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Outline of Lecture 9

● Understanding pharmacology and toxicology with in vitro, in vivo, and in silico 
models

● Cell-type specific response to drugs

● Single-cell RNA sequencing for disease understanding and drug discovery



Where are we now

Target identification & assessment

Goal: we want to select one compound from a few 
(~102-100) for entry in human.



Factors that affect efficacy and safety profiles

● Absorption
● Distribution
● Pharmacology
● Toxicology
● Metabolism
● Excretion



Classical workflow of efficacy and toxicity 
assessment
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Computational methods empower efficacy and 
toxicity assessment

Mechanistic, causal, 
and statistical models

High-throughput 
technologies (omics, 
microscopy, etc.)



Stem cells and organoids empower efficacy and 
toxicity assessment

Induced pluripotent stem-cells
Small-intestinal organoids



Computational methods and novel biological 
models empower efficacy and toxicity assessment



Cells: basic 
building blocks, 
variable 
morphologies 
and functions

Complexity Increases Through a System

Tissues: groups 
of specialized 
cells that 
communicate 
and collaborate

Organ: group 
of tissues to 
perform 
specific 
functions

Organ 
systems: 
group of 
organs and 
tissues



Four 
major 
tissue 
types





What's in a drop of blood? Ask a doctor or a 
biologist!

~55%

<1%



What's in a drop of blood? Count the genes!
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Cell/nuclei 
suspension

Solid 
tissue

Dissociated 
cells/nuclei

Tissue dissociation

Flow 
cytometry

96-384 cells

Droplet 
microfluidics

1000s of cells
Throughput

Single cell capture and 
transcriptome sequencing

Single
cells

or
nuclei

Next-
Generation 
Sequencing

cDNA Pooled 
cDNA 

libraries

Single-cell sequencing (scSeq) workflow
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From short reads to gene-cell matrix

QC, filtering & normalization, 
dimensionality reduction, and 
clustering

Downstream analysis

A linearized workflow of scSeq data analysis
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Overview of the computational workflow

Andrews et al. Nature Protocols 2021

https://doi.org/10.1038/s41596-020-00409-w


Single-cell biology benefits both disease 
understanding and drug discovery
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Data loading Preprocessing Clustering Visualization Analysis

From FAIR format Quality Control
Filtering, 

Normalization

Dimensionality 
reduction

Cell type 
characterisation

An automatized standard workflow

Clustering

UMAP

BESCA: An open-source Python package for 
single-cell gene expression analysis
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How to represent voxels with pixels?

The elephant bull Tusker at Zolli Basel plays with a tree trunk on a post (2022)

http://www.youtube.com/watch?v=b-c3DNswVog


Uniform Manifold Approximation and 
Projection (UMAP) for dimension reduction

20UMAP by Leland McInnes on SciPy 2018 (YouTube)
Understanding UMAP by A. Coenen and A. Pearce 

https://www.youtube.com/watch?v=nq6iPZVUxZU
https://pair-code.github.io/understanding-umap/


The Leiden Algorithm for Community Detection
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Biological knowledge and visual inspection
 is used to annotate cell types

Heatmap 
of gene X
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Cell type annotation with machine learning



An intern project: Cell type annotation
From unsupervised clustering and cluster based annotation
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Luis Wyss
RAAN intern 2019

Advantages: (1) automation, (2) annotation independent from 
clustering, and (3) we can estimate the confidence of prediction

To supervised annotation at single-cell level:



B cells (Bc)

T cells (Tc)

Myeloids

NK
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A PBMC example of cell type annotation

● Missing and highly similar cell types cause challenges with increased 
granularity. Essential: reference data quality and knowledge of cell types.

● Broad level cell types, including B cells (Bc), Myeloid (My), NK cells (NK) 
and T cells (Tc), are successfully predicted.
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Computational biologists work with 
experimentalists to empower drug discovery

Patient

Single-cell biology
Target cell type(s)

Molecular 
Phenotyping

Phenotypic 
screening

Chemogenomic 
or genetic 
screening

Target-based 
discovery



We are living ecosystems



Gut microbiome can metabolize drugs differently



The Tabula Sapiens and other community projects 
offer reference expression data in healthy donors

Left: the Tabula Sapiens. Right: Myeloid 
(Mɸ=macrophages, Mo/monocytes, 
LAM=lipid-associated macrophages, 
DC=dendritic cells) gene expression



Conclusions

● Single-cell biology can identify rare cell populations 
associated with diseases, and investigate 
cell-type-specific perturbations caused by drug 
candidates.

● Algorithms for dimensionality reduction, clustering, and 
semi-automated cell type annotation allow us interpret 
and integrate single-cell datasets.



Offline activities of Module IV (optional)

Perform your own single-cell data analysis to get first-hand 
experience working with high-dimensional biological data.
● If you are new to the topic, please use the PBMC 

tutorial of Scanpy (python) or the PBMC tutorial of 
Seurat (R).

● If you have experience with such data already, checkout 
the NBIS workshop on single-cell sequencing data 
analysis to cover advanced topics such as spatial 
transcriptomics and trajectory inference.

https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://nbisweden.github.io/workshop-scRNAseq/exercises.html
https://nbisweden.github.io/workshop-scRNAseq/exercises.html
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Disease understanding: 
disease-specific cell types 
and states

Single-cell biology is important in drug discovery

Target identification: 
expression pattern in 
health and disease across 
cell types

MoA and safety 
modelling: perturbation 
effect at single-cell level

Biomarker and patient 
stratification: which 
genes should we measure 
in which cell type(s)?



Outline of Lecture 10

● We predict efficacy and safety profiles of drugs by studying the mechanism 
and mode of action (MoA).

● Molecular modelling and (single-cell) RNA sequencing analysis are essential 
tools for understanding MoA of nucleotide-based modalities.

● Molecular modelling and proteomics based on mass spectrometry (MS) are 
essential tools for understanding MoA of small molecules and antibodies.



Mechanism of Action at the molecular level and 
Mode of Action at cellular and system levels

Mechanism of Action: The biochemical 
interactions through which a drug exerts 
its pharmacology and toxicity.

Mode of Action: Functional or 
anatomical changes of cells, or organ 
and tissue systems resulting from the 
exposure to a drug.



Mechanism and Mode of Action 
determine phenotypes

Mechanism of Action

Mode of Action

Phenotype



Host genetics, non-genetic factors, MoA, and 
ADME together influence efficacy and safety

In this lecture, MoA 
refers to both 
Mechanism and 
Mode of action, 
because we need to 
understand both to 
make a good drug.

ADME

MoA

Exposure 
(space, 
time, 
abundance)

Host 
genetics

Non-genetic 
factors

Efficacy & 
Safety

e.g. food 
consumption, 
co-medication,
microbiome



Four approaches for MoA understanding

● Imaging-based methods
● Direct biochemical methods
● Computer-assisted inference 

methods, e.g. sequence analysis 
and molecular modelling

● Omics based methods, e.g. 
transcriptomics (RNA-seq) and 
proteomics (mass spectrometry)

Covered before

Focus today



Challenge #1: Many Causes, Same Effect

Different 
Mechanisms of 
Action may or may 
not lead to the 
same Mode of 
Action.



Challenge  #2: Multiple MoAs are possible

Non-steroid anti-inflammatory drugs (NSAIDs) 
are thought to work by inhibiting proteins 
Cox-1 and Cox-2. 

A recent study (Gao et al. 2018) reports that 
they bind to a surprisingly high number of 
proteins in cells.

Methotrexate

[As chemotherapy agent] Inhibiting 
dihydrofolate reductase (DHFR) and 
consequently DNA synthesis.

[As immunosuppressant] Multiple 
mechanisms, e.g. (1) inhibiting purine 
metabolism, (2) inhibiting methyltransferase, 
and (3) inhibiting IL-1b binding to its receptor.



Challenge  #2: Multiple MoAs are possible

Thalidomide employs the same 
ubiquitination system to degrade 
different targets in teratogenicity (left) 
and in leukemia (right).



Challenge  #3: Genetics may affect MoA

● Genetics may 
predispose 
individuals to 
different responses;

● Feedback loop and 
mutations may lead 
to drug resistance.

Vemurafenib 
inhibits 
BRAFV600E



● MoA can be inferred either with the 
information of the compound alone in 
silico, or with the data generated in 
vitro or in vivo.

● Prior knowledge encoded in databases 
is often of great help.
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Computational biology contributes to MoA 
understanding by data analysis and integration

● The process is always iterative with 
hypothesis-testing cycles.

● Below we illustrate modality-specific 
approaches



Understanding MoA of antisense 
oligonucleotides



● Antisense Oligonucleotides (ASOs) work by 
binding to mRNA transcripts in a 
sequence-dependent way.

Sequence-dependent binding of oligonucleotides 
induces both on- and off-target effects
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TACCGGACCTGAAGT

My silver-bullet oligo
(3’-5’!)

AUGGCCUGGACUUCA
AUGGCCUGGUCUUCA
AUGGCCUGCUCUUCA
AUGGCCACCACUUCA

UACGUCGUAGUCUUC
...

Human mRNAs

Off target
On target

Off target
Non target

Non target

● ASO-mRNA binding is a chemical reaction 
with a spectrum of affinities. For simplification 
(!), we often use the following classification:

○ On-target, usually of one mRNA 
species.

○ Off-targets potentially of many 
undesired mRNA species.

○ Non-targets, hardly bound by the ASO, 
though they can be potentially regulated 
by secondary effects.



Question: when other conditions are constant, which ASO 
binds strongest to the target gene Tradd?

● Binding affinity between RNA and ASOs 
can be measured by the duplex melting 
temperature (Tm), the temperature at which 
half of the ASOs are duplexed with RNA.

The binding affinity between RNA and ASO can 
be measured by the melting temperature Tm 
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● The higher is the Tm, the stronger is the binding, 
when other conditions are constant.



● It is possible to predict Tm, using the 
nucleotide sequences and the 
principles of nucleic acid 
thermodynamics.

● The melting temperature is correlated 
with the free energy of the duplex 
(ΔG°), which can be predicted by 
dynamic-programming algorithms.
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Predicting melting temperature (i.e. binding 
affinity) of ASO-mRNA pairs with free energy

TGAAGTCCAGGCCAT

My silver-bullet oligo
(5’-3’)

AUGGCCUGGACUUCA
AUGGCCUGGUCUUCA
AUGGCCUGCUCUUCA
AUGGCCACCACUUCA

UACGUCGUAGUCUUC
...

Human mRNAs

-28.5
-32.8

-23.7
-20.2

-9.8

Free Energy
(kcal/mol)

Question: Other conditions held 
constant, which mRNA has the 

highest predicted Tm  given the data?

● The more negative the free energy 
is (i.e. the larger the absolute value 
is), the higher is Tm,namely the 
ASO-mRNA pair is more likely to be 
stable .



● RNA-sequencing is able to quantify 
both on- and off-target effects of 
ASOs by measuring gene 
expression changes.

Transcriptomics profiling allows simultaneous 
investigation of on- and off-target effects
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Free energy [kcal/mol]

A declining trend at the left end (red dashed circle) is a 
warning sign: mRNAs that are predicted bound to the ASO 
are down-regulated, revealing potential off-target effects.

● Differential gene expression analysis 
can be used together with 
ASO-mRNA binding-affinity 
prediction to reveal off-target 
potentials of the tested ASOs.

● At the same time, RNA-sequencing 
can review pathway- and 
network-level changes induced by 
ASOs for efficacy and safety studies.



Understanding MoA of small molecules 
and antibodies with proteomics



● SDS-PAGE: Sodium Dodecyl 
Sulphate-Polyacrylamide Gel 
Electrophoresis

● ESI: Electrospray ionization

● q1/q2: selection/collision/separation 
cells

● MS: Mass spectrometry

● MS/MS: tandem mass spectrometry

Mass-spectrometry based Proteomics
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Mass-spectrometry based proteomics



We use mature software to 
handle MS data

Here is an example of MaxQuant. 
Additional work needs to be done:

● Experiment design
● Statistical modelling
● Pathway and network analysis
● Integration with other data
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Proteomics enables the elucidation of protein 
relations in the protein communities
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Proteomics approaches for drug discovery
Affinity purification

Proximity labelling

Organelle proteome profiling

Chemoaffinity enrichment

Thermal proteome profiling

Post-translational modification 
(PTM) profiling



● Chemoproteomics methods are based on two 
principles: (1) bait/prey and (2) competition.

Example 1: Chemoproteomics for target ID

54

● Commonly used methods include affinity‐based 
profiling (shown below), activity-based profiling, 
SILAC, etc.
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Example 2: Confirmation of selective degradation 
of protein target in vivo

Crystal 
structure of 
dBET1 binding 
to its target 
BRD4

Docking of 
dBET1-BRD4 to 
DDB1-CRBN 
structure

dBET1



Proteins are usually stabilized 
by ligands binding to them. 
This principle can be used to 
identify protein targets of a 
ligand without modification of 
the ligand (label-free)
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Example 3: thermal proteome profiling 
identifies drug binding targets

DON’T EAT, NOT 
EVEN COOKED!
The death cap 
contains amatoxin, 
a thermal stable 
toxin.

Results of Cellular Thermal Shift 
Assay (CETSA) to verify DHFR as a 
target of methotrexate.



Example 4: photoaffinity labelling confirmed HBV 
capsid binding and mapped the small molecule 
binding pocket +Cp150, UV, MS 

Proteolytic digestion/LC-MS/MS identified 
labelling site Y118 (Y=Tyrosine) of HBV capsid 
protein. More photoaffinity probes identified 
labelling sites at R127 (R=Arginine) and Y38.

RO-B
EC50: >1 μM
IC50: >100 μM

RO-A
EC50: 0.040 μM
IC50: 0.47 μM
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Conclusions
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● We predict efficacy and safety profiles of drugs by 
studying the mechanism and mode of action (MoA).

● Molecular modelling and (single-cell) RNA sequencing 
analysis are essential tools for understanding MoA of 
nucleotide-based modalities.

● Molecular modelling, RNA sequencing, and proteomics 
based on mass spectrometry (MS) are essential tools for 
understanding MoA of small molecules and antibodies.



Dai et al, Cell, 2019

Acetylation blocks cGAS 
activity and inhibits 
self-DNA-induced autoimmunity

● Acetylation suppresses cGAS 
activity

● Aspirin directly acetylates cGAS
● Aspirin inhibits cGAS-mediated 

interferon production
● Aspirin alleviates DNA-induced 

autoimmunity in AGS mouse models 
and patient cells
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The road towards MoA can be 120-year long

MoA understanding can be a long process full of surprises

Aspirin
trademarked 

in 1899
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It is often easy to see what a compound does to cells or to animals.

 It takes time and effort and luck to understand why it does so.
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Supplementary Information



Computational and physical models of human 
biology



Embryonic origins of 
tissues



Abundance of immune cells in tumor 
microenvironments affect outcome

TLS: tertiary lymphoid structures; Treg: regulatory T cells; M: macrophages; M1/M2: subtypes of macrophages



An example of Inflammatory Bowel Disease 
(IBD)

We observed Inconsistent cell type nomenclature across studies. 
Machine learning allows us compare and integrate multiple studies. 70


