Feedback of lecture 6

How was your overall impression of the sixth lecture?
12 Antworten
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David ). C. Mackay

Information Theory, Inference,
McElreath, Richard. and Learning Algorithms
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with Examples
SECOND EDITION

Statistical Rethinking: i}
ABayesian Course "' '
with Examples in R
and Stan. 2nd ed.
CRC Texts in
Statistical Science.
Taylor and Francis,
CRC Press, 2020.
YouTube, GitHub

BRIDGE

+  Team discussions were good
+  More examples and time for distributions
would be better

MacKay, David
J. C. Information
Theory,
Inference, and
Learning
Algorithms.
Cambridge
University
Press, 2003.
http://www.infer
ence.org.uk/mac

kay/itila/book.ht
ml, recordings
on YouTube

Understanding Complex Systems

Iddo Eliazar

Power Laws

A Statistical Trek

Eliazar, Iddo. Power
Laws: A Statistical
Trek. Springer
Complexity. Springer
Nature, 2020.
https://doi.org/10.1007/
9783030332358.
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Offline activities of lecture 6 (23 participants)

Controversial/counterintuitive views from A.B. Hill’s
speech:

Causation cannot rely on statistics or p-values
alone.

Scientific knowledge is incomplete; research
may still be needed.

Open-mindedness toward improbable or
unconventional evidence is essential.

Human and contextual factors complicate
causal interpretation.

Hill’'s criteria guide judgment, not serve as
strict rules.

It is only interesting how much is a chance that if
"Exposure to sugar rationing in the first 1000 days of
life protected against chronic disease" was done
infinite times, what would be the result? Is is
expected answer or just random values?

Do the evidences and conclusions presented by the study meet Hill's criteria of causality? Please

check all criteria that you think the study has generated strong enough data.
23 Antworten

Strength -19 (82,6 %)

Consistency 3 (13 %)
Specificity —9 (39,1 %)
Temporality 20 (87 %)
18 (78,3 %)

19 (82,6 %)

19 (82,6 %)

Biological gradient
Plausibility
Coherence
Experiment 6 (26,1 %)
Analogy —10 (43,5 %)
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AMIDD 2024 Lecture 7: causal inference

alll Strength (?)  Plausibility
,@ Consistency ‘I‘CE Coherence
3 Specificity gt Experiment

CC Temporality &> Analogy
/ Dose response \ Reversibility

Adapted from “The Environment and Disease:
Association or Causation?” (1965) by A. B. Hill.

Dr. Jitao David Zhang, Computational Biologist
" Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche

2 Department of Mathematics and Informatics, University of Basel 3



The simplest linear model has three components: the
intercept, the slope, and a measure of fit

In this example, the
coefficient of
determination (R?) is
used as the measure.

R? measures the relative
fit of the linear model with
regard to a baseline
model, where the mean
value of y is used as a fit.
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X

4.926791
4.479734
4.289686
4.474023
4.214551
6.057431
4.597903
5.021571
3.627323
5.622794
5.555025
4.966007
5.076791

y
10.067779

8.424283
8.835629
9.630499
8.416680
11.578080
8.283025
9.922731
6.651222
11.959972
11.727815
10.951562
9.768299
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12.5
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y =0721+1.83 x, R® = 0.75




Generative models shed light on correlation and
causality
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X

4.926791
4.479734
4.289686
4.474023
4.214551
6.057431
4.597903
5.021571
3.627323
5.622794
5.555025
4.966007
5.076791

Assumptions of the generative model:

1.
2.

X is a random variable;

y
10.067779

8.424283
8.835629
9.630499
8.416680
11.578080
8.283025
9.922731
6.651222
11.959972
11.727815
10.951562
9.768299

15.0

12.5

Every unit change of X induces a change of 2 units in Y.

True effect: 2.0
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Correlation may be coincidence, or causation, or o4
confounding (common cause)

X 9 O QO— —0O

True effect: 2.0 The reverse fit True effect: 0.0

15.0 ° .
X = 0.907 + 0.411y, R? = 0.75 ¥ = 569+0.789 xgR> = 0.22

A _ 2%
y=0721+183 x, R* = 0.7

12.5 12.5
> 100 > 10.0
75 75
o [ ]
4 5 6 7 75 10.0 12.5 15.0 2 4 6 8
X y X

Statistical models alone cannot derive causality from correlation 6
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We learn causality by (1) listing models explicitly and (2)
manipulating a variable and observe the outcomes

-

15

setting it to 1.0 (the dash line).

Question: which outcomes (red stars or blue
crosses) would support which models? Why? 0 . 4 6 8

: f,®
X1 e
10 ' e h °
XK e s
> : ' 3
| ..
Assume that the data is generated by either . : 2
Model 1, or Model 2, or Model 3. And assume :
that we can manipulate the value of X by %4{(
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Variables in models can be either continuous or discrete

Model 1 e

True effect: 2.0

v
N
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>
Assumptions of the generative model: I
1. Xis arandom variable taking the value "
of either 0 or 1 with equal probability ‘
p=0.5. !
2. Y is arandom variable following
Gaussian distributions: 0 1

a. Mean(Y|X=0)=0 5
b. Mean(Y|X=1)=2.0



Common Directed Acylic Graph (DAG) structures (1): the Pipe

060

= —521+1.06 x y = —0.058+ 1.38z

Assumptions of the generative model.

1. Xis a random variable following Gaussian distribution N(5,1)
2. Ztakes the value of -1 if X is smaller than 5, and 1 if X is equal to or larger than 5.
3. Y is arandom variable with mean defined by Z*1.5.
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Conditional on the mediator in a pipe, the effect of the

cause is blocked
D—0—0

Assumptions of the generative model:

1. Xis arandom variable following Gaussian
distribution N(5,1)

2. Ztakes the value of -1 if X is smaller than 5, and
X is equal to or larger than 5.

3. Y is arandom variable with mean defined by Z*1

Im(y ~ x)

Im(y ~x +2z)

05 00 05 1.0 156 20

Value

10



Common DAG structures (2): The Fork

C| X z y True effect: 1.0 True effect: 1.0
1 0.20589018 1 -0.08893334
e 2 0.83248885 1 -0.14740781 5 Z 79377 1
3 -0.17082670 O -1.64397573
4 -0.96908825 0 2.43509459 1
—yp 5 0.61354174 1 2.61131387 ===l G

6 123211496 1 1.37149411 0
7 0.32263058 0 -1.04306293

e o 8 0.24292789 0 -0.68668697 )
9 -1.10981001 O 0.24181405
10 0.72138854 1 2.12531733

Assumptions of the generative model.

1. Zis a random variable taking the value of either O or 1.

2. Both X and Y are random variables following Gaussian distribution with mean equal to Z.
11



B
TR
Conditioning on the fork breaks the correlation
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Given a fork structure, both children of the common cause are correlated. The
correlation disappears when we condition on the common cause (i.e.
stratification by the common cause in the case of discrete variables, or including

the variable in the regression in the case of continuous variables). '
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Common DAG structures (3): The Collider

Z

Y

X

0.835386320

-0.005354014 -

0.058788286

-1.015602246 -
-0.339569780 -
-0.041077979 -

0.363740407

0.119496314 -
0.257108454 -
0.304537158 -

Assumptions of the generative model:

1.

y
-0.73897252

-0.82972315

0.76213369
-0.05951719
-0.11745910
-1.28243716
-0.30570762
-1.19932461
-1.06044066
-0.43396492

2. Thevalue of Zis 1 if X+Y>0, and -1 if X-Y<=0.

-1

X and Y are random variables following Gaussian distribution N(0,1)
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Conditioning on the collider introduces spurious
correlations

—00681 0.126 x

L &

L et . ° ®
\\ o \s ¥
X N .
L
a -2

-1 0 1 -1 0 1
X X

In a collider structure, the parents of the collider can be independent from each
other. However, they become correlated when we condition on the collider.
Collider is everywhere! 14



A summary so far

m Data alone cannot tell causality,
though in most cases we are
interested in causal questions.

m Correlation between two
variables can be caused by
coincidence, causality, or
common cause.

m Most common structures in a
graph causal model are pipes,

forks, and colliders. Stratifying by
or regressing out variables may

remove Or create correlation.

The pipe

The fork

The collider

X
correlated
with Y?

000"
e e OYes
0—-0—0-

When
conditioning
on Z?

No

No

Yes

15



Stop exploitative data analysis, build generative models

©—-0-9
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0.835386320

-0.005354014 -

0.058788286

-1.015602246 -
-0.339569780 -
-0.041077979 -

0.363740407

0.119496314 -
0.257108454 -
0.304537158 -

z

1

Biomarker, tox study, pathology,
omics data real-world data, EHR, .

-0.73897252

-0.82972315

0.76213369

-0.05951719
-0.11745910
-1.28243716
-0.30570762
-1.19932461
-1.06044066
-0.43396492

9—0-90

.
*
. ,
*
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We need to build models (knowledge + assumptions) to infer causality 16



End of lecture on October 31st, 2025



Claim: running enhances spatial pattern separation in mice %
Creer et al., PNAS 2070
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Creer, David J., Carola Romberg, Lisa M. Saksida, Henriette van Praag, and Timothy J. Bussey. “Running Enhances Spatial Pattern Separation in Mice.”
Proceedings of the National Academy of Sciences 107, no. 5 (February 2, 2010): 2367—72. https://doi.org/10.1073/pnas.0911725107.

Lazic Stanley E. “Using Causal Models to Distinguish between Neurogenesis-Dependent and -Independent Effects on Behaviour.” Journal of The Royal Society
Interface 9, no. 70 (May 7, 2012): 907—17. https://doi.org/10.1098/rsif.2011.0510.
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https://doi.org/10.1073/pnas.0911725107
https://doi.org/10.1098/rsif.2011.0510

Question: does pharmaceutical modulation of 4
neurogenesis benefit pattern separation?

neurogenesis-dependent
model (M1)

treatment
(exercise versus control)

'

neurogenesis

¥

neurogenesis-independent
model (M2)

treatment

(exercise versus control)

L

N\

behaviour
(pattern separation)

neurogenesis

behaviour
(pattern separation)

M1 (the pipe model) suggests
that conditioned on
neurogenesis, exercise and
behaviour are independent
(not correlated).

M2 (the fork model) suggests
that conditioned on exercise,
neurogenesis and behaviour
are independent.

Lazic Stanley E. “Using Causal Models to Distinguish between Neurogenesis-Dependent and -Independent Effects on Behaviour.” Journal of The Royal Society
Interface 9, no. 70 (May 7, 2012): 907-17. https://doi.org/10.1098/rsif.2011.0510.
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Behaviour and neurogenesis even shows negative correlation o
conditional on exercise- an example of Simpson’s Paradox
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Based on the analysis, | believe model M2 is more likely to be true than M1.

Causal inference reduces bias in analysis by listing models explicitly



Causal inference is important for both randomized

experiments and observational studies ¢ ¢
0 1
e [ndrug discovery and development, we often care
about potential outcomes or counterfactuals: ‘ P & > 4

what had if the patient received the alternative a
treatment, keeping everything else constant?

Randomized experiments and controlled trials
are gold-standard methods to address causal

questions. Non-compliance and intermittent events . &
call for causal analysis of the data even in
randomized trials. «ih X

Given causal models, it is sometimes possible to learn o &
causal relationships from observational data as well.

21



Causal inference is a missing data problem

Individual Treatment

1 Control
2 Control
3 Control
4 Treatment
5 Treatment
6 Treatment

Value (AU)

75
73
74
55
45

60

A classical textbook

RN

Individual Value (AU) with | Value (AU) with
Control Treatment

1 75 ?

2 73 ?

3 74 ?

4 ? 55

5 ? 45

6 ? 60

A classical textbook in 50 years



RN

Assignment mechanism determines which data are
missing, and determine the statistical technique to be
used

Individual Value (AU) Value (AU)with | m  Classical Randomized Experiments:
with Control | Treatment we control the assignment

1 75 ? mechanism;

2 73 ? m Regular assignment (observational

studies): we know part but not all of
the assignment mechanism;

3 74 ?

4 ? 55 ° o
m Regular assignment with
5 ? 45 non-compliance: we need an

5 ” 60 instrumental variable.

23



Instrumental variable helps to dissect causal from

confounding effects

People born late in the year have more years of education and
higher incomes

Additional years of education have a positive effect on income. The figure uses data from Angrist and Krueger (1991).

O Born in first quarter [ Born in fourth quarter

o 134 s [] . 370+ o
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b e & w0 _ -
s £
£ 126 s
o . 350 -
= =
Q
12.4 §
340 4
12.2
1935 1936 1937 1938 1939 " 1935 1936 1937 1938 1939
Year of birth Year of birth

https://www.nobelprize.org/prizes/economic-sciences/2021/popular-information/

/: Birthday

X: Education

Y: Income

U: Socioeconomic and

individual factors ”s


https://www.nobelprize.org/prizes/economic-sciences/2021/popular-information/

Instrumental variable is critical for both Mendelian
Randomization (MR) and handling with non-compliance

C
e.g. smoking, caffeine,
alcohol
z [ N A [ § !
e.g. FTO v BMI Y PD
Z
Ll
Z: Assignment (Placebo/Drug)
X: Treatment
> Y: Value of interest
X Y U: unobserved factors

Noyce, Alastair J., Demis A. Kia, Gibran Hemani,
Aude Nicolas, T. Ryan Price, Eduardo De
Pablo-Fernandez, Philip C. Haycock, et al.
“Estimating the Causal Influence of Body Mass
Index on Risk of Parkinson Disease: A Mendelian
Randomisation Study.” PLoS Medicine 14, no. 6
(June 2017):
https://doi.org/10.1371/journal.pmed.1002314.

Cinelli, Carlos, Andrew Forney, and Judea
Pearl. “A Crash Course in Good and Bad
Controls.” SSRN Scholarly Paper. Rochester,
NY: Social Science Research Network,
September 9, 2020.
https://doi.org/10.2139/ssrn.3689437.
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https://doi.org/10.1371/journal.pmed.1002314
https://doi.org/10.2139/ssrn.3689437

Consequences

1.

RN

Data alone does not answer causal questions: whenever we are interested in

interventions (modulating a target, changing the structure of a molecule, efc.),

predictive tools such as linear regression, machine learning, and artificial intelligence

models must be embedded in the causal framework.

Addressing causal questions when necessary:

a. Derive causal models using science, making assumptions transparent

b. Program the model as a generative simulation

c. Design research and validate statistical analysis using (b)

d. Confront the model with data, share both wins and losses transparently with
others

e. Revise and repeat

Model first, data second: From DA (Data and Analytics) to MADAM (Model

construction, Analysis of the model, Data collection, Analysis of the data with the

model, and Model refinement)
26



Ten Simple Rules of Causal Inference

1.
2.

—

©C© XN OROG

Clarify whether correlation or causation is of interest.

Draw models of knowledge, assumptions, and data-generation
processes as graphs.

Formulate the causal question by identifying the target estimand.
Collect, check the quality of, and filter data.

Estimate the causal effect with software.

Challenge and refute the causal model.

Compare results with estimates from alternative methods.

Share model, data, and analysis.

Design, perform, and analyze new experiments.

Apply learnings from causal inference in the real world.

BBBBB

27



Models in disease understanding and drug discovery

Mechanistic/physical models
Structural causal models
Causal graphical models

Descriptive graphical models

Statistical models

Enzymic
Cellular models

Microphysiological
systems

Animal models

Xl
S
RAVVAVAS
0N
UNI
BASEL
Computational simulations
Predict Predict under Answer Obtain Learn
Model iniid. changing distr. counterfactual | physical from
setting or intervention questions insight data

Mechanistic/

physical, e.g., yes yes yes yes ?

Sec. 2.3

Structural

causal model, yes yes yes 2 ?

e.g., Sec. 6.2

Causal graphi-

cal model, yes yes no ? ?

e.g., Sec. 6.5.2

Statistical

model, e.g., yes no no no yes

Sec. 1.2

Hierarchy
Molecular Omics and Organ-and Population
models cellular models system-level models
models

Biological simulations
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Tabular Prior-data Fitted Network (TabPFN) uses causal
models to generate training data for machine-learning
models

Article

Accurate predictionsonsmalldatawitha
tabular foundation model

TabPFN  pub: o Y Fork 249 - K stared 3k -

t Add file ~ <> Code ~ About

4 TabPFN: Foundation Model for
Tabular Data 4

https://doi.org/10.1038/s41586-024-08328-6  Noah Hollmann*2*’Z, samuel Miiller'’<, Lennart Purucker', Arjun Krishnakumar',

mpalysatnise 1 fo . ; 5 1362 eithh d x version in t ast wee 4
Received: 17 May 2024 Max Kérfer', Shi Bin Hoo', Robin Tibor Schirrmeister*® & Frank Hutter githul
Accepted: 31 October 2024 examples
Tabular data, spreadsheets organized in rows and columns, are ubiquitous across
Published online: 8 January 2025 S P! 4 _g_ < E s q > scripts
scientific fields, from biomedicine to particle physics to economics and climate
Open access science'?. The fundamental prediction task of filling in missing values of a label src/tabpfn
% Check for updates column based on the rest of the columns is essential for various applications as o
diverse as biomedical risk models, drug discovery and materials science. Although
deep learning has revolutionized learning from raw data and led to numerous 1§ gitignore

high-profile success stories®”, gradient-boosted decision trees®® have dominated
tabular data for the past 20 years. Here we present the Tabular Prior-data Fitted
Network (TabPFN), a tabular foundation model that outperforms all previous
methods on datasets with up to 10,000 samples by a wide margin, using substantially [ READMEmd
less training time. In 2.8 s, TabPFN outperforms an ensemble of the strongest
baselines tuned for 4 hina classification setting. As a generative transformer-based
foundation model, this model also allows fine-tuning, data generation, density ©1tags
estimation and learning reusable embeddings. TabPFNis alearningalgorithmthatis

itselflearned across millions of synthetic datasets, demonstrating the power of this

approach for algorithm development. By improving modelling abilities across diverse Sou rce COde at httDS //q |th u b .CO m/P rl OrLa bS/ta bDfn y released | n

fields, TabPFN has the potential to accelerate scientific discovery and enhance

important decision-making n various domains a license analogous to Apache 2.0 (commercial use friendly).

[ .pre-commit-configyaml

[ LICENSE

pyprojecttoml emove max python versio st wee Releases



https://github.com/PriorLabs/tabpfn

TabPFN is trained with synthesized data generated by
DAGs, and predicts missing value in user’s input data

TabPFN is trained on synthetic data to take entire TabPFN can now be applied to arbitrary
datasets as inputs and predict in a forward pass unseen real-world datasets
'd B
Prediction Prediction
Xtrain Ytrain TabPFN Xtrain Ytrain
_— neural network — _— TabPFN —>
parameterized by 6
Xiest ? . A synthetic dataset Xiest ?
J . J
LS
—log Gy Viest |-+ ~— An arbitrary real-world dataset
Yiest —> [ Training loss to be optimized
— across millions of datasets

A metaphor: Imagine a lab where millions of billiard games are played simultaneously: in
each game, different numbers of balls are placed randomly, and a white ball starts with a
random velocity at a random position. By learning the trajectory of all balls of all games,
one may learn to predict the trajectory of any real billiard game, as long as the positions of
all balls and the initial velocity of the white ball is known.



Causal inference is not always easy
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Science 1s not about reality.
Science 15 always about models.

Models

Causality

BBBBB

Honest anarchy
translates
between models
and experiments
with creativity,
ideas, and even
irrationality.
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“There is no method for making
causal models other than science.
There is no method to science other
than honest anarchy.”

- Richard McElreath

\\\\\\

N1
BBBBB
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Conclusions

1. Statistical and machine learning models can model linear and nonlinear
relationships between variables.

2. Applying statistical and ML models in drug discovery needs to consider
the facts that we always work on something new, structure similarity does
not warrant activity similarity, and correlation is not causation.

3. Causal inference combines prior knowledge and statistical/ML modelling
to answer what-if questions.
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Resources for learning about machine learning

Gareth James

Daniela Witten
Trevor Hastie
Robert Tibshirani

Trevor Hastie
Robert Tibshirani

Jerome Friedman

An Int(oquction
ESL and [SL: From a D
frequentist view (almost)

The Elements of
Statistical Learning

David J.C. MacKay

Information Theory, Inference,
and Learning Algorithms
\
|

i WUERTA
Ny

é,t;ﬂr ;
PRML and ITILA: From a
Bayesian view

Cambridge University Press, 2003

Mathematical foundations

MLaPP: Application

oriented, more accessible,

and balanced views

WATHEMATICS o1
WACHINE LEARNING

)

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy
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https://web.stanford.edu/~hastie/ElemStatLearn/
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
http://www.inference.org.uk/mackay/itila/book.html
https://www.cs.ubc.ca/~murphyk/MLbook/
https://mml-book.github.io/

Resources for learning about causal inference o3

Causal inference in drug discovery and development, Michoel and Zhang, 2022

‘Texts in Statistical Science

& Dana Mackenzie

Statistical Rethinking

JudeaPearl @ |
| CAUSAL

A Bayesian Course

S T iy SR |'\FERENCE
STATISTICS,
CAUSAL INFERENCE SOCAL
IN STATISTICS BIOMEDICAL

A Primer SCIENCES

Judea Pearl
Madelyn Glymour
Nicholas P. Jewell

GUIDO W. IMBENS
DONALD B. RUBIN

Richard McElreath

O

Lectures available on YouTube

The New Science ¢
of Cause and Effect . WILEY
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https://arxiv.org/abs/2209.14664
https://www.youtube.com/watch?v=BYUykHScxj8&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN

Hidden or skipped in the lecture %’g—zié
XN

Answers

Red stars are supported by Model 1.
Blue crosses are supported by both Model 2 and Model 3.

Reason: causality (C—E, from cause to effect) is directional. Manipulating C has an effect on E, while
manipulating E has no effect on C. Blue crosses are around mean values of Y. If Y causes X,
manipulating X has no effect on Y. Then the most likely values of Y will be around the mean of existing
samples.
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