

Shameless advertisements

- My team offers several student internships.
- Check them out at <u>careers.roche.com</u>. Keyword: predictive modeling and data analytics, or PMDA.

What are good drug targets and how to find them?

Mathematical and Computational Biology in Drug Discovery (MCBDD), Module I

Dr. Jitao David Zhang, March 2022

Outline

- Always write down numbers and possibilities for inference.
- We review biological foundations of target identification.
- Genetics doubles the success rate of target identification.

Exercise of inference (I)

I have three pills and two hamsters. The two hamsters look identical, while one carries a genetic mutation that affects its response to the pills.

- 1. Pill A makes both hamsters sleep.
- 2. Pill B makes neither animal sleep.
- 3. Pill C makes one animal sleep but not the other.

Now I pick a pill, feed it to one hamster, and the hamster falls asleep. What's the probability that the pill makes the other animal sleep, too?

Solution: $\frac{2}{3}$, not $\frac{1}{2}$ or $\frac{1}{3}$.

- We name the hamsters H1 and H2.
 - We cannot tell between H1 and H2 optically.
 - Upon treatment with pill A, H1 and H2 fall asleep.
 - Upon treatment with pill B, H1 and H2 stay awake.
 - Let's assume that upon treatment with pill C, H1 will sleep and H2 will stay awake. Once can switch the labeling of H1 and H2, without affecting the results.
- Having observed that one hamster, either H1 or H2, falls asleep, the option of pill B is excluded.
- The asleep hamster can be either H1 or H2. So three options are equally possible:
 - Pill A was given to H1, and H1 fell asleep;
 - Pill A was given to H2, and H2 fell asleep;
 - o Pill C was given to H1, and H1 fell asleep.
- The possibility that the pill makes the other hamster asleep (i.e. the Pill A) is ²√₃.

	H1	H2
Pill A	Sleep	Sleep
Pill B	Awake	Awake
Pill C	Sleep	Awake

Exercise of *inference* (II)

The company *Fränzi and Friends* developed a new quick test at home for SARS-Cov-2, which is pending regulatory agency's review. The test has been shown to have a sensitivity of 99% and a specificity of 99%.

Suppose that Fred uses the test by *Fränzi and Friends* and the test was positive. Assume that 5% of the population is in fact infected. Was is your guess about the probability that Fred is indeed infected?

(Sensitivity is predicted true positive divided by all true positive; specificity is predicted true negative divided by all true negative).

Exercise of inference (II) - variants

The company *Fränzi and Friends* developed a new quick test at home for SARS-Cov-2 which is pending regulatory agency's review. When test with 100 SARS-Cov-2 patients, 99 report positive and one reports negative. When test with 100 healthy volunteers, 99 report negative and one reports positive.

Suppose that Fred uses the test by *Fränzi and Friends* and the test was positive. There are 30,000 people in the city where Fred lives; among them 1,500 are infected with SARS-Cov-2. What is the likelihood that Fred is truly infected given his positive test?

Chromosome

Short region of DNA double helix

"Beads on a string" form of chromatin

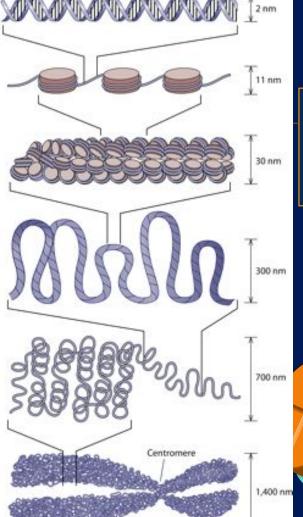
30-nm chromatin fibre of packed nucleosomes

Section of chromosome in an extended form

Condensed section of chromosome

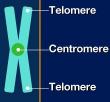
Cell

Entire mitotic chromosome



NHGRI FACT SHEETS

genome.gov



Gene structure and gene expression



ACE2 viewed in FANTOM5/ZENBU

A mRNA of ACE2

- RefSeq record <u>NM_001371415.1</u>
- EnsEMBL record
 ENST00000252519.8
- Red and blue boxes: start codon (ATG) and stop codon (TAG). The region between them is called the coding sequence (CDS).

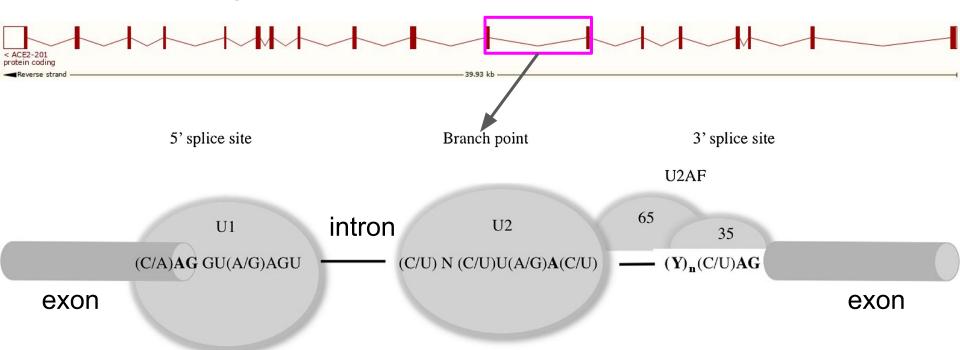
```
1 agtotaggga aagtoattoa gtggatgtga tottggotoa caggggac a tg caagoto
 61 ttcctqqctc cttctcaqcc ttqttqctqt aactqctqct caqtccacca ttqaqqaaca
 121 ggccaagaca tttttggaca agtttaacca cgaagccgaa gacctgttct atcaaagttc
 181 acttgcttct tggaattata acaccaatat tactgaagag aatgtccaaa acatgaataa
 241 tgctggggac aaatggtctg cctttttaaa ggaacagtcc acacttgccc aaatgtatcc
 301 actacaaqaa attcaqaatc tcacaqtcaa qcttcaqctq caqqctcttc aqcaaaatqq
 361 gtottcagtg ototcagaag acaagagcaa acggttgaac acaattctaa atacaatgag
 421 caccatctac agtactggaa aagtttgtaa cccagataat ccacaagaat gcttattact
 481 tgaaccaggt ttgaatgaaa taatggcaaa cagtttagac tacaatgaga ggctctgggc
 541 ttqqqaaaqc tqgagatctg aggtcggcaa gcagctgagg ccattatatg aagagtatgt
 601 ggtcttgaaa aatgagatgg caagagcaaa tcattatgag gactatgggg attattggag
 661 aggagactat qaagtaaatg gggtagatgg ctatgactac agccgcggcc agttgattga
 721 agatqtqqaa catacctttg aagagattaa accattatat gaacatcttc atgcctatgt
 781 gagggcaaag ttgatgaatg cctatccttc ctatatcagt ccaattggat gcctccctgc
 841 toatttgett ggtgatatgt ggggtagatt ttggacaaat ctgtactett tgacagttee
 901 ctttggacag aaaccaaaca tagatgttac tgatgcaatg gtggaccagg cctgggatgc
 961 acagagaata ttcaaggagg ccgagaagtt ctttgtatct gttggtcttc ctaatatgac
1021 tcaaggattc tgggaaaatt ccatgctaac ggacccagga aatgttcaga aagcagtctg
1081 ccatcccaca gcttgggacc tggggaaggg cgacttcagg atccttatgt gcacaaaggt
1141 gacaatggac gactteetga cageteatea tgagatgggg catatecagt atgatatgge
1201 atatgctgca caaccttttc tgctaagaaa tggagctaat gaaggattcc atgaagctgt
1261 tggggaaatc atgtcacttt ctgcagccac acctaagcat ttaaaatcca ttggtcttct
1321 gtcacccgat tttcaaqaag acaatgaaac agaaataaac ttcctgctca aacaagcact
1381 cacgattgtt gggactctgc catttactta catgttagag aagtggaggt ggatggtctt
1441 taaaggggaa attcccaaag accagtggat gaaaaagtgg tgggagatga agcgagagat
1501 agttggggtg gtggaacctg tgccccatga tgaaacatac tgtgaccccg catctctgtt
1561 ccatgtttct aatgattact cattcattcg atattacaca aggacccttt accaattcca
1621 gtttcaaqaa gcactttgtc aagcagctaa acatgaaqgc cctctgcaca aatgtgacat
1681 ctcaaactct acaqaaqctq qacaqaaact qttcaatatq ctqaqqcttq qaaaatcaqa
1741 accotggaco ctagcattgg aaaatgttgt aggagcaaag aacatgaatg taaggccact
1801 gctcaactac tttgagccct tatttacctg gctgaaagac cagaacaaga attcttttgt
1861 qqqatqqaqt accqactqqa qtccatatqc aqaccaaaqc atcaaaqtqa qqataaqcct
1921 aaaatcagct cttggaqata aagcatatga atggaacgac aatgaaatgt acctgttccg
1981 atcatctqtt qcatatqcta tqaqqcaqta ctttttaaaa qtaaaaaatc aqatqattct
2041 ttttqqqqaq qaqqatqtqc qaqtqqctaa tttqaaacca aqaatctcct ttaatttctt
2101 tgtcactgca cctaaaaatg tgtctgatat cattcctaga actgaagttg aaaaggccat
2161 caggatgtcc cggagccgta tcaatgatgc tttccgtctg aatgacaaca gcctagagtt
2221 tetggggata cagecaacae ttggacetee taaccagece cetgttteca tatggetgat
2281 tqtttttqqa qttqtqatqq qaqtqataqt qqttqqcatt qtcatcctqa tcttcactqq
2341 gatcagagat cggaagaaga aaaataaagc aagaagtgga gaaaatcctt atgcctccat
2401 cgatattagc aaaggagaaa ataatccagg attccaaaac actgatgatg ttcagacctc
2461 ctt tag aa aatctatgtt tttcctcttg aggtgatttt gttgtatgta aatgttaatt
2521 tcatqqtata qaaaatataa qatqataaaq atatcattaa atqtcaaaac tatqactctq
2581 ttcagaaaaa aaattqtcca aaqacaacat qqccaaqqaq aqaqcatctt cattqacatt
2641 gctttcagta tttatttctg tctctggatt tgacttctgt tctgtttctt aataaggatt
2701 ttgtattaga gtatattagg gaaagtgtgt atttggtctc acaggctgtt cagggataat
2761 ctaaatgtaa atgtctgttg aatttctgaa gttgaaaaca aggatatatc attggagcaa
2821 gtgttggatc ttgtatggaa tatggatgga tcacttgtaa ggacagtgcc tgggaactgg
2881 tqtaqctqca aqqattqaqa atqqcatqca ttaqctcact ttcatttaat ccattqtcaa
2941 ggatgacatg ctttcttcac agtaactcag ttcaagtact atggtgattt gcctacagtg
```

< ACE2-201 protein coding

Reverse strand —

--- 39.93 kb

The splicing code

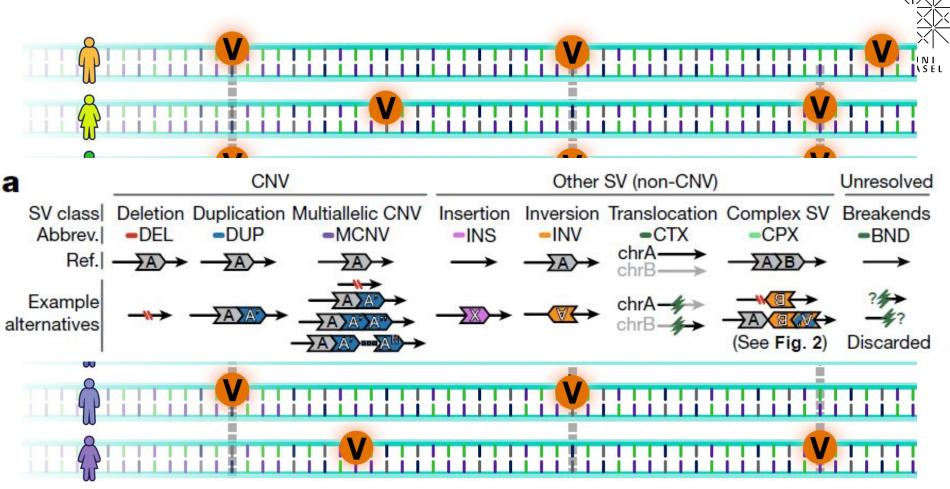


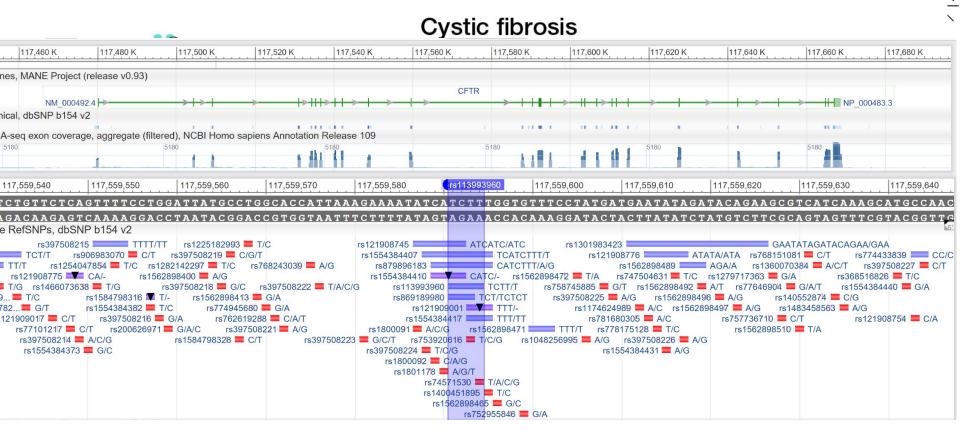
5' donor site

Person one

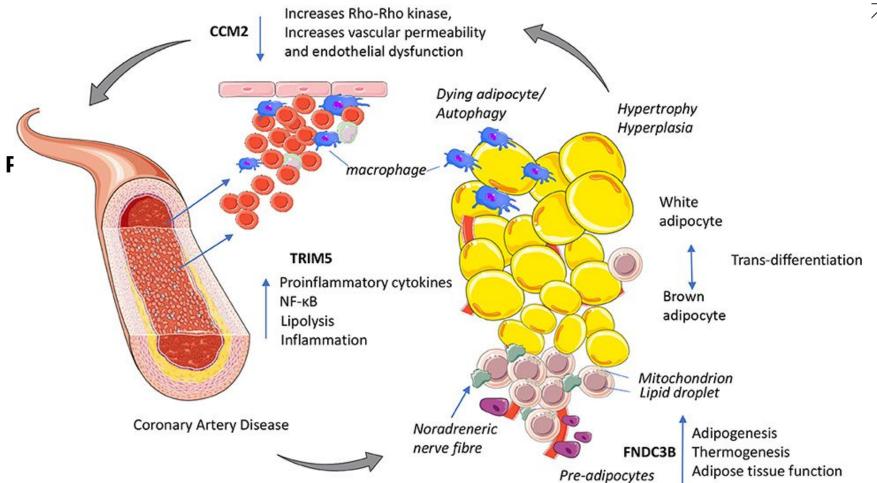
AGACGCT

Variant ID	Source	HGVS Consequence	VEP Annotation	<u>LoF</u> <u>Curation</u>	Clinical Significance - Flags	Allele Count
11-1319011-0-1	E	C./4+22G>A	■ intron	************	Likely benign	ı
17-7579831-C-T	E	c.74+8G>A	splice region		Likely benign	1
17-7579924-G-A	E G	c12C>T	• 5' UTR		Likely benign	7
17-7579932-G-C	E	c20C>G	• 5' UTR		Likely benign	2
17-7578142-C-A	E G	c.672+35G>T	intron		not provided	9
17-7577142-C-A	E	p.Gly266Ter	stop gained		Pathogenic	1
17-7578188-C-A	E	p.Glu221Ter	stop gained		Pathogenic	1
17-7578263-G-A	E	p.Arq196Ter	stop gained		Pathogenic	1
17-7576928-TAGGAA	E	c.920-14_920-3delTGC	splice region		Uncertain significance	2
17-7578171-C-A	E G	c.672+6G>T	splice region		Uncertain significance	2
17-7578171-C-T	E	c.672+6G>A	splice region		Uncertain significance	1
17-7579934-C-T	G	c22G>A	• 5' UTR		Uncertain significance	1
17-7565206-T-A	G	c.*51A>T †	• 3' UTR			1
17-7565222-C-T	G	c.*35G>A †	● 3' UTR			1

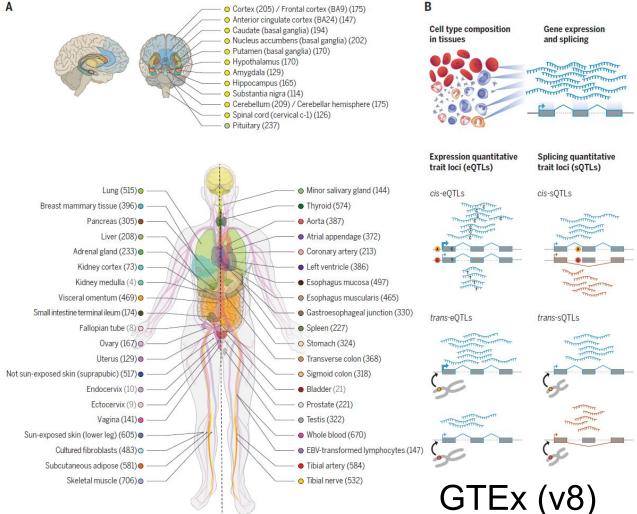




The CFTR gene (Chr 7), and rs113993960, the most common cause of CF



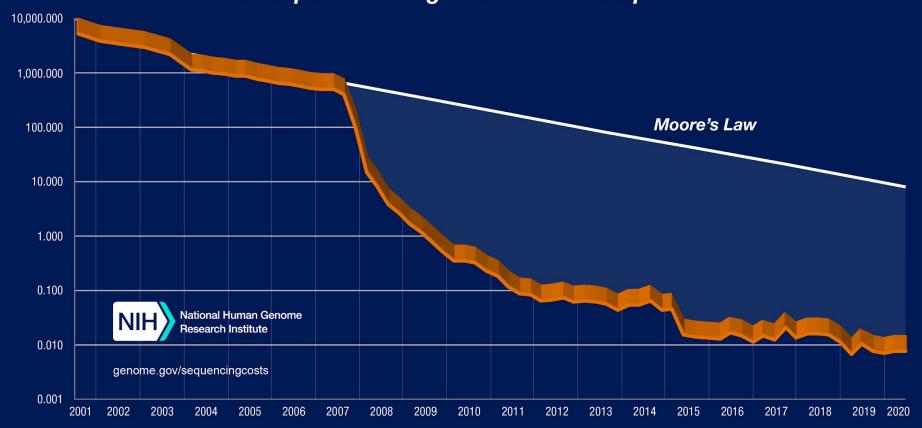
Dna Se

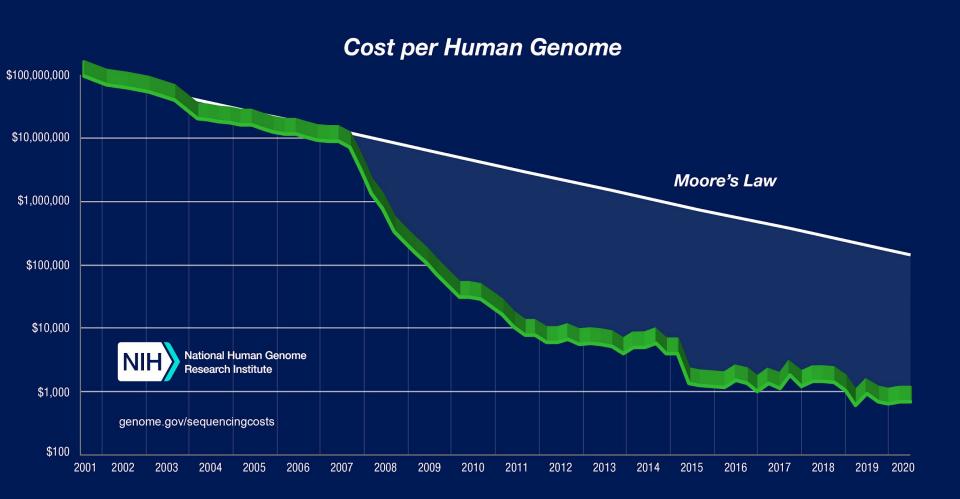


FACT SHEETS genome.gov

National Human Genome Research Institute

Cost per Raw Megabase of DNA Sequence





Spain

(1914-1934)

Asturias

(1907 - 1938)

Prussia

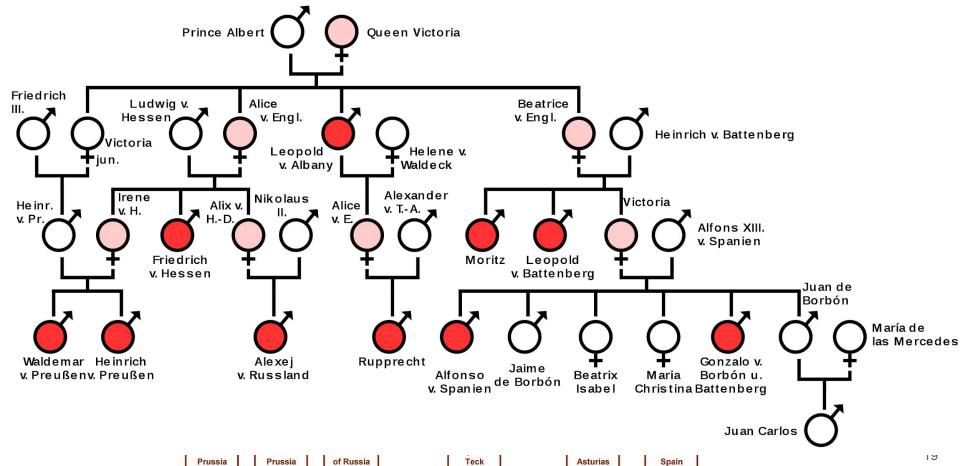
(1900-1904)

Prussia

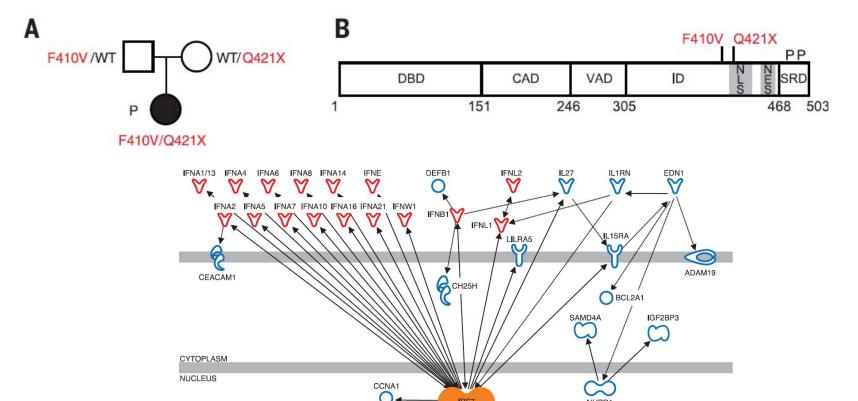
(1889-1945)

of Russia

(1904-1918)



(1907-1928)



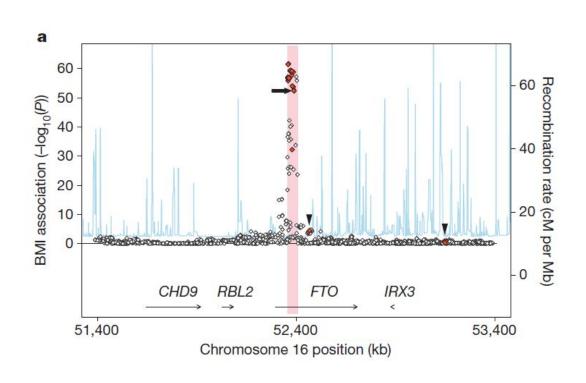
Exercise of inference (III)

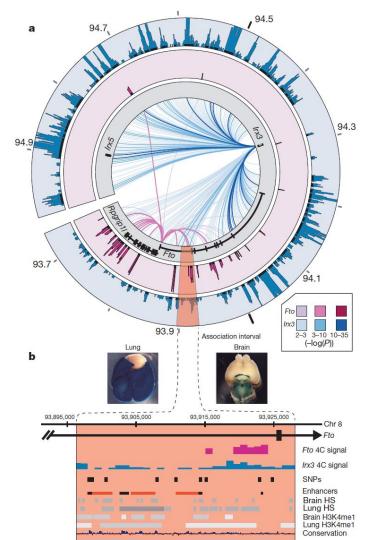
- Cao and Moult (BMC Genomics, 2014) reported studied overlap between drug targets and GWAS hits.
- Use the data in the Table 1 of the paper (<u>cloned here</u>) to answer following the following two questions:
 - a. Assuming we know *nothing* about a gene (let's call it gene *WKN1*), what is the probability that the gene is a target for a disease listed here?
 - b. Assuming that we know nothing about another gene *WKN2* but that it is a GWAS hit for a disease, what is the probability that *WKN2* is a target for that disease?

Offline activities of Module I

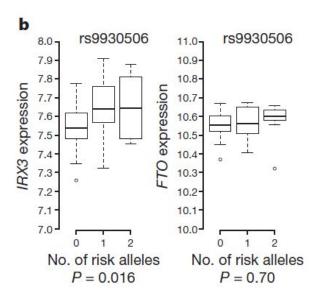
Due on March 31st, https://forms.gle/KQm4GQxxBq1odVqE9

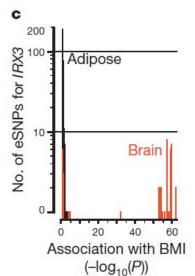
Is FTO a good target for obesity?

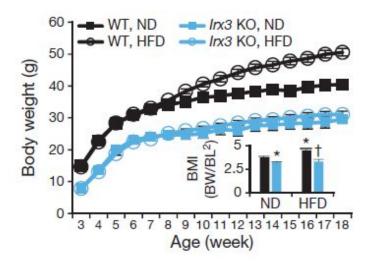




If at all, IRX3 is a more probable target



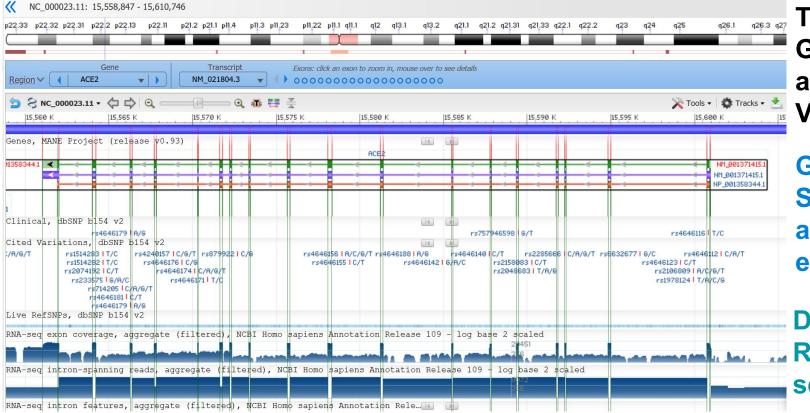




Recap of the biology we talked about last time

Gene
Structure
and gene
expression

DNA and RNA sequencing



Recap of the math we talked about last time

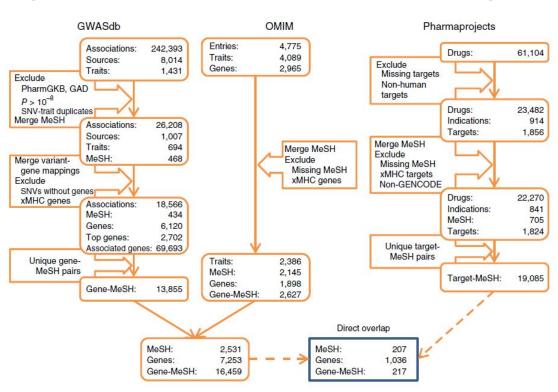
- Always write down your probabilities.
- The probability theory and the Bayes theorem for inference.

	Sensitivity	Specificity
NPS	86% (90% CI 77–93)	99.93% (90% CI 99.77–99.99)
Saliva	92% (90% CI 83–97)	99.96% (90%CI 99.85–100)

NPS = nasopharyngeal swabs. Yokota et al., 2020

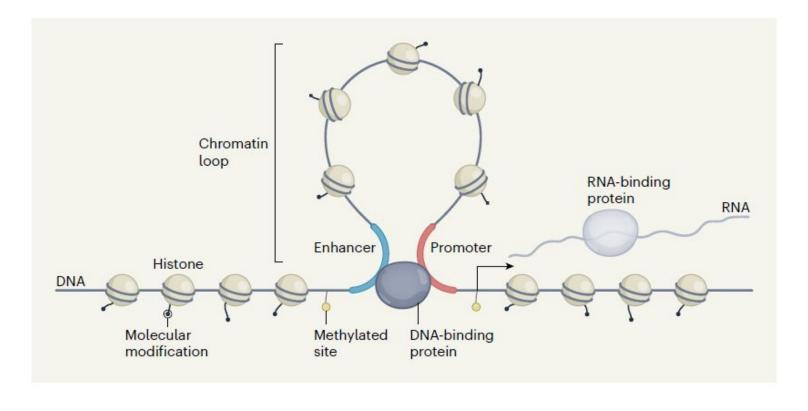
- A list of approved serological tests and their accuracy can be found <u>here</u>;
- <u>Does He Have It?</u> by Bill Casselman (AMS)

Impact by a factor of ~2 estimated by Nelson et al.

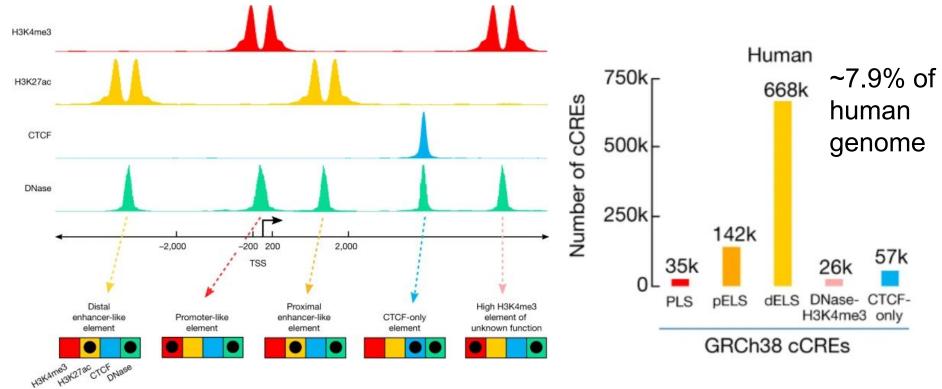


Disease ←→ Gene ←→ Drug

Much of the non-coding genome is junk, some is regulatory



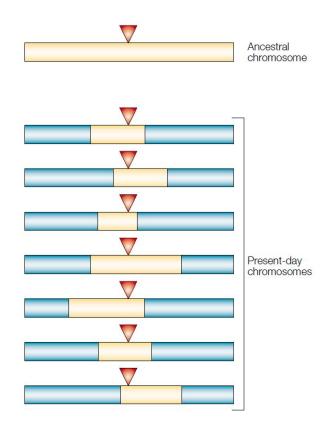
Candidate cis-regulatory elements (cCRE)



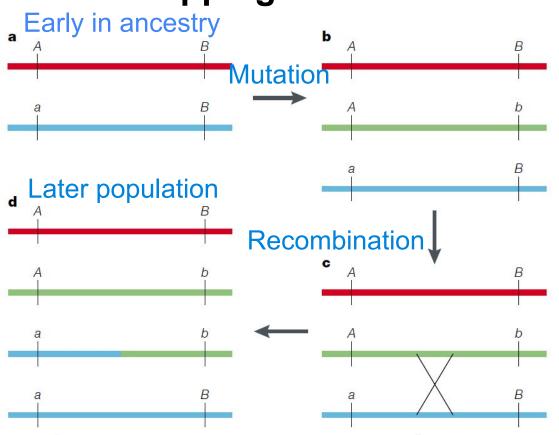
https://screen.encodeproject.org/

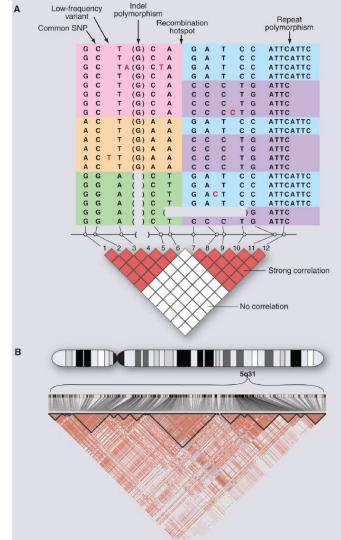
Linkage Disequilibrium in human genome

Particular alleles (single gene copies) at neighbouring loci tend to be co-inherited. For tightly linked loci, this might lead to associations between alleles in the population. This property is known as linkage disequilibrium (LD).

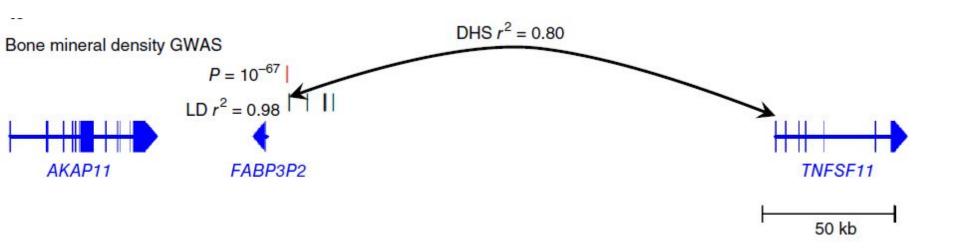


Population genetics helps with disease mapping





Correlation between DNase I hypersensitive (DHS) sites helps linking genetic variants with genes



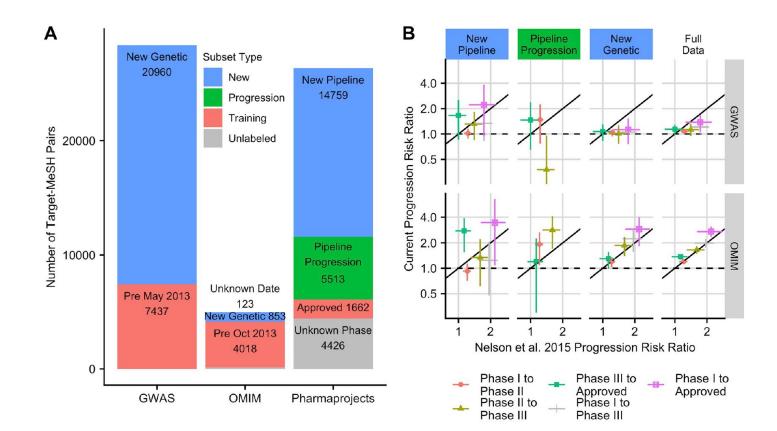
Nelson *et al.* inferred that genetic support offers an likelihood ratio ~2

Table 1 The relative value of genetic support for the probability that a target-indication pair progresses along the drug development pipeline, based on historical drug trial information

	p(progress genetic support)/(progress no genetic support)				
Progression	GWASdb and OMIM	GWASdb	OMIM		
Phase I to phase II	1.2 (1.1–1.3)	1.2 (1.1–1.3)	1.2 (1.1–1.3)		
Phase II to phase III	1.5 (1.3–1.7)	1.4 (1.2-1.7)	1.6 (1.3–1.9)		
Phase III to approval	1.1 (1.0-1.2)	1.0 (0.8–1.2)	1.1 (0.9–1.3)		
Phase I to phase III	1.8 (1.5–2.1)	1.8 (1.4-2.1)	1.9 (1.5-2.3)		
Phase I to approval	2.0 (1.6–2.4)	1.8 (1.3–2.3)	2.2 (1.6–2.8)		

Values give the ratio of the probability of a target-indication pair progressing given genetic support to the probability of progressing without genetic support; 95% confidence intervals are given in parentheses.

Follow-up study by King et al., 2019



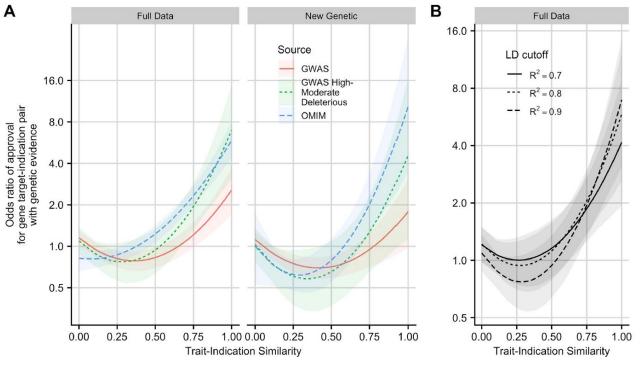


Fig 2. Estimated odds ratio of gene target-indication pair attaining approval, as a function of similarity between drug indication and the most similar trait associated with the target. A: Left: All genetic associations. Right: Only genetic associations reported after 2013 download. B: Effect of LD expansion threshold R^2 on the estimated approval odds ratio of a drug gene target-indication pair supported by a GWAS high-moderate deleterious variant. Posterior median and pointwise 95% credible interval from Bayesian logistic regression.

Discussion

What other evidences can we use to increase the likelihood that a gene is a good drug target?

GOT-IT recommendations for target-disease linkage

Assessment blocks

Disease linkage

Target-related safety

Microbial targets

Strategic issues

Technical feasibility

AB1: target-disease linkage (human targets)

- 1. Is the target perturbation a cause or consequence of the human disease process?
- 2. Is the therapeutic relevance (such as human connection) of models used sufficiently high for decision-making?
- 3. Is the target expression pattern known (that is, within the anticipated patient population)?
- 4. Is the target manipulation process clinically relevant?
- 5. Is the read-out used to detect target-dependent processes disease-relevant?
- 6. Is the stimulus used to activate or influence target-dependent processes disease-relevant?
- 7. Are the biological consequences of an observed effect size known?

Public resources for target assessment

AB1: target-disease linkage (human targets)

- 1. Is the target perturbation a cause or consequence of the human disease process?
- 2. Is the therapeutic relevance (such as human connection) of models used sufficiently high for decision-making?
- 3. Is the target expression pattern known (that is, within the anticipated patient population)?
- 4. Is the target manipulation process clinically relevant?
- 5. Is the read-out used to detect target-dependent processes disease-relevant?
- 6. Is the stimulus used to activate or influence target-dependent processes disease-relevant?
- 7. Are the biological consequences of an observed effect size known?

- OpenTargets
- Online Mendelian
 Inheritance in Man (OMIM)
- Scattered in diverse information sources such as Wikipedia and literature
- Health: <u>GTEx</u>, <u>The Human</u>
 <u>Protein Atlas</u>
- Disease: <u>Gene Expression</u>
 <u>Atlas</u>, scattered

Public resources for target safety assessment

AB2: target-related safety (human targets)

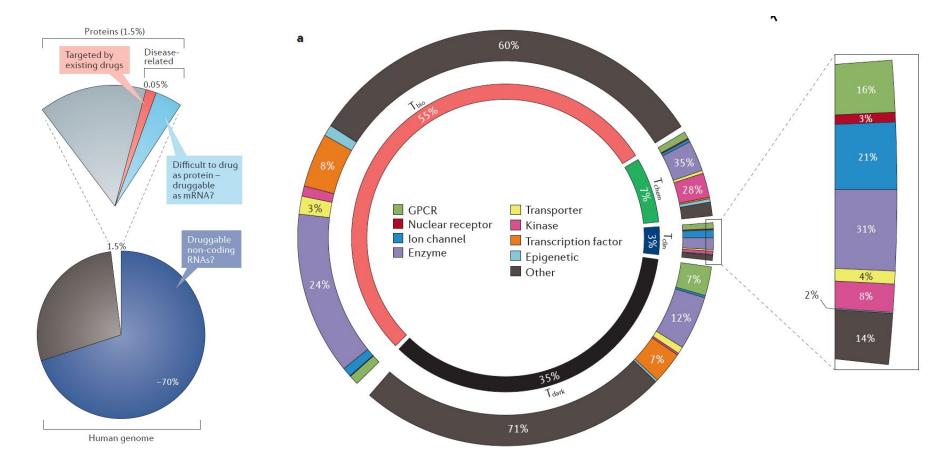
- 8. Is the target selective and not genetically linked to other diseases (or phenotypes or organ systems)?
- 9. Is there prior knowledge on safety of the target or reported evidence for the role of the target in a known pathway and/or physiological process that may be harmful if disrupted?
- 10. Are in vitro or pharmacologically relevant animal models available for safety testing?
 - 11. Do models used for safety testing translate well to humans?
 - 12. Are safety biomarkers available and can adverse effects be monitored and/or predicted by safety biomarkers?
 - 13. Is there sufficient confidence that a necessary safety window has been or can be established?
 - 14. Is the disease life-threatening (at what stage of the disease is the target of relevance)?
 - 15. Is the tissue distribution of the target known (in humans or in animals)?

- <u>Comparative</u>
 <u>Toxicogenomics Database</u>
 (CTD)
- DrugBank, DrugCentral
- <u>FDA Adverse Event</u>
 <u>Reporting System (FAERS)</u>
- NCBI HomoloGene
- ENSEMBL ComparaGenom
- Mouse Genome Informatics (MGI)

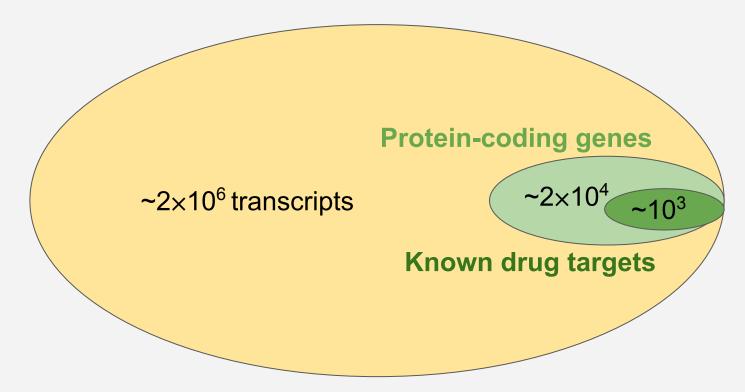
Other important information resources

- Genomic variations: gnomAD, dbSNP, and TCGA for oncology;
- Protein domain and static structure: <u>InterPro</u>, <u>Pfam</u>, and <u>PDB</u>;
- Interaction network and pathway: <u>BioGRID</u>, <u>IntAct</u>, <u>Reactome</u>, and <u>KEGG</u>;
- Gene expression profiles associated with the target:
 NCBI GEO (Gene Expression Omnibus), <u>ARCHS4</u>

Challenge #1: little experience for much of the genome

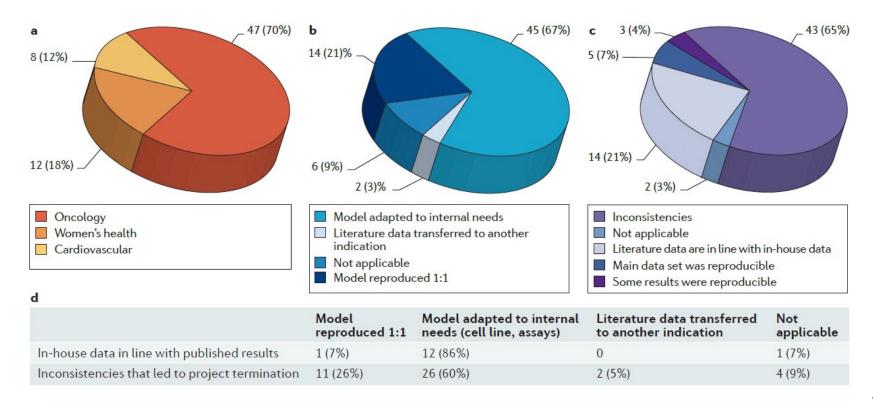


Protein, RNA, or DNA as target?



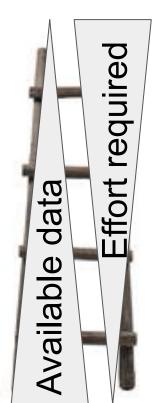
~3×10⁹ DNA bases from maternal and paternal each

Challenge #2: Lack of reproducibility



Challenge #3: The Target Ladder

- 3. [Real-world test] What would happen if we inhibit the activity of the kinase domain in the *WKN3* gene in patients with Alzheimer's Disease?
- 2. [Intervention] What would happen to human cells or to a rat model if we inhibit the activity of the kinase domain in the WKN3 gene?
- 1. [Association] What are the evolutionary conservation, sequence, expression profile, expression regulation patterns, ... of the WKN3 gene?



Conclusions

- Genomics and genetics offer unprecedented opportunities and challenges for target identification and assessment;
- Target identification and assessment involves knowledge integration and experimental validation;
- A central task of mathematical and computational biology in drug discovery is to perform inference, i.e. using information to reduce uncertainty.

References

- 1. Overington, John P., Bissan Al-Lazikani, and Andrew L. Hopkins. 2006. "How Many Drug Targets Are There?" Nature Reviews Drug Discovery 5 (12): 993–96. https://doi.org/10.1038/nrd2199.
- 2. Santos, Rita, Oleg Ursu, Anna Gaulton, A. Patrícia Bento, Ramesh S. Donadi, Cristian G. Bologa, Anneli Karlsson, et al. 2017. "A Comprehensive Map of Molecular Drug Targets." *Nature Reviews Drug Discovery* 16 (1): 19–34. https://doi.org/10.1038/nrd.2016.230.
- 3. Oprea, Tudor I., Cristian G. Bologa, Søren Brunak, Allen Campbell, Gregory N. Gan, Anna Gaulton, Shawn M. Gomez, et al. 2018. "Unexplored Therapeutic Opportunities in the Human Genome." Nature Reviews Drug Discovery 17 (February): 317–32. https://doi.org/10.1038/nrd.2018.14.
- 4. Finan, Chris, Anna Gaulton, Felix A. Kruger, R. Thomas Lumbers, Tina Shah, Jorgen Engmann, Luana Galver, et al. 2017. "The Druggable Genome and Support for Target Identification and Validation in Drug Development." Science Translational Medicine 9 (383): eaag1166. https://doi.org/10.1126/scitranslmed.aag1166.
- 5. Plenge, Robert M., Edward M. Scolnick, and David Altshuler. 2013. "Validating Therapeutic Targets through Human Genetics." Nature Reviews Drug Discovery 12 (8): 581–94. https://doi.org/10.1038/nrd4051.
- 6. Prinz, Florian, Thomas Schlange, and Khusru Asadullah. 2011. "Believe It or Not: How Much Can We Rely on Published Data on Potential Drug Targets?" Nature Reviews Drug Discovery 10 (9): 712–712. https://doi.org/10.1038/nrd3439-c1.
- 7. Matsui, Masayuki, and David R. Corey. 2017. "Non-Coding RNAs as Drug Targets." Nature Reviews Drug Discovery 16 (3): 167–79. https://doi.org/10.1038/nrd.2016.117.
- 8. Setten, Ryan L., John J. Rossi, and Si-ping Han. 2019. "The Current State and Future Directions of RNAi-Based Therapeutics." Nature Reviews Drug Discovery 18 (6): 421–46. https://doi.org/10.1038/s41573-019-0017-4.
- 9. Warner, Katherine Deigan, Christine E. Hajdin, and Kevin M. Weeks. 2018. "Principles for Targeting RNA with Drug-like Small Molecules." Nature Reviews Drug Discovery 17 (8): 547–58. https://doi.org/10.1038/nrd.2018.93.
- 10. Donovan, Katherine A., Fleur M. Ferguson, Jonathan W. Bushman, Nicholas A. Eleuteri, Debabrata Bhunia, SeongShick Ryu, Li Tan, et al. 2020. "Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development." Cell 183 (6): 1714-1731.e10. https://doi.org/10.1016/j.cell.2020.10.038.

References (continued)

- 11. Shih, Hsin-Pei, Xiaodan Zhang, and Alex M. Aronov. 2017. "Drug Discovery Effectiveness from the Standpoint of Therapeutic Mechanisms and Indications." *Nature Reviews Drug Discovery*, October. https://doi.org/10.1038/nrd.2017.194.
- 12. Nguyen, Phuong A., David A. Born, Aimee M. Deaton, Paul Nioi, and Lucas D. Ward. 2019. "Phenotypes Associated with Genes Encoding Drug Targets Are Predictive of Clinical Trial Side Effects." *Nature Communications* 10 (1): 1–11. https://doi.org/10.1038/s41467-019-09407-3.
- Ding, Li, Matthew H. Bailey, Eduard Porta-Pardo, Vesteinn Thorsson, Antonio Colaprico, Denis Bertrand, David L. Gibbs, et al. 2018. "Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics." Cell 173 (2): 305-320.e10. https://doi.org/10.1016/j.cell.2018.03.033.
- 14. Hon, Chung-Chau, and Piero Carninci. 2020. "Expanded ENCODE Delivers Invaluable Genomic Encyclopedia." Nature 583 (7818): 685–86. https://doi.org/10.1038/d41586-020-02139-1.
- 15. Moore, Jill E., Michael J. Purcaro, Henry E. Pratt, Charles B. Epstein, Noam Shoresh, Jessika Adrian, Trupti Kawli, et al. 2020. "Expanded Encyclopaedias of DNA Elements in the Human and Mouse Genomes." Nature 583 (7818): 699–710. https://doi.org/10.1038/s41586-020-2493-4.
- 16. Kim-Hellmuth, Sarah, François Aguet, Meritxell Oliva, Manuel Muñoz-Aguirre, Silva Kasela, Valentin Wucher, Stephane E. Castel, et al. 2020. "Cell Type–Specific Genetic Regulation of Gene Expression across Human Tissues." Science 369 (6509). https://doi.org/10.1126/science.aaz8528.
- 17. Uhlén, Mathias, Linn Fagerberg, Björn M. Hallström, Cecilia Lindskog, Per Oksvold, Adil Mardinoglu, Åsa Sivertsson, et al. 2015. "Tissue-Based Map of the Human Proteome." Science 347 (6220): 1260419. https://doi.org/10.1126/science.1260419.
- 18. Wang, Dongxue, Basak Eraslan, Thomas Wieland, Björn Hallström, Thomas Hopf, Daniel Paul Zolg, Jana Zecha, et al. 2019. "A Deep Proteome and Transcriptome Abundance Atlas of 29 Healthy Human Tissues." Molecular Systems Biology 15 (2): e8503. https://doi.org/10.15252/msb.20188503.
- 19. Wang, Mingcong, Christina J. Herrmann, Milan Simonovic, Damian Szklarczyk, and Christian von Mering. 2015. "Version 4.0 of PaxDb: Protein Abundance Data, Integrated across Model Organisms, Tissues, and Cell-Lines." PROTEOMICS 15 (18): 3163–68. https://doi.org/10.1002/pmic.201400441.
- 20. Emmerich, Christoph H., Lorena Martinez Gamboa, Martine C. J. Hofmann, Marc Bonin-Andresen, Olga Arbach, Pascal Schendel, Björn Gerlach, et al. 2021. "Improving Target Assessment in Biomedical Research: The GOT-IT Recommendations." Nature Reviews Drug Discovery 20 (1): 64–81. https://doi.org/10.1038/s41573-020-0087-3.

References (continued)

- 21. Cao, Chen, and John Moult. 2014. "GWAS and Drug Targets." BMC Genomics 15 (4): S5. https://doi.org/10.1186/1471-2164-15-S4-S5.
- 22. Patron, Jonas, Arnau Serra-Cayuela, Beomsoo Han, Carin Li, and David Scott Wishart. 2019. "Assessing the Performance of Genome-Wide Association Studies for Predicting Disease Risk." *PLOS ONE* 14 (12): e0220215. https://doi.org/10.1371/journal.pone.0220215.
- 23. https://www.genome.gov/About-Genomics/Introduction-to-Genomics
- 24. Jansen, An, and Kevin J. Verstrepen. 2011. "Nucleosome Positioning in Saccharomyces Cerevisiae." Microbiology and Molecular Biology Reviews 75 (2): 301–20. https://doi.org/10.1128/MMBR.00046-10.
- 25. https://gnomad.broadinstitute.org/gene/ENSG00000141510?dataset=gnomad_r2_1
- 26. Collins, Ryan L., Harrison Brand, Konrad J. Karczewski, Xuefang Zhao, Jessica Alföldi, Laurent C. Francioli, Amit V. Khera, et al. 2020. "A Structural Variation Reference for Medical and Population Genetics." Nature 581 (7809): 444–51. https://doi.org/10.1038/s41586-020-2287-8.
- 27. NCBI Gene of CFTR: https://www.ncbi.nlm.nih.gov/gene/1080
- 28. Hughes, Maria F., Yvonne M. Lenighan, Catherine Godson, and Helen M. Roche. 2018. "Exploring Coronary Artery Disease GWAs Targets With Functional Links to Immunometabolism." Frontiers in Cardiovascular Medicine 5. https://doi.org/10.3389/fcvm.2018.00148.
- 29. Consortium, The GTEx. 2020. "The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues." Science 369 (6509): 1318–30. https://doi.org/10.1126/science.aaz1776.
- 30. Baralle, Marco, and Francisco Ernesto Baralle. 2018. "The Splicing Code." Biosystems, Code Biology, 164 (February): 39–48. https://doi.org/10.1016/j.biosystems.2017.11.002.

References (continued)

- 32. https://en.wikipedia.org/wiki/Haemophilia in European royalty
- 33. Smemo, Scott, Juan J. Tena, Kyoung-Han Kim, Eric R. Gamazon, Noboru J. Sakabe, Carlos Gómez-Marín, Ivy Aneas, et al. 2014. "Obesity-Associated Variants within FTO Form Long-Range Functional Connections with IRX3." Nature 507 (7492): 371–75. https://doi.org/10.1038/nature13138.
- 34. Nelson, Matthew R., Hannah Tipney, Jeffery L. Painter, Judong Shen, Paola Nicoletti, Yufeng Shen, Aris Floratos, et al. 2015. "The Support of Human Genetic Evidence for Approved Drug Indications." Nature Genetics 47 (8): 856–60. https://doi.org/10.1038/ng.3314.
- 35. Ardlie, Kristin G., Leonid Kruglyak, and Mark Seielstad. 2002. "Patterns of Linkage Disequilibrium in the Human Genome." Nature Reviews Genetics 3 (4): 299–309. https://doi.org/10.1038/nrg777.
- 36. Brennan, Richard J. 2017. "Target Safety Assessment: Strategies and Resources." In Drug Safety Evaluation: Methods and Protocols, edited by Jean-Charles Gautier, 213–28. Methods in Molecular Biology. New York, NY: Springer. https://doi.org/10.1007/978-1-4939-7172-5 12.

Backup

An example of complementary views

We want to work on hepatocarcinoma (liver cancer) and have the following information about a potential target X:

- X is a receptor expressing on the surface of most cell types;
- Upon binding ligands, X activates innate immune response;
- Gene sequence of X is conserved in primates but not in rodents;
- Protein X interacts with protein Y, which is essential, namely Y knockout causes lethal embryos;
- Asian population has a unique genetic variant in the non-coding region of X;

Discussion: what are the consequences of having these information?

Questions from courses

- Why I recommended the GOT-IT paper? How can academia and industry work together towards good targets?
- Did sequencing cost always follow the Moore's law?
- What happens if there are ATGs (AUGs in RNA) in 5'-untranslated region?
 - In some cases, there are alternative start codons;
 - However, in most cases, the ATGs in 5'-untranslated region seem to be always ignored by the translational machinery. <u>A study</u> (Rogozin, Bioinformatics, 2001) suggested that those AUGs may ensure low basal expression and generate regulatory elements.
- Which target level (gene or protein) is more useful for the target identification?
 In the lecture, gene-level approach seems not so promising.
- Is blue eyeness a marker of Neanderthalian origin? The story of OAC2

UNIBASEL

Why autoimmune diseases are more prevalent in females, though one X chromosome is randomly inactivated?

- Sex hormone signaling plays an important role in immune functions, especially estrogens. The hormone signalling apparently explains a lot, but not all, sex differences in autoimmune diseases.
- Mutations of genes on the X-chromosome, as expected, cause many primary immunodeficiencies only in males, because they have only one copy of the X chromosome.
- One of the two X chromosomes in females indeed get inactivated during the embryo stage. However, about 15-20% genes regularly escape the inactivation, among others important genes involved in innate and adaptive immune response, including TLR7 and CD40L.
- There are a few other hypotheses besides X-inactivation escaping, including loss of mosaicism, reactivation, and haploinsufficiency.