Feedback of lecture 4

How was your overall impression of the fourth lecture?
20 Antworten

100 10 (50 %)
9 (45 %)
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5,0
25
0(0% 0(0% 0(0%
0%) 0%) (0 %) 16%)
0,0
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How well could you understand and follow David (the lecturer)?
20 Antworten
10,0
' 10 (50 %)
75
0
55 6 (30 %)
25 3 (15 %)
0(0% 0(0%
0 %) 1(5%) (0 %)
0,0
1 2 3 4 5 6

Do you think a 30- to 45-minute session of Ask Me Anything, some time in the semester, would be of BA

value for you?

] 7 (35 %)
. 5 (25 %) 5 (25 %)
2 2 (10 %)
0(0 %) 1 (5 %)
+ Topic difficult but delivery enjoyable
+ Slides helped understanding
+ Ask Me Anything would be a good idea
?  AMA session outside of the lecture?
?

More stories & reading & less math expected
Give time to read slides and think

Add videos for visuals

Include more group work

Make session more interactive



AMIDD 2025 Lecture 5: Protein as Drug Target

L Ligands PoseBusters set Proteins
- n AF3
e Hkk W AF-M 2.3 AR
*kk *okk !
80 N |
ok
£ 60 3
g |
]
3
201 =
0 T T — T T T
AF3 AutoDock  RoseTTAFold All Protein- Protein
2019 cut-off Vina All-Atom  protein-protein  antibody monomers
n =428 n =428 n =427 n=1,064 n=65 n =338

Left: human coronavirus spike protein (left) bound to neutralization antibody (right), predicted by AlphaFold3 (predictions in color, ground truth
in gray). Right: Performance of AlphafFold3 for protein-ligand interaction and protein-protein interaction prediction. AF-M: AlphaFold Multimer.
Adapted from Abramson, ..., Hassabis, Jumper, Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature (2024)

Dr. Jitao David Zhang, Computational Biologist

" Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche
2 Department of Mathematics and Informatics, University of Basel


https://www.nature.com/articles/s41586-024-07487-w

JorhnrJ. Hopfield Gébffrey E. Hinton

The Nobel Prize in Physics 2024
"for foundational discoveries and
inventions that enable machine
learning with artificial neural
networks"

Darvid’ Baker De'miiisr Hassabis Jo‘Hh’N\. Jumper

The Nobel Prize in Chemistry 2024 was divided, one
half awarded to David Baker "for computational
protein design", the other half jointly to Demis
Hassabis and John M. Jumper "for protein structure

e
prediction .



Topics of lecture 5

* Protein, ligand, and protein-ligand interaction
e ODE-based mechanistic models



Central Dogma revisited I
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Central dogma as an information channel: nodes and edges can S,
all be targeted by drugs
Transcription ” * Translation Catalysis SmaII
DNA F—— —» | RNA —P Protein P olecules
Reverse ~ 7
DNA replication transcription
Target Example drugs
Small molecules Dietary supplements

Enzyme inhibitors
Protein Receptor agonists/antagonists, ion channel blockers, antibodies
Antimicrobial protein synthesis inhibitors
RNA Antisense oligonucleotides (ASO), vaccines
Antimicrobials (e.g. actinomycin D and a-Amanitin), splicing modifiers (e.g. Risdiplam/Evrysdi)
Antivirals (e.g. reverse transcriptase inhibitors AZT/Zidovudine )
DNA Gene therapies (e.g. chimeric activated receptors in T-cells, CAR-T)

Topoisomerase inhibitors (e.g. quinolones) and chemotherapy agents
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Amino acids are building blocks of proteins and form peptide /X
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Twenty-One Amino Acids

D.  Amino Acids with Hydrophobic Side Chain
A. Amino Acids with Electrically Charged Side Chains
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Figure by Dan Cojocari. Reused with CC license from wikimedia


https://commons.wikimedia.org/wiki/File:Molecular_structures_of_the_21_proteinogenic_amino_acids.svg

NX
Primary structure of proteins A
Acidic
Amino carboxyl
group

« (Top left) Human proteins are group v
chains of amino acids (AAs). The '
backbone remains the same while
the side chain varies among AAs.

« (Right) The amino group and the R group (side chain)

carboxyl group of adjacent amino

acids form peptide bonds. Proteins 3
are therefore called polypeptides. 3
o
« C-Ca bonds and Ca-N bonds can ¢ i
rotate at two dihedral angles, V¥ o

(psi) and ¢ (phi), respectively. J @eni

« (Bottom left) Due to steric
collisions, only a subset of

combinations of W and ¢ is
possible CaC NO



The Ramachandran Principle: alpha helices, beta strands,
and turns are the most likely confirmations for a polypeptide

Most other conformations are impossible
to due to clashes, known as steric
collisions, between atoms.

To learn more about the topic, check out
the YouTube video tutorial or the Slides

by Eric Martz, and finish the Quiz.

%

o AT
-180

100,000 dots taken from high-resolution crystallographic structures. Wikimedia Commons,
courtesy Jane and David Richardson (Proteins 50:437, 2003). This plot excludes glycines,
mol prolines, and amino acids preceding prolines.



https://www.youtube.com/watch?v=Q1ftYq13XKk
https://docs.google.com/presentation/d/13_RwaMP5484OTUfon9xkMnEpmJlNzRAfPP2WxHcv2fE/edit?usp=sharing
https://proteopedia.org/w/User:Eric_Martz/Ramachandran_Principle_Quiz
https://en.wikipedia.org/wiki/Ramachandran_plot#/media/File:Ramachandran_plot_general_100K.jpg
https://www.ncbi.nlm.nih.gov/pubmed/?term=12557186

Proteins specifically and tightly bind to other molecules o

Protein binds to RNA.

GLP1R o Protein FMRP is encoded
One protein binds by gene FMR1. Mutations
to another protein associated with FMR1
PDB 3iol FMRP (the\? RNA  induce the fragile X

Glucagon RGG motif) syndrome.PDB 5DE5

Protein binds to small
molecule. Cytochrome
P450 3A4 (CYP3A4) is
a major drug

C metabolizing enzyme,
X, which also metabolizes
caffeine. PDB 8so1

DNA Protein complex binds
Fos to DNA. The complex
Fos:Jun is known as ‘
AP-1, a transcription :
’ ff
Jun factor. PDB 1FOS. o oo’

molecules
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https://www.rcsb.org/3d-view/1FOS
https://www.rcsb.org/structure/3iol
https://www.rcsb.org/structure/5DE5
https://www.rcsb.org/structure/8so1

Major protein classes by functions 2T coll: Red dots: viral

peptides
»,’ & :}‘ ' _ s 7y L _

Enzymes: catalysis of chemical reactions. AL X
» To learn the basics of enzymes, watch the

video How Enzymes Work.

Transporters: moving ions, small molecules,
and proteins across membranes.

* Probably missing in the drawing. To learn the
basics of transporters and other ways cell
transport material across membranes,
Watch the video Biology: Cell Transport.

Receptors and kinases: signalling allows cells
adapt to the environment.
+ To learn the basics of cellular signaling,
watch the video Common cell signaling

pathway.

Structural proteins: stiffness, rigidity, and N - 5 =
mechanistical forces. X

Top: an antigen presenting cell; Bottom:

Figure: Immunological Synapse, David S. Goodsell, 2020

Enzymes
responsible

] for protein
] degradation

Major

histocomp
L atibility

complex
(MHC)

protein

| T-cell
» receptor

Kinases
that
propagate

the signal

Structural
proteins
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https://www.youtube.com/watch?v=yk14dOOvwMk
https://www.youtube.com/watch?v=ufCiGz75DAk
https://www.youtube.com/watch?v=9sF_h-bAnIE
https://www.youtube.com/watch?v=9sF_h-bAnIE
https://pdb101.rcsb.org/sci-art/goodsell-gallery/immunological-synapse

Some diseases are caused by changes in single protein

Adalimumab,
light chain
Glycine O
OH
NH,
Cysteine
" Adalimumab (Humira),
HS OH heavy chain
NH, TNF

Mutation of glycine (G) to cysteine (M) at position 12 (green,  Tymor necrosis factor (TNFa) promotes the

with sulfur in yellow) in Ras protein leads to a protein thatis  jyflammatory response in autoimmune diseases. Its

continually activated. The structure of the oncogenic mutant  |gyg| is elevated in diseases including inflammatory

(PDB ID 4ldj) reveals that the mutation modifies the bowel disease and rheumatoid arthritis. Monoclonal
interaction with GDP (magenta) and GTP, which acts as a antibodies against TNFa, for instance adalimumab
switch that turns the protein on and off. (Humira), are used for such indications. PDB 3WD5

12


https://www.rcsb.org/structure/4LDJ
https://www.rcsb.org/structure/3WD5

About 80-90% small-molecule and biological drugs are u
supposed to work by competitive inhibition

Ligand
(1) Drug @ orug (2) Drug 2
inhibits am 1 inhibits
enzyme receptor OUG\ q )
. . . . Lid i " ¥/
blnbdlrgtto \ It_)lndlgg to &}M AN l} i
substrate igan in ON OFF
(3) Drug (4) Drug
inhibits inhibits
protein X ligand
binding to binding to
protein Y receptor

Deshaies, Raymond J., and Patrick Ryan Potts. “Load and Lock: An Emerging Class of
Therapeutics That Influence Macromolecular Dissociation.” Science 389, no. 6762 (2025)



https://doi.org/10.1126/science.adx3595
https://doi.org/10.1126/science.adx3595

Methotrexate is a competitive
inhibitor of DHFR

-

i

Work by Thomas Shafee, Shared under CC-AS-4.0,
and work by Boghog. Based on PDB record 4QI9.
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The protein: Dihydrofolate reductase (DHFR) converts
dihydrofolic acid into tetrahydrofolate. The process is
important for cell proliferation and cell growth. DHFR is a
drug target for oncology (cancer) and autoimmune diseases.

The natural substrate: Dihydrofolic acid (vitamin B9), in
black. Dihydrofolic acid is the natural ligand of DHFR.

The drug: Methotrexate (MTX), in green, is a synthesized
ligand of DHFR, and it is a competitive inhibitor of DHFR.

The binding site: where the enzyme binds its substrate and
catalyses the chemical reaction, in blue.


https://commons.wikimedia.org/wiki/File:DHFR_methotrexate_inhibitor.png
https://commons.wikimedia.org/wiki/File:Methotrexate_vs_folate.svg
http://www.rcsb.org/pdb/explore/explore.do?structureId=4QI9

Skipped in the lecture

Sotorasib, Pertuzumab, Trastuzumab: examples of
small and large molecules inhibiting signaling

Left: The drug sotorasib binds covalently to the
sulfur atom in cysteine 12 of the Ras protein,
blocking its action. The drug is shown with _ 3
carbon atoms in green, the cysteine sulfur is in | ) Y Rl
yellow, and GDP is in magenta. Image created in
Jmol using PDB ID 6oim.

Sotorasib

Right: The extracellular domain of HER2 bound

to two therapeutic antibodies: pertuzumab and >
trastuzumab. The antibodies block the = &s.
formation of active dimers of the receptor, thus f'”%“/
blocking the growth signal (PDB 6ogi). The “

transmembrane domain is from PDB 2ksi. The  Sotorasib
kinase domain inside the cell is from PDB ID Highlight: covalent oF
3pp0, and the unstructured tail at bottom is warhead (the

. acrylamide group)
predicted by AlphaFold2.

tyrosine =


https://www.rcsb.org/structure/6oge
https://www.rcsb.org/structure/2ksi
https://www.rcsb.org/structure/3pp0
https://www.rcsb.org/structure/6oim
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Concentration-occupancy curves characterize protein-ligand binding **

X-axis: ligand concentration. Common units: molar (M),
micromolar (mM, 10® M), nanomolar (nM, 10° M),
picomolar (pM, 1012 M).

Y-axis: relative occupancy of the receptor. Alternative
values are possible, for instance response (more about
that later).

Points: individual measurements. In this plot: mean value
of replicates with error bars indicating variability.

Lines: fitted sigmoidal curves using the Hill function or its
variants.

Relative occupancy of the receptor

0.001 0.1 10

Ligand concentration [micromolar]
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A simple mathematical model addresses a key question: how is a S
receptor occupied by varying concentrations of drugs?

e ® Collision ® Ligand Receptor
1
S
L+ R <= LR
ks ";'J"f..'-}' X \:'.: <
.. Es ";". ‘.‘ "n . "’.'. «
d[LR] : Adn R
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« Ligand binding to receptor is a reversible reaction.
* The law of mass action: the rate of the chemical e TN L s || ® 5“5.:..4'.""-?'.-{ ot -..;{-:'.‘;,
reaction is directly proportional to the product of the £’ *q . 3 ,f,;':,'.}? i} 3 -
. A : - ..':.¢‘..oq L )
activities or concentrations of the reactants. The oy, P », " ';e. :.‘..{-,v;}, f-':.-;;, v 197
“ K., Vo
proposition can be derived from the collision theory. tal e o 4 X oS ,’ P eilTr
. . . .- P ®: 3 .'.0 & gt ’a .J;
See the right graph for an illustration. < ofe s 1 AE Lt e
'*n"‘." wty .""‘,'




An ordinary differential equation (ODE) model quantifies et
receptor occupancy by varying concentrations of ligands

kl The law of mass action d LR
L4+ R~=IH [dt | = k1[L]|[R] — k2[LR]
ko

At equilibrium, no net change of [LR]

ko [L][R] = koL
Riota = [R] + [LR]
v k1 [L]([Rtotal] — [LR]) = ko [LR],

L] Kp = ko /Ky
L]+ Kp LR = k1|L|[Rtotal]
ki|L] + ks
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The ODE model induces the simplest form of the Hill-Langmuir
Equation

k1
L+R+=LR Kp=k/k
ks
. . . P
The Hill-Langmuir function Hill-Langmuir function:  [LR] = [Rtota,l]L
describes the occupancy of L] + Kp

receptors by natural ligands of | Full occupancy

Full occupancy

_ _ ] 100% 1.00
drugs. We will meet it again. "

e oc
We can interpret K, (the % 75% S 075
dissociation constant) both § =

=
mathematically and physically g 50% %o "
& chemically. Mathematically, 2 =

= >
K_represents (1) the ratio of D 25% =

D . o D 0.25

reaction speeds, and (2) the &=
concentration required to ol i
occupy half of the receptors. 0 25 500 750 000 000

Concentration of L (arbitrary unit) ! 10 100 1000
concentration of L (log10(arbitrary unit))



The thermodynamic interpretation: K is directly associated

with the free energy of the reaction

no enzyme

E, without
enzyme

Energy

reactants

products

Reaction progress

Left: LibreTexts, Role of Enzymes,
Matthew F Kirk, Kansas State University

Free energy (G)

Drug-Target
Complex

Reaction process in time

AG=RTInK,

(R: gas constant, T: absolute temperature)

NX
\/|\/|\/
ANVANA

RN


https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_for_Earth_Scientists_(Kirk)/09:_Kinetic_Controls/9.01:_Role_of_enzymes

Offline activities

Question: all other conditions the same, which drug candidate is

more favorable? Why?

Treatment — Candidate 1 — Candidate 2

-
o
o

0.75

0.25

Relative occupancy of receptor
2

0.00

Full occupancy

1 10 100 1000
Ligand concentration (log10(A.U.))

21



The Lotka-Volterra model of predator-prey relationships

e The Lotka-Volterra equations modelling predator-prey relationships.

where

dx
dt
dy
dt

axr — [Bxy,

=y + dzy,

e x is the number of prey (e.g. rabbits),

e y is the number of predator (e.g. foxes).,

o ‘;—f and % represent growth rates of the two populations,
@ { represents time,

°

«, 3, v, and 0 are real parameters specifying the interaction of the two species.
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The Lotka-Volterra equations, visualized

500 A
400-_
r 300;
200—-

100 -

Lotka Volterra equation plot

0

Rabbits

10

Foxes
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The SIR model of epidemiology models population behavior K

of viral infection and recovery

BIS]{1] Y]
S > ] > R
ﬁ N gls
The SIR del of epidemiol i B oy
e model of epidemiology
« S: Susceptible ﬂ = BLS —
* |: Infectious dt N
« R:Removed d_R T
a

Simon CM. 2020. The SIR dynamic model of infectious disease
transmission and its analogy with chemical kinetics. PeerJ
Physical Chemistry 2:e14https://doi.org/10.7717/peerj-pchem.14

SIR model dynamics

1.0
RI(t
S 05 [RI(t)
- ff“"‘”
L
2 /
206 ——— /
= [1o=10">
S 0.4-
o ' [S1(t)
£o2 /

o
o

0 5 10 15 20 25
non-dimensional time, yt
R,: the basic reproduction number, is the

number of people infected by the initial
infectious individual. It is defined as Bly.


https://doi.org/10.7717/peerj-pchem.14

. . NX
Skipped in the lecture B0
XN

ODE-based mechanistic models are often used in pharmacokinetic

modelling
20— 1A .
7 (]— - _K-A

 Pharmacokinetics (PK) describes how £ at

the drug is absorbed, distributed, § 10 Aporus(t) = Agexp(—K - t)

metabolised, and excreted by the body. . \

K

* A basic mathematical model of PK is a ¥ ; L é C "5 C é

compartment model, i.e. one or more e

ordinary differential equations that describe
the relationship between drug
concentration and time. The simplest model
is the decay model of bolus (injection).

O—0 Propacetamol HCI 1g IV

A&——A Paracetamol 500mg PO

o
=)

— A, initial concentration
— A(t): drug concentration at time t
— K: rate of clearance
» Areal-world example: PK of propacetamol, 01
a pro-drug of paracetamol, delivered via IV. Vinewaine a3}

Paracetamol plasma conc. (pg/ml)
=)
1

25



Conclusions and outlook

* We reviewed the central dogma from the drug discovery’s perspective.
 We learned examples of ODE-based mechanistic models.

* Next time, we shall continue learning statistic and causal models.

NX
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Backup slides



Why drug discovery? 1. The chemical space is huge 4

Estimated number of

Estimated number of atoms in the solar

stars in the observable system universe
Number of cells in a universe (1E24) (1E54-1E57)
human body (3E14)

Total number of approved drugs (~1.3E4, source: DrugBank)
1 I

*
I
I
I I
Total number of manually :curated drug-like molecules (~1E6. source: ChEMBL) I
1 I I

Iy, : N _ 1Compounds with
, Virtual chemical universe (~1E11. source: GDB) drug-like properties
1 1

Small
molecules

I ;
1010 1020 1030 1040 10%° 1090

Log scale

28


https://go.drugbank.com/stats
https://academic.oup.com/nar/article/45/D1/D945/2605707
https://pubs.acs.org/doi/abs/10.1021/ci300415d

Why drug discovery? 2. The druggable proteome is huge -
even excluding mutations, transcriptome, genome, ...

There are about 20,000 proteins
encoded by the human genome. We
can classify them by (1) our knowledge
of them, and (2) whether we have
reliable chemical tools, biological tools,

or even drugs to manipulate them. e B Transporter
= Nuclear receptor [l Kinase l =
: . lon channel [ Transcription factor ] ;
Inner ring: percentages of the whole B Enzyme = iy
proteome, classified by whether we G

have drugs (T ), whether we have
chemical tool compounds (T, ),
whether we have biological compounds
(Tg,), or we are in the dark (T_,)-
Currently, we have only drugs for a few
hundred proteins.

Oprea, et al. “Unexplored Therapeutic Opportunities in the Human Genome.”
Nature Reviews Drug Discovery 17 (February 23, 2018): 317-32.

Outer ring: protein families.



https://doi.org/10.1038/nrd.2018.14

Why drug discovery? 2. The druggable proteome is huge -
now consider the mutations with predicted pathogenicity

Reference: '3 | o
MDVVAMVNQTVATMIS

Missense CGG

variant: MDVVAMVNRTVATMIS

Protein language
modeling

@ Structure context

4y

Missense effect prediction
by AlphaMissense for 71M
sites in human proteome
(Cheng et al. 2023)

----------- DNA

Protein

DNA
Protein

@ Training variants

Benign | Pathogenic

32%
likely
pathogenic

ACVRL1/P37023 (auROC=0.965)
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Why drug discovery? 4. The drug have to be absorbed and
distributed in order to have systemic and organ-specific effects

Pharmacokinetics
The principles of ADME

Medicine. PY Absorption

How will it get in?

Metabolism
How is it broken down?

Liver W :
' Distribution
Where will it go?
« Transporters
European PaEuglsP‘ﬁ;ld-elmy Excretion
on Therapeutic Innovation HOW does |t |eave’)

www.eupati.eu



Why drug discovery? 5. Drugs have to reach the targets - despite 1%
physical barriers

Bottom: Cell membrane,
copyright of Encylopedia
Britannica, Inc.

Top: Figure from The Human
Protein Atlas

Right: Chemical composition of
a human cell, by Scitable

Nature Education.
outer face )

inner face

cell membrane

mitochondrion

cytoplasm
nucleus

endoplasmatic
reticulum

lysosome

ribosome

Golgi
apparatus

hydrophilic {(polar) head .

g2 0! Phosphoipid hv?r:gghob'g
kU fatty acid tail

of phospholipid

integral (intrinsic) proteins  peripheral {extrinsic) protein

© 2007 Encyclopadia Britannica, Inc.



https://www.proteinatlas.org/humanproteome/cell/organelle
https://www.proteinatlas.org/humanproteome/cell/organelle
https://www.nature.com/scitable/topicpage/what-is-a-cell-14023083/
https://www.nature.com/scitable/topicpage/what-is-a-cell-14023083/

Why drug discovery? 6. The drug can have organ-specific and

systemic effects, causing either benefits or risks

Direct effects of
Glucagon-like peptide
(GLP-1) and GLP1 receptor
agonists (GLP1-RA) like
semaglutide.

Gribble, Fiona M., and Frank
Reimann. “Metabolic
Messengers: Glucagon-like
Peptide 1.” Nature
Metabolism 3, no. 2
(February 2021): 142-48.

Glucagon-like peptide 1

CNS
T Nausea
| Food intake

Heart and vasculature
Heart rate

T Cardioprotection

T ANP release (mouse)

Liver
T Insulin sensitivity (secondary to weight loss)

Pancreas

T Insulin release

T Somatostatin release

{ Glucagon release

T B-cell proliferation (mouse)
¢ f-cell apoptosis (mouse)

Stomach
¢ Gastric emptying

Kidney
T Natriuresis
4 Diuresis

Muscle
T Insulin sensitivity (secondary to weight loss)



https://doi.org/10.1038/s42255-020-00327-x
https://doi.org/10.1038/s42255-020-00327-x
https://doi.org/10.1038/s42255-020-00327-x

Why drug discovery? 7. Do all patients benefit from the drug, or

only some of them? Learn from the story of Herceptin
Link to the video

Questions for the video

NOoOOaROLON=

What is the indication of Herceptin? What is its generic (USAN, or United States Adopted Name) name?
What is the gene target of Herceptin?

Which class best describes the target: Enzyme, lon channel, Receptor and Kinase, or Structural protein?

In which year was the target of Herceptin described? When was Herceptin approved?

What was the improvement of Herceptin compared with earlier antibodies?

Why does a biomarker matter besides developing drugs?

In the clinical trial of Herceptin for metastatic breast cancer, how much improvement in the median survival

did Herceptin achieve? And how much improvement is in the adjuvant setting (Herceptin applied directly after
operation)?

Questions for further thinking

Susan Desmond-Hellmann summarizes successful drug development in four aspects: (1) having a deep
understanding of the basic science and the characteristics of the drug, (2) targeting the right patients, (3)

setting a high bar in the clinic, and (4) working effectively with key regulatory decision makers. Where do you
think mathematics and computer science play a crucial role?

She emphasized the importance of collaboration. What skill sets do we need for that?
How do you like her presentation? Anything that you can learn from her about presentation and storytelling?


https://www.ibiology.org/human-disease/herceptin/
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Why drug discovery? 8. Conformational changes, water, and oA
precision make modelling of protein-ligand interactions challenging

rel K4 AG (kcal mol1)
©=0—=0—[ s
10 1.37
- 29 2.00
olv. 100 2403

156 3.00

+
840 4.00
- 4526 5.00
P T =1
Free energy change equals the sum of entropic and enthalpic

Solv changes. Forming a complex reduces entropy: highly
favorable enthalpic contacts between the protein and the
ligand are therefore necessary. Small AG differences
translate to huge K differences (see table above), therefore

& a computational model must have very high accuracy (ideally
Solv.

+1-2 kcal/mol) modelling a complex system to predict K, well.
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