AMIDD 2025 Lecture 10: Biological networks and omics
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Translational research makes molecules into medicines 4
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Adapted from Paul et al. “How to Improve R&D Productivity: The Pharmaceutical Industry’s Grand Challenge.” Nature Reviews Drug Discovery, 2010
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Classical workflow of efficacy and toxicity assessment
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Mechanism of Action and Mode of Action

e Mechanism of Action: The specific biochemical interaction
through which a drug substance produces its pharmacological
effect, at the molecular level.

e Mode of Action: Functional or anatomical changes, at the cellular
level, resulting from the exposure of a living organism to a
substance.

e Forinstance, a mechanism of action of a drug can be “binding to
Monoacylglycerol lipase (MAGL)” while its mode of action would be

“regulating endocannabinoid signaling” and “reducing inflammation’.

e Inlead optimization (LO) and early development, our goal is to
understand both the mechanism of action and the mode of action in
vitro, in vivo, and in human. The term MoA is used to refer both.
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The Hill function is a common model of in vitro pharmacology

The Hill function is one of the
mostly useful non-linear functions
to model biological systems.

In its general form, H__ indicates
the maximal value to which the
function is asymptotic, n is the
shape parameter (known as the
Hill's coefficient), and k is the
reflection point, often abbreviated
as XC., (X=I, E, C, ...), the
half-saturation constant.

The Michaelis-Menten model is a
special case of the Hill function
(n=1).
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Suppose it is an antiviral drug, compared with curve B, what does curve A, C, and D suggest?



https://cancerdiscovery.aacrjournals.org/content/3/7/742
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http://www.jci.org/113/8
https://doi.org/10.1172/JCI21682
https://doi.org/10.1172/JCI21682

Biological networks interact with drugs and manifest its
efficacy and safety
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Reaction Rate Equations: a compartment/ODE model of R
biological chemical reaction
RRE simulation of the
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RRE is a set of ODEs, with each ODE representing one chemical species. Solution of the jth equation at time tis

a real number representing the concentration of species j at time t.


http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

Simulation of biological networks with ordinary differential
expression
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See Systems Engineering Wiki (tue.nl) for MATLAB/COPASI codes and
Stochastic Modelling for Systems Biology by Darren J. Wilkinson



http://seweb.se.wtb.tue.nl/biological_systems/de#deterministic_example

Simulating behavior of complex ODE systems with COPASI 4

« COPASI, freely available at
http://COPASI.org/,
supports both ordinary
differential equation
(ODE) based simulation as
well as stochastic kinetic
simulation.

« Such tools are important
for detailed analysis of
enzymatic reactions, for
instance in the presence of
drugs and/or
disease-relevant mutation.
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Figure: Huang and Ferrell, PNAS, 2006. Resources to learn more about
stochastic modelling: MIT OpenCourseWare by Jeff Gore, and Stochastic

Processes: An Introduction, Third Edition by Jones and Smith. Tutorials also
available on the website of European Bioinformatics Institute (EBI)
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http://copasi.org/
https://www.youtube.com/watch?v=EXBO08-78IU
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
https://www.crcpress.com/Stochastic-Processes-An-Introduction-Third-Edition/Jones-Smith/p/book/9781498778114
http://www.ebi.ac.uk/biomodels-main/courses

Different ways of modelling biological networks o4
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Garg, Abhishek, Kartik Mohanram, Giovanni De Micheli, and loannis Xenarios. 2012. “Implicit Methods for Qualitative

Stéphane CHEDIN & Jean LABARRE, www-dsv.cea fr Modeling of Gene Requlatory Networks.” In Gene Regulatory Networks: Methods and Protocols, edited by Bart

Deplancke and Nele Gheldof, 397-443. Methods in Molecular Biology. Totowa, NJ: Humana Press.
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https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22
https://doi.org/10.1007/978-1-61779-292-2_22

Biological networks can be studied with omics technologies

@ |||

PpPmMm
1H nuclear magnetic
resonance (NMR)

Transcriptomics

e
& OTCase
Arginine /\
' ,ﬁ Ornlthlne
'Repressor
k .
—{;—1-
GTTTTAGGTGGCCCGCGCTGG

RNA sequencing Metabolomics

Proteomics

| Ll ||

m/z
Mass spectrometry

CACATTCTTAGTTTT
CATTCTTAGTTTTAGGT
ATTCTTAGTTTTAGG
ATTCTTAGTTTTAGGTGGC
CTTAGTTTTTGGTGGCCCC
TTAGTTTTAGGTGGCCCCCGCT
TAGTTTTAGGTGGCCCCCGCTGG

11



Principle of next-generation RNA sequencing (NGS) o

DNA gene in genome I
Pre-mRNA

Intron splicing

Transcription

Mature mRNA

Fragmentation
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I :1101:9182:1016 1:N:0:CTCTCGTC+AACCGCGG
GNATCAGAATGGTCAGTAAACCAGGTAAAGAAGCTCTCTGGTTCCTCATGCTGCCTCTTCCTGCTGGCTTTATT

+

F#FFFFFFFFFFFFFFFFFFFFEFFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFEFFFFFFFEFFFRFF

sequences TATGAGACGCATGCTA GCGATATATA CGCGACGATGACT CGACTGCCAT

Sequence processing

Alignment

GATAGGT GTGACTACCGOCCCAT GAAGEGGCACT GACT ATGAGACGCAT GETAACCOCGOOGEGAT ATAT ATACGUGACGAT GACTAT AT AGCT CGACT GLUAT GACAAMGT GAAGCOGCATATCTGETGGGTA
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We can reveal compound’s
effect on gene expression by
performing differential gene
expression analysis
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Visualization (e.g. volcano plot)

Read Mapping

Count collection

Normalization

Differential Gene
Expression
Analysis
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The principle can be applied to individual cells in
sptiotemporal contexts

A Cell type deconvolution B

£

Mal: malignant cells
Ki-67": proliferating cells
(Ki-67 positive)

Endo: endothelial cells
Fibro: fibroblasts

ERBB2 s ERBES M S PIK3CA EE - B: B cells
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d, =0.12, d, =0.14,g=93x10% 1.5 %10+ DC: dendritic cells

CD4: CD4' T cells
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Treg: regulatory T cells
NK: natural killer cells

BMal  HEndoMB MCD4MNK MMacro  MTOR mme E W HSPIOAAT wm Hsroors1mem  MACro: macrophages
W Ki-67" W Fibro mDC = CD8 T Mono 00 05 1.0 1.5 20 00 05 1.0 15 2.0 25 3.035 4.0 45 25 3.0 35 4.0 A
Mono: monocytes

SOAR elucidates biological insights and empowers drug discovery through spatial transcriptomics, Li et al., Science Advances, 2024. Breast cancer
tissue H&C (Hematoxylin and eosin) staining figure was generated with Gemini 2.5.
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https://www.science.org/doi/10.1126/sciadv.adt7450

Opportunities and challenges of using omics to study MoA

Opportunities:

1.

Patient samples can be profiled with omics. It is
possible to compare a compound’s effect with the
changes induced by disease progression (right).

2. Well-designed omics study can reveal both strong
and subtle effects of the compound (the example
with splicing modifier).

Challenges:

1. Data from biological models that poorly reflect
human disease can do more harm than benefits.

2. Curse of dimensionality.

3. ltis intrinsically challenging to how drugs work.
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Why is negative correlation a good sign?

A A partially working treatment

Expression

Expression

The gene is causally regulated by the disease
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Simulation: two comparisons
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group
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M disease

M placebo
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Principal component 2 (PC2)

Simulated clinical observations
10 samples/group, 5000 features (1% diff. exp.)

group

@ healthy

@ disease

@ treatment

Principal component 1 (PC1)

Change Drug-Control (log2FC)

Changes in two comparisons
Log2 fold change (log2FC) of 20000 genes

i, . Speprman cor.:-0.63

-2 0 2
Change Disease-Healthy (log2FC)

Panel A: A gene is causally up-regulated in
patients by a disease. If its regulation is partially
or completely reversed by the treatment, we
increase our confidence in the drug. Panel B: the
concept can be generalized to situations where
many genes are regulated by the disease and
reversed by the drug treatment, visualized with
PCA (principal component analysis). Panel C:
We can quantify biological features both in
clinical settings (e.g. patients versus healthy
donors) and in preclinical settings (e.g. drug’s
effect in disease models versus placebo). Panel
D: a negative correlation between changes in
two comparisons increases our confidence in
drug’s effectiveness, assuming that the causal
structure is conserved between clinical and
preclinical settings. See more details about the
simulation in AMIDD's repo..
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https://github.com/Accio/AMIDD/blob/master/docs/assets/2025/10/2025-11-simulating-drug-reversing-disease-induced-gene-expression.Rmd
https://github.com/Accio/AMIDD/blob/master/docs/assets/2025/10/2025-11-simulating-drug-reversing-disease-induced-gene-expression.Rmd

Given enough tests, there will be significant
results

set.seed(1887)

patient group <- gl(2,10)

response <- c{rnorm(10, @), rnorm(10, -3))

random features large <- matrix(rnorm(20*50000), nrow=20)

large cor <- cor(response, random features large, method="spearman")
hist(large cor)

largest cor ind <- which.max(large cor)
{
compactPar()
plot(random features large[, largest cor ind],
response,
bg=patient_group,pch=21,
xlab=sprintf("Random feature [index %d]", largest cor _ind))
abline(lm(response ~ random features largel[, largest cor ind]))

}

Frequency

response
-2 -1

-3

-4

Histogram of large_cor

6000
|

2000
|

0
|

-0.5 0.0 0.5 1.0

-2 -1 0 1
Random feature [index 21360]
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The road of MoA understanding can be 120 year long

O OH
Dai et al, Cell, 2019

OY Acetylation blocks cGAS activity and
inhibits self-DNA-induced
O autoimmunity

e Acetylation suppresses cGAS

activity
i . e Aspirin directly acetylates cGAS
oy ——— e Aspirin inhibits cGAS-mediated
Q“"l a.,.s.."n‘k”;_'g‘.;'?.:‘.a’.:{:{;'.‘:’?mm (3 . .
N i e IR interferon production

e Aspirin alleviates DNA-induced
autoimmunity in AGS mouse

Aspirin
trademarked in models and patient cells
1899

MoA understanding can be a long process full of surprises
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Summary

1. Inlead optimization and early development, we are
interested in MoA of drug candidates in vitro, in vivo,
and in human.

2. We can study MoA by modeling biological networks,
for instance with ODE-based models and its variants.

3. We can also study MoA by performing omics
experiments and analysing the data with statistical,
machine-learning or Al tools. It is helpful to keep both
advantages and challenges in mind.

WHEN YOU SEE A CLAIM THAT A
COMMON DRUG OR VITAMIN “KILLS
CANCER CELLS IN A PETRI DISH

KEEP IN MIND:

4

S0 DOES A HANDGUN.
https://xkcd.com/1217/
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Splicing modifiers
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Hidden or skipped in the lecture

Splicing of SMN1 and SMN2 genes: patients with mutations in

SMN1 gene suffer from Spinal Muscle Atrophy (SMA)
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Three drugs of different modalities are approved to treat SMA
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https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL4297528/
https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL3833342/

Hidden or skipped in the lecture

Splicing of SMN1 and SMN2 genes: patients with mutations in

SMN1 gene suffer from Spinal Muscle Atrophy (SMA)
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Hidden or skipped in the lecture NXL
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Small molecules were identified as RNA splicing modifiers i

A SMN-C1 SMN- C2 SMN- C3 c SMN protein (Western Blot)
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Hidden or skipped in the lecture

[LogoFC]

RNA sequencing confirms the specificity of SMN-C3

Transcriptional changes by SMN-C3

Transcript ID (total 11714)
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Splicing regulation by SMN-C3
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RNA sequencing confirms the superior safety profile of SMN-C3 ¢
over other compounds sAYEL
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