AMIDD 2024 Lecture 9: Biological networks and omics
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Translational research makes molecules into medicines 4
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Adapted from Paul et al. “How to Improve R&D Productivity: The Pharmaceutical Industry’s Grand Challenge.” Nature Reviews Drug Discovery, 2010
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Classical workflow of efficacy and toxicity assessment
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Mechanism of Action and Mode of Action

e Mechanism of Action: The specific biochemical interaction
through which a drug substance produces its pharmacological
effect, at the molecular level.

e Mode of Action: Functional or anatomical changes, at the cellular
level, resulting from the exposure of a living organism to a
substance.

e Forinstance, a mechanism of action of a drug can be “binding to
Monoacylglycerol lipase (MAGL)” while its mode of action would be

“regulating endocannabinoid signaling” and “reducing inflammation’.

e Inlead optimization (LO) and early development, our goal is to
understand both the mechanism of action and the mode of action in
vitro, in vivo, and in human. The term MoA is used to refer both.
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The Hill function is a common model of in vitro pharmacology

The Hill function is one of the
mostly useful non-linear functions
to model biological systems.

In its general form, H__ indicates
the maximal value to which the
function is asymptotic, n is the
shape parameter (known as the
Hill's coefficient), and k is the
reflection point, often abbreviated
as XC., (X=I, E, C, ...), the
half-saturation constant.

The Michaelis-Menten model is a
special case of the Hill function
(n=1).
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Suppose it is an antiviral drug, compared with curve B, what does curve A, C, and D suggest?



https://cancerdiscovery.aacrjournals.org/content/3/7/742
https://cancerdiscovery.aacrjournals.org/content/3/7/742
http://www.jci.org/113/8
https://doi.org/10.1172/JCI21682
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Biological networks interact with drugs and manifest its
efficacy and safety
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Reaction Rate Equations: a compartment/ODE model of R
biological chemical reaction
RRE simulation of the
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RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time tis

a real number representing the concentration of species j at time t.


http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

Simulation of biological networks with ordinary differential
expression
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See Systems Engineering Wiki (tue.nl) for MATLAB/COPASI codes and
Stochastic Modelling for Systems Biology by Darren J. Wilkinson



http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

Simulating behavior of complex ODE systems with COPASI 4

« COPASI, freely available at
http://COPASI.org/,
supports both ordinary
differential equation
(ODE) based simulation as
well as stochastic kinetic
simulation.

« Such tools are important
for detailed analysis of
enzymatic reactions, for
instance in the presence of
drugs and/or
disease-relevant mutation.
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Figure: Huang and Ferrell, PNAS, 2006. Resources to learn more about
stochastic modelling: MIT OpenCourseWare by Jeff Gore, and Stochastic

Processes: An Introduction, Third Edition by Jones and Smith. Tutorials also
available on the website of European Bioinformatics Institute (EBI)
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http://copasi.org/
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses

Different ways of modelling biological networks o4
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Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and loannis Xenarios. 2012. “Implicit Methods for Qualitative

Stéphane CHEDIN & Jean LABARRE, www-dsv.cea fr Modeling of Gene Requlatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited by Bart

Deplancke and Nele Gheldof, 397-443. Methods in Molecular Biology. Totowa, NJ: Humana Press.
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https://doi.org/10.1007/978-1-61779-292-2_22
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Biological networks can be studied with omics technologies
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Principle of next-generation RNA sequencing (NGS) o
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We can reveal compound’s
effect on gene expression by
performing differential gene
expression analysis
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Visualization (e.g. volcano plot)

Read Mapping

Count collection

Normalization

Differential Gene
Expression
Analysis
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Advantages and challenges of using RNA sequencing to study MoA .,

Advantages:

1. Since patient samples can be also profiled with
omics technologies, it is possible to compare a
compound’s effect with the changes induced by
disease progression (right).

2. Well-designed omics study can reveal strong and
subtle effects of the compound (the example with
splicing modifier).

Challenges:

1. Data from biological models that poorly reflect
human disease can do more harm than benefits.

2. Curse of dimensionality.
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Hidden or skipped in the lecture

Splicing of SMN1 and SMN2 genes: patients with mutations in

SMN1 gene suffer from Spinal Muscle Atrophy (SMA)
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Three drugs of different modalities are approved to treat SMA
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https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL4297528/
https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL3833342/

Hidden or skipped in the lecture

Splicing of SMN1 and SMN2 genes: patients with mutations in
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Hidden or skipped in the lecture NXL
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Small molecules were identified as RNA splicing modifiers i
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Hidden or skipped in the lecture

[LogoFC]

RNA sequencing confirms the specificity of SMN-C3

Transcriptional changes by SMN-C3
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RNA sequencing confirms the superior safety profile of SMN-C3 ¢
over other compounds sAYEL
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Given enough tests, there will be significant
results

set.seed(1887)

patient group <- gl(2,10)

response <- c{rnorm(10, @), rnorm(10, -3))

random features large <- matrix(rnorm(20*50000), nrow=20)

large cor <- cor(response, random features large, method="spearman")
hist(large cor)

largest cor ind <- which.max(large cor)
{
compactPar()
plot(random features large[, largest cor ind],
response,
bg=patient_group,pch=21,
xlab=sprintf("Random feature [index %d]", largest cor _ind))
abline(lm(response ~ random features largel[, largest cor ind]))

}

Frequency
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Histogram of large_cor
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The road of MoA understanding can be 120 year long

O OH
Dai et al, Cell, 2019

OY Acetylation blocks cGAS activity and
inhibits self-DNA-induced
O autoimmunity

e Acetylation suppresses cGAS

activity
i . e Aspirin directly acetylates cGAS
oy ——— e Aspirin inhibits cGAS-mediated
Q“"l a.,.s.."n‘k”;_'g‘.;'?.:‘.a’.:{:{;'.‘:’?mm (3 . .
N i e IR interferon production

e Aspirin alleviates DNA-induced
autoimmunity in AGS mouse

Aspirin
trademarked in models and patient cells
1899

MoA understanding can be a long process full of surprises
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Summary

1. Inlead optimization and early development, we are
interested in MoA of drug candidates in vitro, in vivo,
and in human.

2. We can study MoA by modeling biological networks,
for instance with ODE-based models and its variants.

3. We can also study MoA by performing omics
experiments and analysing the data with statistical,
machine-learning or Al tools. It is helpful to keep both
advantages and challenges in mind.

WHEN YOU SEE A CLAIM THAT A
COMMON DRUG OR VITAMIN “KILLS
CANCER CELLS IN A PETRI DISH

KEEP IN MIND:

4

S0 DOES A HANDGUN.
https://xkcd.com/1217/



