# **AMIDD 2024 Lecture 9: Biological networks and omics**



#### Dr. Jitao David Zhang, Computational Biologist

<sup>1</sup> Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche <sup>2</sup> Department of Mathematics and Informatics, University of Basel

# Translational research makes molecules into medicines



Adapted from Paul et al. "How to Improve R&D Productivity: The Pharmaceutical Industry's Grand Challenge." Nature Reviews Drug Discovery, 2010

UNI BASEL

# **Classical workflow of efficacy and toxicity assessment**





## Mechanism of Action and Mode of Action

- Mechanism of Action: The specific biochemical interaction through which a drug substance produces its pharmacological effect, *at the molecular level*.
- Mode of Action: Functional or anatomical changes, *at the cellular level*, resulting from the exposure of a living organism to a substance.
- For instance, a mechanism of action of a drug can be "binding to Monoacylglycerol lipase (MAGL)" while its mode of action would be "regulating endocannabinoid signaling" and "reducing inflammation".
- In lead optimization (LO) and early development, our goal is to understand both the mechanism of action and the mode of action *in vitro*, *in vivo*, and in human. The term *MoA* is used to refer both.



BASEL

# The Hill function is a common model of in vitro pharmacology



- In its general form, H<sub>max</sub> indicates the maximal value to which the function is asymptotic, n is the shape parameter (known as the Hill's coefficient), and k is the reflection point, often abbreviated as XC<sub>50</sub> (X=I, E, C, ...), the half-saturation constant.
- The Michaelis-Menten model is a special case of the Hill function (*n*=1).



Suppose it is an antiviral drug, compared with curve B, what does curve A, C, and D suggest?

# Biological networks interact with drugs and manifest its efficacy and safety



UNI BASEL



# Reaction Rate Equations: a compartment/ODE model of biological chemical reaction



RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the *j*th equation at time *t* is a real number representing the concentration of species *j* at time *t*.



# Simulation of biological networks with ordinary differential expression

Given the reaction

$$\mathrm{S} + \mathrm{E} \stackrel{k_1}{\rightleftharpoons} \mathrm{C} \stackrel{k_3}{\to} \mathrm{P} + \mathrm{E} \stackrel{k_3}{\to}$$

7

Given the initial values and rate constants



According to the law of mass action

$$\begin{split} \frac{d[S]}{dt} &= -k_1[E][S] + k_2[C],\\ \frac{d[E]}{dt} &= -k_1[E][S] + (k_2 + k_3)[C],\\ \frac{d[C]}{dt} &= k_1[E][S] - (k_2 + k_3)[C],\\ \frac{d[P]}{dt} &= k_3[C], \end{split}$$

It is possible to simulate the concentration changes by time *deterministically*.



See <u>Systems Engineering Wiki (tue.nl)</u> for MATLAB/COPASI codes and *Stochastic Modelling for Systems Biology* by Darren J. Wilkinson

## Simulating behavior of complex ODE systems with COPASI

- COPASI, freely available at <a href="http://COPASI.org/">http://COPASI.org/</a>, supports both ordinary differential equation (ODE) based simulation as well as stochastic kinetic simulation.
- Such tools are important for detailed analysis of enzymatic reactions, for instance in the presence of drugs and/or disease-relevant mutation.

Figure: Huang and Ferrell, PNAS, 2006. Resources to learn more about stochastic modelling: <u>MIT OpenCourseWare</u> by Jeff Gore, and <u>Stochastic</u> <u>Processes: An Introduction, Third Edition</u> by Jones and Smith. Tutorials also available on <u>the website of European Bioinformatics Institute (EBI)</u>

#### ODE-based simulation of dynamics







# Different ways of modelling biological networks



Stéphane CHÉDIN & Jean LABARRE, www-dsv.cea.fr



Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and Ioannis Xenarios. 2012. "<u>Implicit Methods for Qualitative</u> <u>Modeling of Gene Regulatory Networks</u>." In *Gene Regulatory Networks: Methods and Protocols*, edited by Bart Deplancke and Nele Gheldof, 397–443. Methods in Molecular Biology. Totowa, NJ: Humana Press.

### Biological networks can be studied with omics technologies





# Principle of next-generation RNA sequencing (NGS)



We can reveal compound's effect on gene expression by performing differential gene expression analysis

Egt

-5

-log10(pvalue)



13

2.00

gene N

2.40

2.10

2.20

UNI BASEL



# Advantages and challenges of using RNA sequencing to study MoA

Advantages:

- 1. Since patient samples can be also profiled with omics technologies, it is possible to compare a compound's effect with the changes induced by disease progression (right).
- 2. Well-designed omics study can reveal strong and subtle effects of the compound (the example with splicing modifier).

Challenges:

- 1. Data from biological models that poorly reflect human disease can do more harm than benefits.
- 2. Curse of dimensionality.



Pathway regulation by beneficial compounds and in cardiomyopathy: the correlation

#### Hidden or skipped in the lecture

# Splicing of SMN1 and SMN2 genes: patients with mutations in SMN1 gene suffer from Spinal Muscle Atrophy (SMA)







# Three drugs of different modalities are approved to treat SMA

AAV9 capsid





SMN1 gene

Onasemnogene Abeparvovec/ Zolgensma Nusinersen sodium/ Spinraza (<u>CHEMBL3833342</u>) Risdiplam/ Evrysdi (CHEMBL4297528)

#### Hidden or skipped in the lecture

# Splicing of SMN1 and SMN2 genes: patients with mutations in SMN1 gene suffer from Spinal Muscle Atrophy (SMA)





# UNI BASEL

## Small molecules were identified as RNA splicing modifiers



Hidden or skipped in the lecture

## **RNA** sequencing confirms the specificity of SMN-C3





#### Hidden or skipped in the lecture

# RNA sequencing confirms the superior safety profile of SMN-C3 over other compounds





# largest\_cor\_ind <- which.max(large\_cor) { compactPar() plot(random\_features\_large[, largest\_cor\_ind], response, bg=patient\_group,pch=21, xlab=sprintf("Random feature [index %d]", largest\_cor\_ind])) abline(lm(response ~ random\_features\_large[, largest\_cor\_ind])) }</pre>

# Given enough tests, there will be significant results

```
set.seed(1887)
patient_group <- gl(2,10)
response <- c(rnorm(10, 0), rnorm(10, -3))
random_features_large <- matrix(rnorm(20*50000), nrow=20)
large_cor <- cor(response, random_features_large, method="spearman")
hist(large_cor)</pre>
```



Frequency



Histogram of large\_cor



21



# The road of MoA understanding can be 120 year long



Aspirin trademarked in 1899 Dai et al, Cell, 2019

Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity

- Acetylation suppresses cGAS activity
- Aspirin directly acetylates cGAS
- Aspirin inhibits cGAS-mediated interferon production
- Aspirin alleviates DNA-induced autoimmunity in AGS mouse models and patient cells

MoA understanding can be a long process full of surprises

## Summary

- 1. In lead optimization and early development, we are interested in MoA of drug candidates *in vitro*, *in vivo*, and in human.
- 2. We can study MoA by modeling biological networks, for instance with ODE-based models and its variants.
- 3. We can also study MoA by performing omics experiments and analysing the data with statistical, machine-learning or AI tools. It is helpful to keep both advantages and challenges in mind.

When you see a claim that a common drug or vitamin "kills cancer cells in a petri dish,"

KEEP IN MIND:



https://xkcd.com/1217/

