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Administrivia

e Last chance to fill the pre-course survey!

e Grades are given by offline activities (50%) and projects_in teams of two (50%):

o Option 1: Write a target (or screening) proposal for a disease of your choice, using publicly
available data and tools/algorithms that we learn about to support your arguments.

o Option 2: Write a report analysing data from the Drug Central database, raising your own
scientific questions about drug-target associations and answering them with analysis.

o Grade is given both by peer review and by the lecturer.
e | hope the course is a seminar more than a lecture: share your question and let’s discuss!
e Attendance is preferred, however asynchronous learning is also encouraged if necessary.
e For catching-up students: let me know if you need access codes for AMIDD videos.

e Any more questions?


https://forms.gle/ByqsDnVNoFaKVKQG8
https://drugcentral.org/

We have a great mix to learn from each other

Mathematics 2 (25 %)

Computer science 4(50 %)

Biology and pharmaceutical

: 0(0 %)
sciences

Physics [0 (0 %)

Chemistry (—0 (0 %)

Computational Sciences

225%) Working experience with
mathematical and
computational biology

® Yes
® No

@® Undergrauduate (year 1-2)
@ Undergraduate (year 3+)
@ Master student

@ PhD student
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A linear view of drug discovery

Target identification & assessment
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Discussion: conclusions from the figures?
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Failure analysis: 2013-2015

B Commercial [ Safety
B Efficacy B Strategy
[ Operational




Learnings from numbers

1.

Cost of target assessment and identification is
not explicit.

. Clinical studies are expensive, but picking a

wrong target is twice as expensive.

It is probably wise to infer efficacy and safety
profiles of drugs as accurately as possible.



Investment and collaboration are necessary
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Complex Adaptive System

1. Parallel information channels
2. Conditional actions (if/then)

3. Modularity
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Fig.1| Genetic variants associated with severe COVID-19. a, Manhattan plot
ofagenome-wide associationstudy of 3,199 hospitalized patients with

COVID-19and 897,488 population controls. The dashed line indicates genome-

wide significance (P=5x107%). Data were modified from the COVID-19 Host
Genetics Initiative? (https://www.covidl9hg.org/). b, Linkage disequilibrium
between theindexrisk variant (rs35044562) and genetic variantsin the1000

b 1o0r
09r . ©
Qe
0.8
T 0.7F @
€ ]
3
8
=
o
Q
2
©
(0]
(o))
g
(=
=

456 457 458 459 460 461 462  46.6
Chromosome 3 coordinate (Mb)

umpr ——  LzreLr f—  xeri}

SACMIL:-H-H CXCRS {

SLC6A20 HH- CCF?QH HH-} Fyco1

Genomes Project.Red circles indicate genetic variants for which the alleles are
correlated to therisk variant (©*>0.1) and therisk alleles match the Vindija 33.19
Neanderthal genome. The core Neanderthal haplotype (r*>0.98) is indicated
by ablack bar.Someindividuals carry longer Neanderthal-like haplotypes. The
locationofthegenesintheregionareindicated below using standard gene
symbols. The xaxis shows hgl9 coordinates.



Complex Adaptive System

4. Adaptation and evolution

Minor allele frequency — =
at rs35044562, a risk -
allele for SARS-Cov-2 &
that we inherited from |
Neanderthals. \ !



https://www.ncbi.nlm.nih.gov/snp/rs35044562

Propositions about the course

1.

Human (disease) biology is a hierarchical
complex adaptive system.

Drug discovery aims at identifying agents that
change the system’s behaviour with acceptable
benefit and risk profiles.

We use mathematical and computational biology
to study the system in order to modulate it.



Complementary views of biological systems

Metabolism

Energy

Information machine
Evolution
Computing machine
Network



An example of complementary views

We want to work on hepatocarcinoma (liver cancer) and have the following
information about a potential target X:

X is a receptor expressing on the surface of most cell types;

Upon binding ligands, X activates innate immune response;

Gene sequence of X is conserved in primates but not in rodents;
Protein X interacts with protein Y, which is essential, namely Y knockout
causes lethal embryos;

e Asian population has a unique genetic variant in the non-coding region
of X:

Discussion: what are the consequences of having these information?



Questions that we will address in this course

V: For which patients will the drug
work and how does it work, really?

Target identification & assessment
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IIIWhat kind of drug should we develop?
IV. What efficacy and safety profiles can we expect?

. What makes a good drug target?
ll. What can we do if there are no good targets?



Drug Discovery

Biology

Math./Comp.

Target identification,
assessment, and
phenotypic screening

Genomics
Genetics

Gene expression
Chemical biology

e Statistical modelling
e Machine learning
e Mechanistic modelling

Drug modality and
preclinical modelling

RNA, antisense
oligonucleotides, and
antibodies

Gene expression
Network analysis

e Dynamic programming
e Monte-Carlo methods
e Clustering

Biomarker, clinical
modelling and reverse
translation

Population genetics
Gene expression
Pharmacokinetics and
pharmacodynamics

e Causal analysis
e Learning algorithms
e Agent-based modelling




Common modelling approaches

Statistical modelling

ODE/PDEs (compartment & transport models)
Agent-based models (particle models)
Networks (graphical and boolean models)
Evolutionary game theory

Fractional calculus



A multiscale-modelling view of drug discovery

Forward translation
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Right target

* Strong link between target and disease
e Differentiated efficacy
* Available and predictive biomarkers

Exercise

Right tissue

* Adequate bioavailability and tissue exposure

* Definition of PD biomarkers

e Clear understanding of preclinical and clinical PK/PD
* Understanding of drug—drug interactions

Right safety

e Differentiated and clear safety margins

* Understanding of secondary pharmacology risk

* Understanding of reactive metabolites, genotoxicity and drug—drug interactions
¢ Understanding of target liability

Right patient

Wh e re d O yo u th i n k * |[dentification of the most responsive patient population

* Definition of risk-benefit for a given population

m ath e m ati Ca I a n d Right commercial potential

e Differentiated value proposition versus future standard of care

computational biology  :fecsonmaetaccespaeramaponaer
will make a difference?

Nature Reviews | Drug Discovery



Take-home messages

e Drug discovery identifies agents modulating human
disease biology as a hierarchical complex adaptive
system.

e Mathematical and computational biology studies
interactions within the system and help to build
predictive models.

e Reproducible computational research help ourselves
and others build a sustainable working environment.



Offline activities

1.

Last chance to fill the pre-course survey, and (optionally) fill
the anonymous, post-lecture survey.

Read ‘Improving target assessment in biomedical research: the
GOT-IT recommendations’ by Emmerich et al. (NRDD, 2021).

Think about the question that we will discuss next time: what is
a good drug target?

(Optional) We celebrate 20 years of the human genome in 2021.
Much promise was made and how much was fulfilled? Read the
article ‘Complicated legacies: the human genome at 20°
(Science, 2021).



https://forms.gle/ByqsDnVNoFaKVKQG8
https://forms.gle/D88xnUhiuBGdHFi36
https://www.nature.com/articles/s41573-020-0087-3
https://www.nature.com/articles/s41573-020-0087-3
https://science.sciencemag.org/content/371/6529/564

10.
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Backup and License



Nine steps toward reproducible research

Version control (git)

Don’t Repeat Yourself (DRY)

Keep It Simple, Stuipid (KISS)

Automatic testing (pytest/Hypothesis, testthat, GitHub Actions)
Documentation (sphinx, pkdown)

Dependency Management (conda, packrat)

Containerization (Docker/Singularity, Bioconda/conda-forge)
Pipelining (Snakemake, NextFlow, drake)

Self-reporting analysis (Jupyter Notebook, Rmarkdown)

© 00 NSO OWDN-=



Arguments for reproducible research

e Egoism and altruism
e You will have to do it again

e Sustainable long-term work
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Learn more about reproducible research

Software Carpentry (Unix Shell, Git, Python & R)
Genomics Workshop of Data Carpentry

Clean Code by Robert C. Martin

Open-source tutorials of respective tools, such as
sphinx, Snakemake, conda, or docker. Videos or

podcasts work just as fine.


https://software-carpentry.org/lessons/
https://datacarpentry.org/lessons/#genomics-workshop
https://www.oreilly.com/library/view/clean-code-a/9780136083238/
https://sphinx-tutorial.readthedocs.io/start/
https://snakemake.readthedocs.io/en/stable/tutorial/tutorial.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://docker-curriculum.com/

Mathematical and computational biologists
are part of an interdisciplinary team

In silico predictions

Experiment data analysed s
Hypotheses with computational tools Model building

Data mining and
machine learning

confirm/reject/
amend/generate

Model validation «



One-compartment model, oral dosing

For oral dosing, an extra gut compartment (right) is often sufficient to model the absorption
phase

dAgut

dt — _[{a ’ Agut

Suppose rate the absorption of the drug is faster than the elimination process (Ka>K), we can

model the concentration in the central compartment as

from gut elimination
dA - % N
_:F'[\(I'A(ui_ RA
dt !

In reality, we cannot easily assess the concentration of drug in the gut. Is it possible to derive the
relationship between central-compartment concentration A and time t given the initial condition?

Yes: we can find the expression of A(t) analytically in a closed form using Laplace transform, which
translates a function of a continuous variable (e.g. time) to a function of a complex variable
(frequency) (see backup).

Konc. (mg/L)
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This work is published at MCBDD.ch under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Contact the author
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mailto:jitao_david.zhang@roche.com?subject=Mathematics%20In%20Drug%20Discovery:%20A%20practitioner's%20view
https://creativecommons.org/licenses/by-sa/4.0/

