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The linear view of drug discovery builds on 
target-based approaches

Target identification & assessment
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1. Phenotypic drug discovery

2. Natural products

3. Biologics

4. Interaction-based (multispecific) drug discovery

5. Drug repurposing or combination studies

Five strategies when no good target is found
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● Phenotypic 
screening

● Target-based 
screening

● Modified 
natural 
products

● Biologics

Connect the lines!



Phenotypic screenings by agent and readout
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The Small-molecule PAthway Research 
Kit (SPARK)
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The ChEMBL database

● An example of query: aspirin.

● Systematic and programmatic 
accession via ChEMBL API 
(source code).

● We can use dose-response 
data to annotate the triplets of 
compound, assay activity, and 
targets.

March 2021

https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL25/
https://www.ebi.ac.uk/chembl/api/data/docs
https://github.com/chembl/chembl_webresource_client


Discussion
1. Why do we care selecting 

representative, potent, and selective 
compounds for each target?

2. How to define following terms 
mathematically  ...

a. Representativity?
b. Potency?
c. Selectivity?
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A toy example about 
how to quantify a 
compound’s potency 
and selectivity

9

Compound 1

Compound 2Compound 3
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The Gini Index (a.k.a. Gini Coefficient)

A random 
vector of 
50 values

Sorted 
from low 
to high

The Gini 
Index is 
calculated 
based on the 
cumulative 
distribution

A B

G=A/(A+B)
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The Gini Index quantifies inequality/ selectivity

The Gini Index of expression 
of NEUROD1 across tissues 
is near 1, whereas that of 
RBL1 is near 0.

NEUROD1

RBL1
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An alternative metric: Shannon’s Entropy
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Count of targets and selectivity of ChEMBL molecules

With some exceptions, most 
compounds are profiled against <100 
targets. We distinguish between 
specific and pleiotropic compounds.

The shark-fin shape curve 
suggests that frequently profiled 
compounds tend to be more 
selective (and vice versa).
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Unsupervised clustering

The 
k-means 
algorithm

Affinity Propagation updates 
responsibilities and 
availabilities iteratively



Affinity Propagation in action

15A movie of iterations

https://vimeo.com/1827225
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Construction of SPARK in detail

Harmonization
… of public and 
Roche internal data

Machine learning
… to select 
compounds

Pathways
… mapped to 
compounds

Curation
… to enrich quality 
compounds
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SPARK covers the chemical space evenly with 
representative, potent, and specific compounds

Roudnicky et al., PNAS, 2020, 
https://www.pnas.org/content/ea
rly/2020/08/04/1911532117

https://www.pnas.org/content/early/2020/08/04/1911532117
https://www.pnas.org/content/early/2020/08/04/1911532117
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Mapping genes 
to biological 
pathways

Option 1: KEGG pathways, 
with the example of TGF-β 
signaling pathway.

A RESTful API is available 
for academic use, with 
clients in Python and R.

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/dbget-bin/www_bget?pathway:map04350
https://www.genome.jp/dbget-bin/www_bget?pathway:map04350
https://www.kegg.jp/kegg/rest/


Mapping genes to biological pathways

Option 2: Reactome 
pathways, with the 
example of the TGF-
β signaling pathway.

Developer’s Zone 
provides API and 
graph database 
interfaces.
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https://reactome.org/
https://reactome.org/PathwayBrowser/#/R-HSA-170834
https://www.genome.jp/dbget-bin/www_bget?pathway:map04350
https://reactome.org/PathwayBrowser/#/R-HSA-170834
https://reactome.org/dev


Overview of pathways captured by Reactome

The Voronoi (Reacfoam) view of all pathways in Reactome 20



Mapping genes to biological processes

● Gene Ontology
● UniProtKB keywords
● Example: 

TGFBR2_HUMAN 
(TGF-beta receptor type 
-2, P37173)

21

http://geneontology.org/
https://www.uniprot.org/help/keywords
https://www.uniprot.org/uniprot/P37173
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SPARK covers the target space evenly with 
representative, potent, and specific compounds



Time [h]
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Screening with stem-cell-derived endothelial 
cells with a reporter added by genome editing

SSC-A: Side-scatter area of flow cytometry; 
GFP: Green fluorescent protein; 
VEGFA: vascular endothelial growth factor A

GFP

SS
C

-A
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Compounds targeting the TGF-β pathway 
such as RepSox modulates endothelial cells

Further in vitro and in vivo 
experiments establish RepSox 
as a tool compound modulating 
retinopathy.
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Conclusions about chemogenomic library 

● Phenotypic drug discovery can 
lead to first-in-class drugs with 
novel mechanisms;

● Unsupervised machine learning 
and data modelling contribute to 
build chemogenomic libraries;

● We can link drug candidates via 
targets to biological pathways 
and processes.



Offline activities of Module II

Please use your favourite programming language (shell scripts, python, R, for 
instance) and APIs (Application Programming Interfaces) of databases to perform 
following operations. Submit your code.

1. Retrieve all approved drugs from the ChEMBL database, sort them by approval 
year and name (a Python example is here; documentations of the ChEMBL API 
can be found here);

2. For each approved drug since 2011 that you identified in step (1), retrieve a list 
of UniProt accession numbers, namely protein targets associated with the drug;

3. For each protein with a UniProt accession number that you identified in step (2), 
retrieve UniProt keywords associated with it. You can use the UniProt API, 
documented here. Python and R clients are also available.
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https://github.com/chembl/chembl_webresource_client
https://www.ebi.ac.uk/chembl/api/data/docs
https://www.ebi.ac.uk/proteins/api/doc/#!/proteins/search
https://www.ebi.ac.uk/proteins/api/doc/#!/proteins/search
https://pypi.org/project/uniprot_tools/
https://github.com/lgatto/UniProt.REST


Transcriptome profiling by RNA sequencing
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Transcriptome profiling by RNA sequencing
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Tools: edgeR and DESeq2

Differential gene 
expression

29

Read 
Mapping

Count 
collection

Normalization 
by library size

Differential Gene 
Expression 
Analysis



Interpret differential gene expression data 
with gene-set enrichment analysis

30

Reactome 
pathways

Gene 
Ontology

UniProt 
Keywords

Literature

Gene-set Enrichment 
Analysis Methods

Gene
(N~104)

G1 G2 G3 G4 G5 ... GN-3 GN-2 GN-1 GN

Change
(log2)

3.0 2.8 2.5 1.5 1.2 ... -0.8 -1.2 -1.5 -2.2

Differential gene expression results



Gene-set enrichment analysis

31

Output: a ranked list 
of the input gene-sets 
by enrichment.

Input: (1) a differential gene 
expression profile; (2) a set of 
gene-sets {G}, each a set of genes.



Gene expression as screening readout

32

Differential gene 
expression profiles are 
molecular snapshots of 
drugs’ action in the cell.



Gene expression from patient and animal 
models help compound selection

We can prioritise molecules 
that reverse disease-induced 
changes. 33
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Morphology as screening readout



Cytological profiling for antibiotics discovery

35

P: Protein translation inhibitors
R: RNA transcription inhibitors
D: DNA replication inhibitors
L: Lipid biosynthesis inhibitors
C: Cell-wall synthesis inhibitors (peptidoglycan) 



Principal components are linear combination 
of morphological features

36



Morphology classifies compounds by MoA

37



Comparison of computational methods

38



Do the benchmark and use Occam’s Razor

39



A possible explanation 
for the success of latent 
variable models

40

A common latent factor model



Morphology and gene expression used jointly

41

Gene-set 
enrichment 
analysis

Pathway-
Phenotype 
associations

Reporter 
assays



42

A multi-cell-type, 
1008-compound screening 
by Cox et al. (2020)



Conclusions

● Gene expression and image-based profiling can be used 
individually or jointly for phenotypic screening;

● Integration of biological knowledge, high-throughput 
data, and statistical modelling empowers phenotypic 
drug discovery.

43
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