



Models in disease understanding and drug discovery

Biological simulations

Molecular 
models

Omics and 
cellular models

Organ- and 
system-level 
models

Population 
models

Computational simulations

Statistical models

Causal graphical models

Structural causal models

Descriptive graphical models

Mechanistic/physical models

Hierarchy
Enzymic 

Cellular models
Microphysiological 
systems

Animal models
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Causal inference is not always easy

Credit: Ulrich Certa 28



Reality
Experiments

Models
Causality

Science is not about reality. 
Science is always about models.

Honest anarchy 
translates 
between models 
and experiments 
with creativity, 
ideas, and even 
irrationality.
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“There is no method for making 
causal models other than science. 
There is no method to science other 
than honest anarchy.” 
- Richard McElreath
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Conclusions

1. Statistical and machine learning models can model linear and nonlinear 
relationships between variables.

2. Applying statistical and ML models in drug discovery needs to consider 
the facts that we always work on something new, structure similarity does 
not warrant activity similarity, and correlation is not causation.

3. Causal inference combines prior knowledge and statistical/ML modelling 
to answer what-if questions.
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Resources for learning about machine learning
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ESL and ISL: From a 
frequentist view (almost)

PRML and ITILA: From a 
Bayesian view

MLaPP: Application 
oriented, more accessible, 

and balanced views

Mathematical foundations

https://web.stanford.edu/~hastie/ElemStatLearn/
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
http://www.inference.org.uk/mackay/itila/book.html
https://www.cs.ubc.ca/~murphyk/MLbook/
https://mml-book.github.io/


Resources for learning about causal inference
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Causal inference in drug discovery and development, Michoel and Zhang, 2022

Lectures available on 
YouTube

https://arxiv.org/abs/2209.14664
https://www.youtube.com/watch?v=BYUykHScxj8&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN
https://www.youtube.com/watch?v=BYUykHScxj8&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN


Answers

Red stars are supported by Model 1.
Blue crosses are supported by both Model 2 and Model 3.

Reason: causality (C→E, from cause to effect) is directional. Manipulating C has an effect on E, while 
manipulating E has no effect on C. Blue crosses are around mean values of Y. If Y causes X, 
manipulating X has no effect on Y. Then the most likely values of Y will be around the mean of existing 
samples.

Hidden or skipped in the lecture

34


