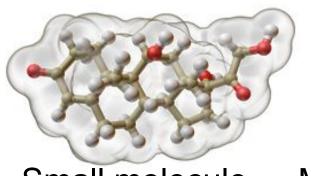


What kind of drugs should we develop

Mathematical and Computational Biology in Drug Discovery (MCBDD) Module III

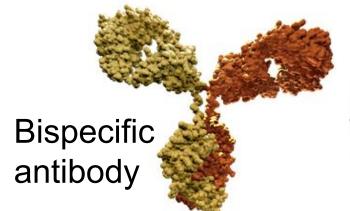
Dr. Jitao David Zhang April 2023

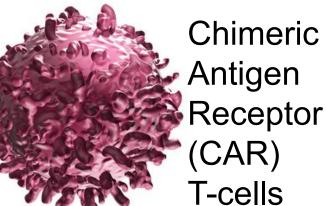

UNIBASEL


Overview

- Essentials of modalities
 - Small molecules: classical, protein degrader, RNA modulator
 - Large molecules: classical, DUTA-Fabs, protein design
 - Antisense oligonucleotides: siRNA, shRNA, ASO
 - Gene and cell therapy
- Three case studies:
 - Success stories:
 - [Small molecules] SMA (Evrysdi/Risdiplam and Nusinersen)
 - [Antisense] patisiran (<u>KEGG DRUG</u>) and givosiran (<u>DrugBank</u>, <u>structure available at EMA</u>)
 - [Offline read] mRNA vaccine (MIT Technology Review)
 - Turning failure into successes: [Multispecific drugs] Thalidomide, PROTAC, degraders
 - [Antibody] Cancer immunotherapy (CTLA4, PD1)
 - [Gene and Cell therapy] CAR-T
 - Challenges
 - [Antisense] HTT (Tominersen)
 - Difference between genetic and enzymatic inhibition

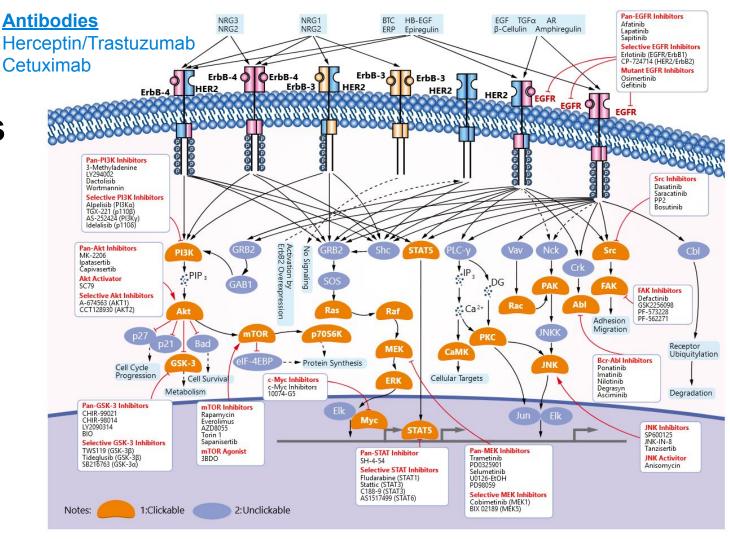
A zoo of modalities





Small molecule

Monoclonal antibody Oligonucleotides



mRNA vaccines

Multiple modalities can target the same biological process

An example: the epidermal growth factor receptor (EGFR) pathway

Disease relevance

Target characteristics

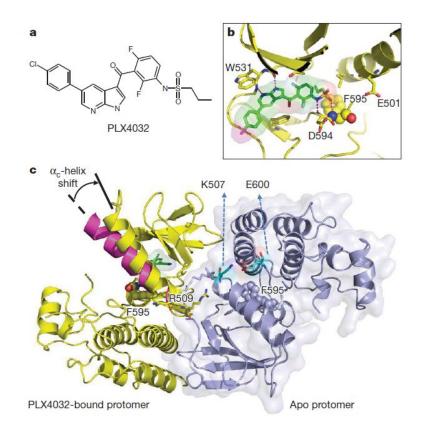
Pathway and Network Mode of Action (MoA)

Pharmaco- and toxico-kinetics and -dynamics

Administration

Modality

Expertise, competition, logistics, ...

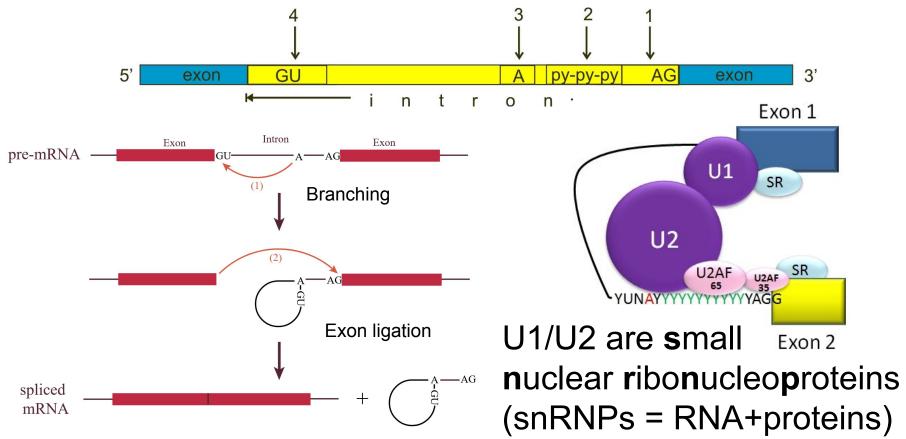


Characteristics of therapeutic modalities

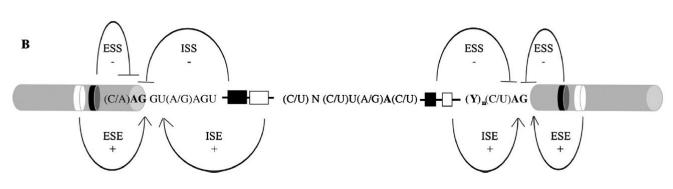
Modality	Cause of at the pro	disease otein level	Molecular target	Protein	target lo	calization	Deliv	ery	
	Reduction or loss of function	Excessive or detrimental function	DNA RNA Protein	Extracellular	Plasma membrane	Intracellular	Oral	Injection	Inhaled
Small molecule									
Protein replacement									
Antibody									
Oligonucleotide therapy									
Cell and gene therapy*									

Classical small molecules: an example from AMIDD

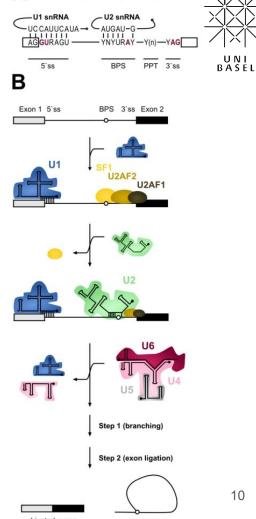
- Vemurafenib (Zelboraf, PLX4032)
 V600E mutated BRAF inhibition
- Lock and key: an oversimplified yet powerful metaphor, first proposed by Emil Fischer



Facts about Spinal Muscular Atrophy (SMA)


- SMA is caused by a defect in a gene called SMN1. People with SMA have reduced levels of the SMN protein.
- When SMN protein levels are reduced, motor neurons are unable to send signals to the muscles, causing them to become smaller and weaker over time.
- Depending on the severity, or type of SMA, people with the disease will have difficulties moving, eating, and in some cases breathing, making them increasingly dependent on parents and caregivers.
- A short movie: https://www.nejm.org/doi/full/10.1056/NEJMoa2009965

Spliceosome: the splicing machinery



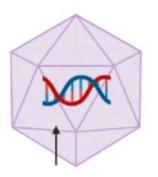
Splicing in action and under regulation

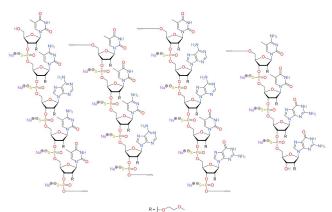
ESS=exon splicing silencer; ESE=exon splicing enhancer;

ISS=intron splicing silencer; ISE=intron splicing enhancer.

U2-dependent pathway

BPS=branch point sequence; PPT=polypyrimidine tract (C/U);

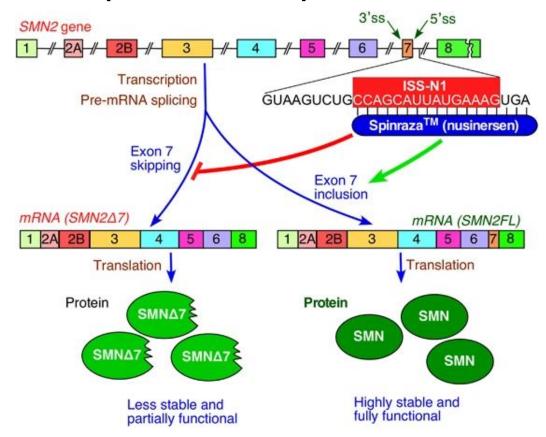

Different splicing of SMN1 and SMN2



Three Drugs, One Disease

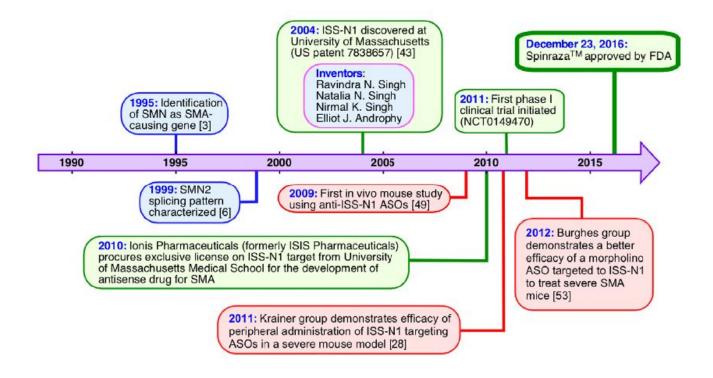
AAV9 capsid

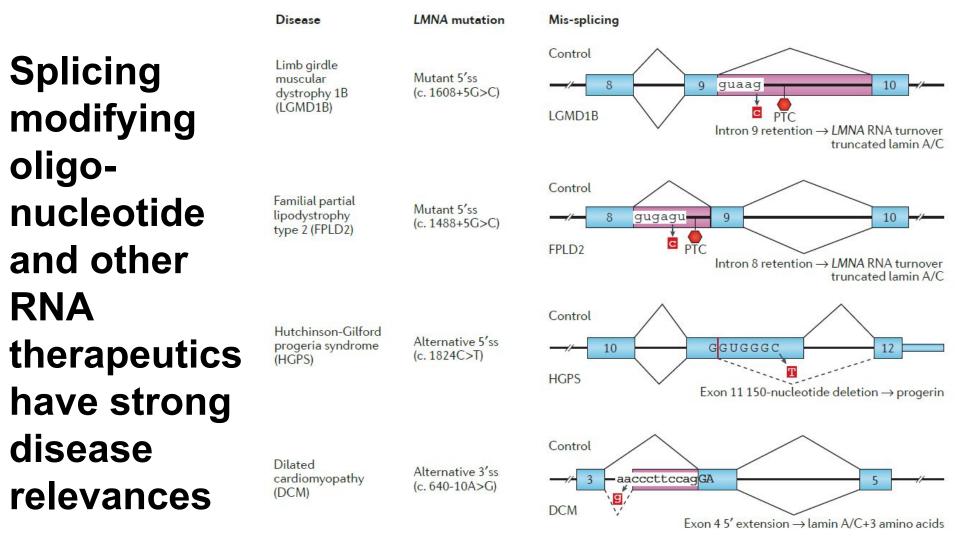
SMN1 gene

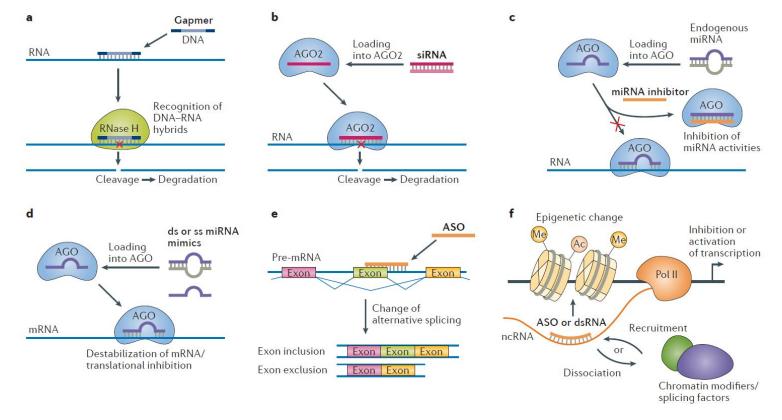


Onasemnogene Abeparvovec/ Zolgensma Nusinersen sodium/ Spinraza (CHEMBL3833342)

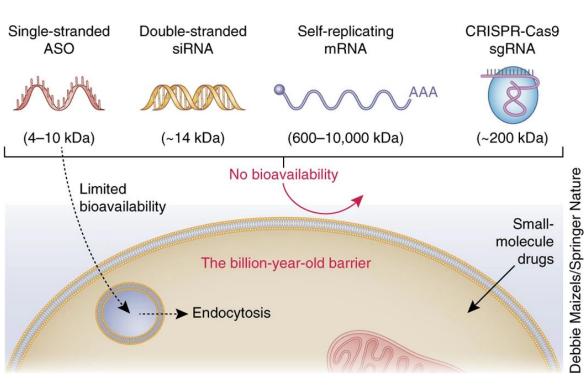
Risdiplam/ Evrysdi (CHEMBL4297528)

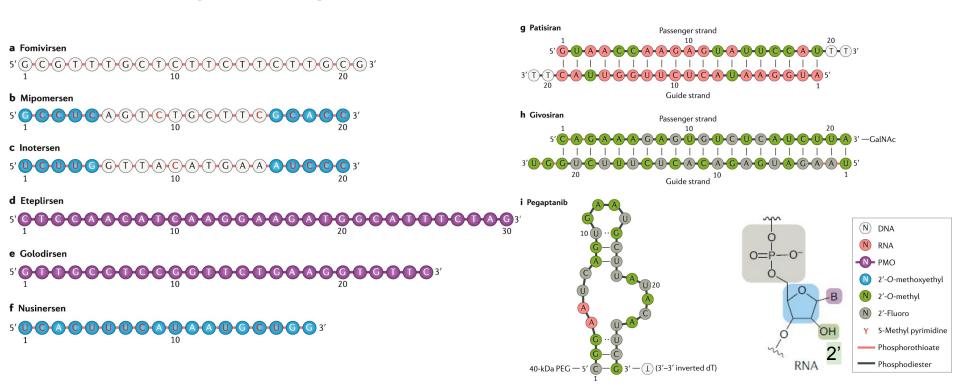



How Spinaraza (nusinersen) works

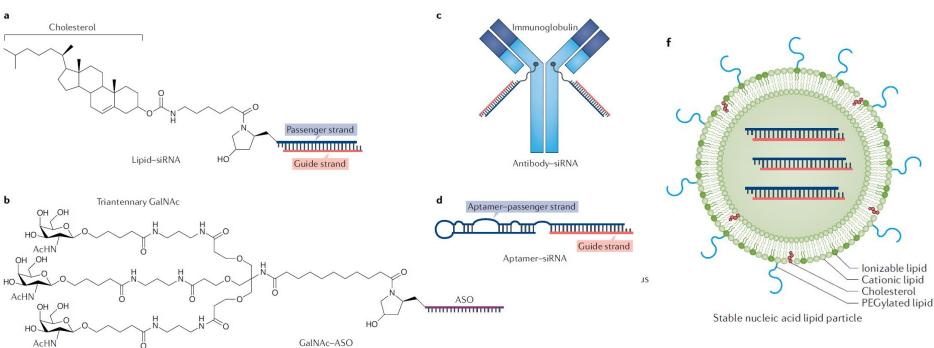


Regulating RNA levels or splicing with ASOs and duplex RNAs

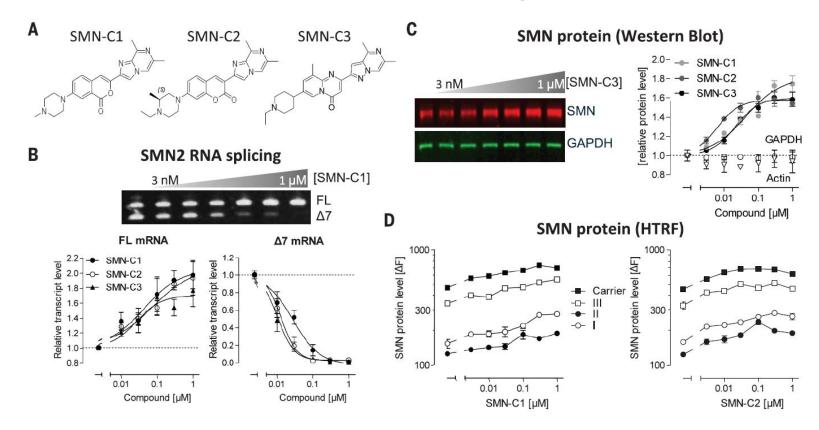



The four-billion-year-old barrier to RNA therapeutic

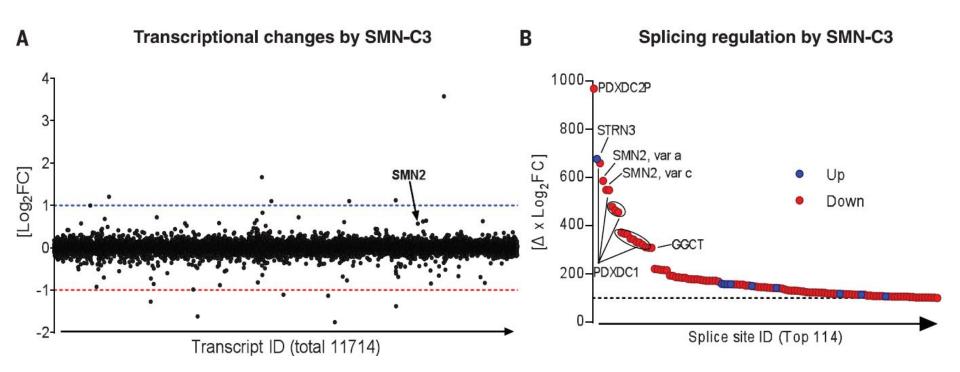
- Too large and charged to pass lipid bilayers
- Degradable by RNases
- Rapid clearance from liver and kidney
- Immunogenicity
- Endocytosis
- Delivery into organs other than liver and eye



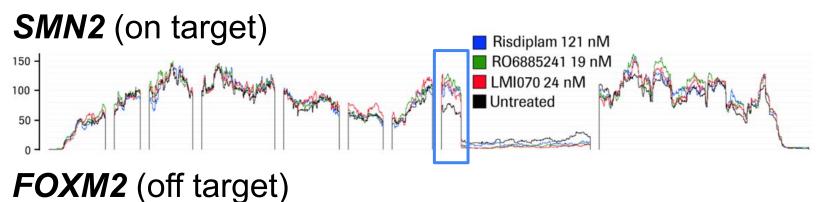
Chemistry of oligonucleotides evolves with time

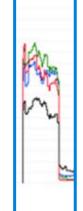

Delivery systems of antisense oligonucleotides

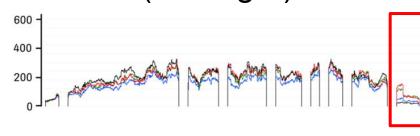
lipid nanoparticles

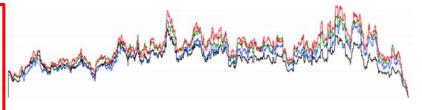


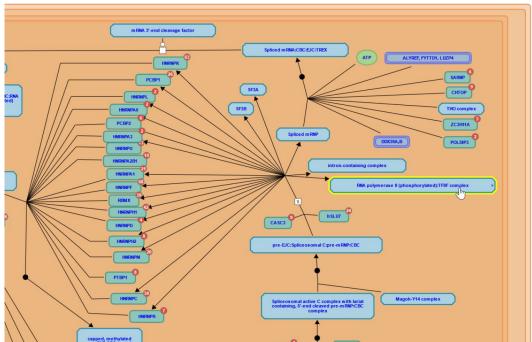
Small molecules as RNA splicing modifiers

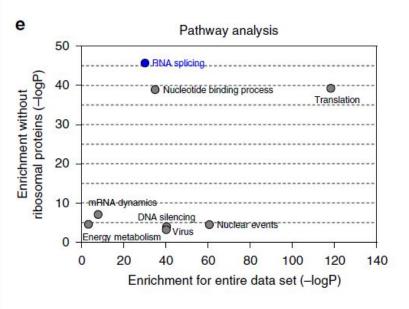

of ×

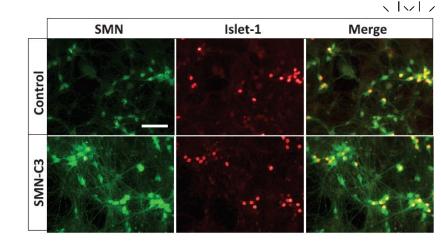

RNA sequencing confirms the specificity of SMN-C3

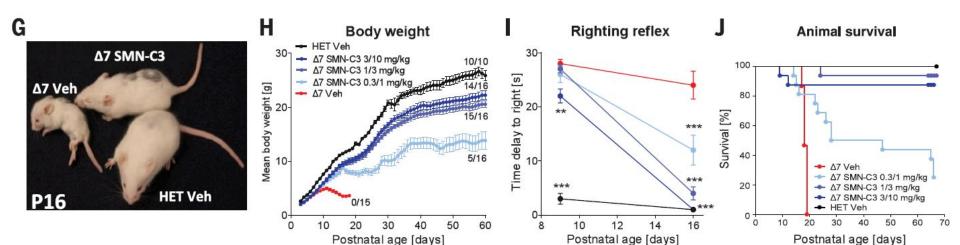



RNA sequencing confirms the specificity of SMN-C3

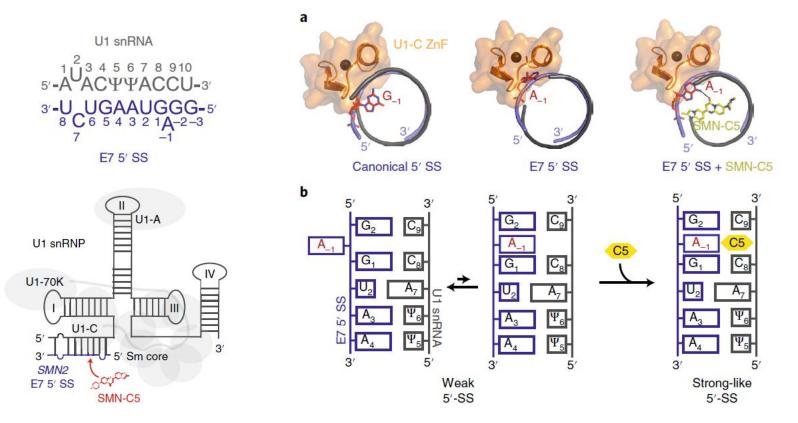






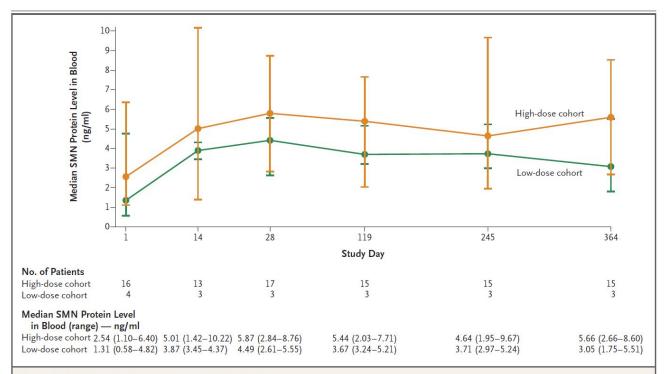


Part of the mRNA splicing pathway in Reacome


Experiments *in vitro* and *in vivo* support efficacy profiles of SMN-C3

Structural basis of specific splicing correction

Clinical trial (FIREFISH Part 1) Results


Characteristic	Low-Dose Cohort (N = 4)	High-Dose Cohort (N=17)	All Infants (N = 21)	
Sex — no. (%)				
Female	4 (100)	11 (65)	15 (71)	
Male	0	6 (35)	6 (29)	
Median age (range) — mo				
At onset of symptoms	2.7 (2.0-3.0)	1.5 (0.9-3.0)	2.0 (0.9-3.0)	
At diagnosis	3.3 (2.5–5.1)	3.0 (0.9–5.4)	3.0 (0.9–5.4)	
At enrollment	6.9 (6.7–6.9)	6.3 (3.3–6.9)	6.7 (3.3–6.9)	
Motor measures†				
Median CHOP-INTEND score (range)	23.5 (10–25)	24 (16–34)	24 (10–34)	
Median HINE-2 score (range)	1 (0-3)	1 (0-2)	1 (0-3)	
Respiratory support — no. (%)	0	5 (29)‡	5 (24)‡	

Note: <u>Table 2</u> is not complete

Γable 2. Adverse Events.☆	
Event	Infants (N = 21)
Total no. of adverse events	202
≥1 Adverse event — no. (%)	21 (100)
Total no. of serious adverse events	24
≥1 Serious adverse event — no. (%)	10 (48)
≥1 Adverse event of grade 3–5 — no. (%)	9 (43)
Serious adverse event with fatal outcome — no. (%)†	3 (14)
Most common adverse events — no. (%);	
Pyrexia	11 (52)
Upper respiratory tract infection	9 (43)
Diarrhea	6 (29)
Cough	5 (24)

Clinical trial (FIREFISH Part 1) Results

Figure 1. SMN Protein Concentration in Whole Blood.

Blood was mixed with lysis buffer in a 1:1 ratio. I bars indicate the range. The data-cutoff date was February 27, 2019. SMN denotes survival of motor neuron.

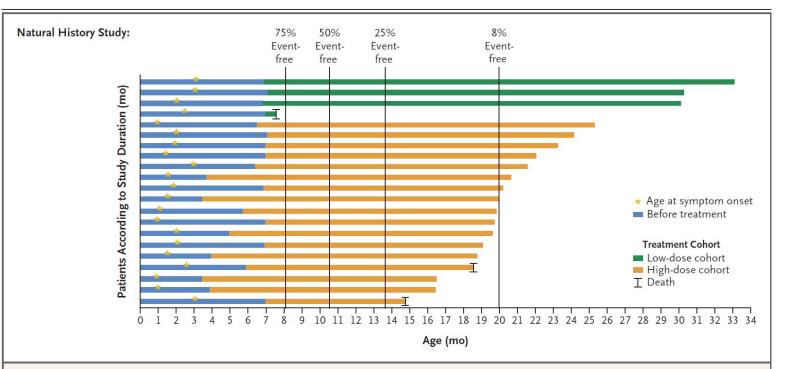
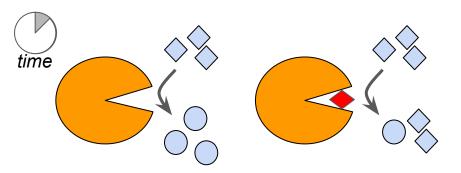


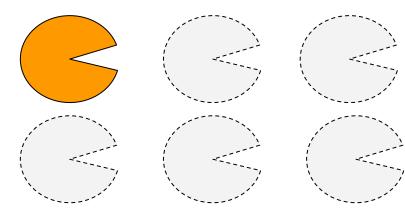
Figure 2. Event-free Survival.

Event-free survival was defined as being alive and not receiving permanent ventilation (tracheostomy or ventilation [bilevel positive airway pressure] for ≥ 16 hours per day continuously for > 3 weeks or continuous intubation for > 3 weeks, in the absence of, or after the resolution of, an acute reversible event). The percentages of patients who were event-free in a previous natural history study of spinal muscular atropy⁷ are shown at the top of the graph for comparison. The median age at the combined outcome among patients in the previous study who had two copies of SMN2 was 10.5 months (interquartile range, 8.1 to 13.6); event-free survival in that study was defined as being alive and not receiving noninvasive ventilation for 16 hours or more per day continuously for 2 or more weeks. The duration of our study was measured from the date of enrollment to the data-cutoff date. As of the data-cutoff date, three infants (one in the low-dose cohort and two in the high-dose cohort) had died; one additional infant in the high-dose cohort died after that date (Table S5).

End of lecture 1 in 2023


Offline Activities for Module III

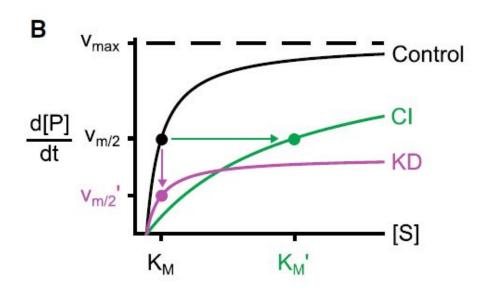
Use your favorite literature programming tools (i.e. Rmarkdown/Jupyter Notebook) to investigate the topic of *factor analysis*. Use the questions below to guide your learning.


- What is factor analysis?
- What are the relationships between covariance matrix, factor analysis, and principal component analysis (PCA)?
- What do we mean with loadings?
- Why factors are orthogonal to each other? What's the consequence?
- How can we use factor analysis as a generative model?
- What is the relationship between factor analysis and autoencoder?
- How can you it explain it to a high-school student?

Competitive inhibitors reduce reaction rate; antisense oligonucleotides modulate protein abundance

A competitive inhibitor (red diamond) reduces the rate of product generation in an enzymatic reaction.

Antisense oligonucleotides reduce the abundance of the enzyme protein.

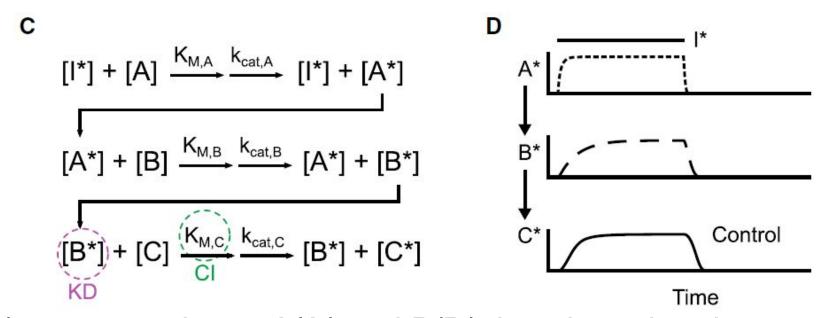


Enzymic and genetic inhibition have distinct impact on reaction dynamics

A
$$[E] + [S] \xrightarrow{k_1} [E-S] \xrightarrow{k_{cat}} [E] + [P]$$

$$\frac{d[P]}{dt} = v_{max} \frac{[S]}{[S] + K_M}$$

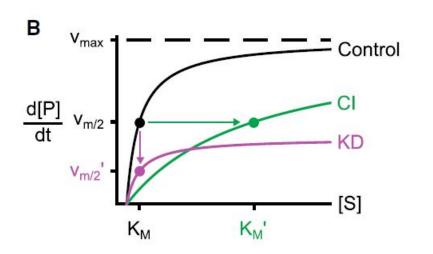
$$K_M = \frac{k_{-1} + k_{cat}}{k} \quad v_{max} = k_{cat}[E]_o$$

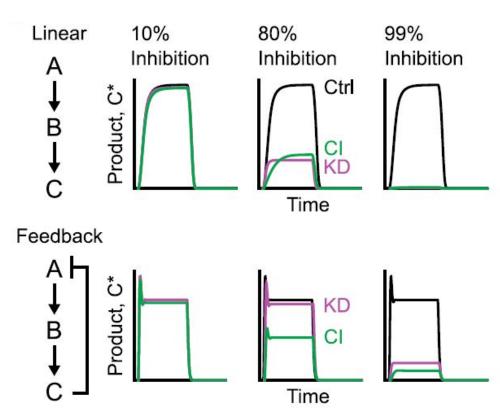


The Michaelis-Menten Equation

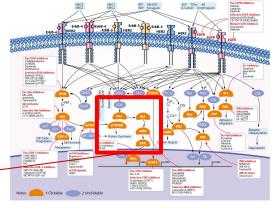
Competitive inhibition (CI) versus knockdown (KD)

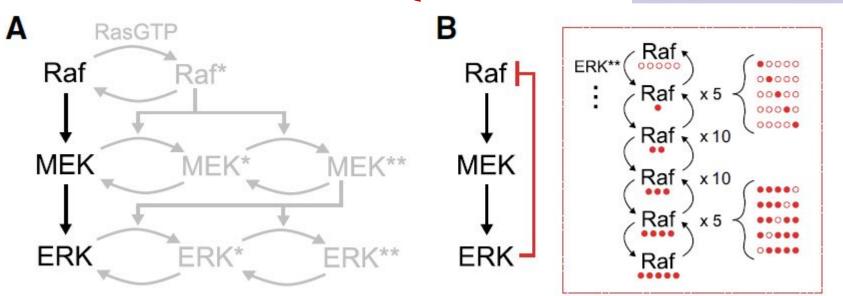
A linear system simulating enzymatic reactions

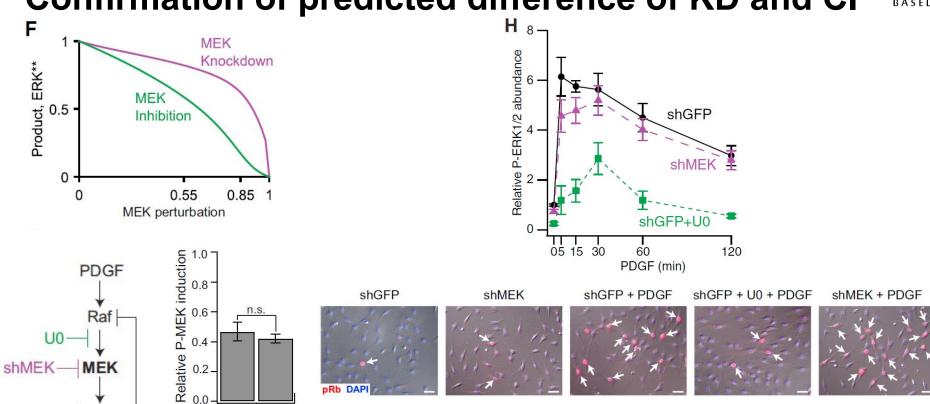



I*: upstream input; A/A* and B/B*: inactivated and activated enzyme; C*: product

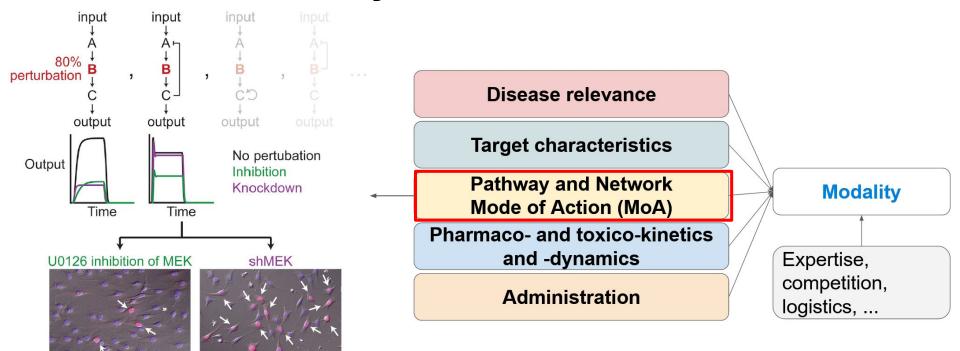
Adding a negative feedback may differentiate effects of enzymatic and genetic inhibition




Intuition: when [B*] stays low, CI leads to **slower** accumulation of C* than KD.


The MAPK/ERK pathway downstream of EGFR signalling

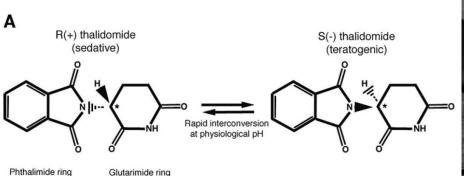
Confirmation of predicted difference of KD and CI


SHMEK

9

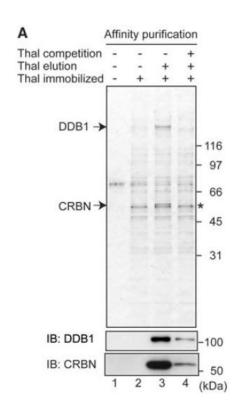
ERK-

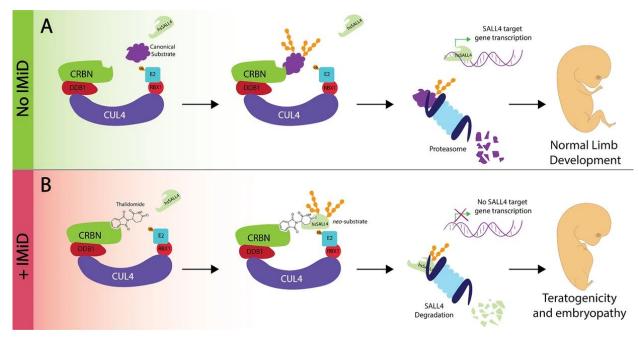
UNI


Computational biology may empower our choice of modality

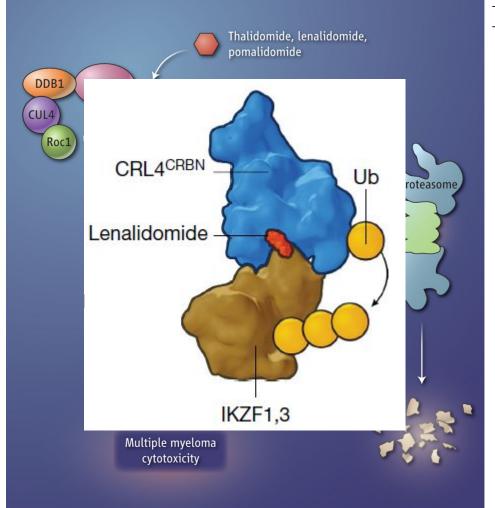
Proliferation

The Tragedy of teratogenic S(-) thalidomide in 1950s



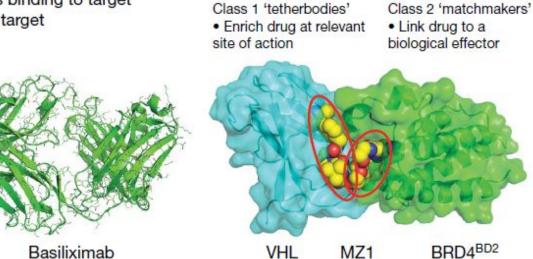


Molecular basis of the teratogenicity of thalidomide reported in 2010



The same mechanism is responsible for efficacy against blood cancers

Thalidomide and derivatives bring proteins IKZF1 and IKZF3 close to E3 ubiquitin ligase, leading them to be degraded.



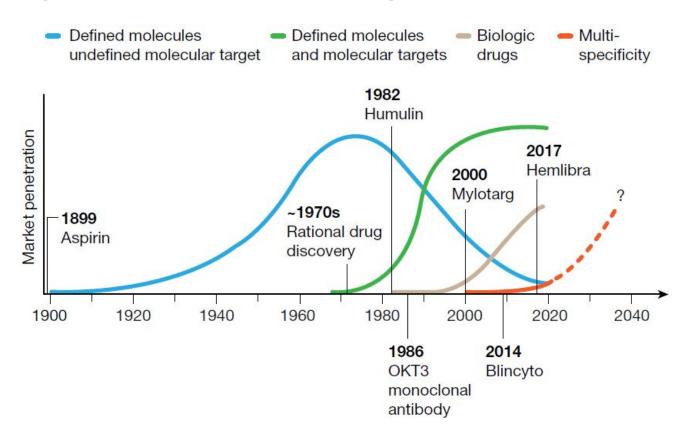
Multispecific Drug Use or Target Interactions

Conventional drug:

IL-2Rα

- Forms 1 drug-target interface
- Can act throughout body
- Only works if its binding to target alters function of target

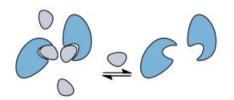
VHL

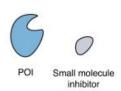

Obligate multispecific drug:

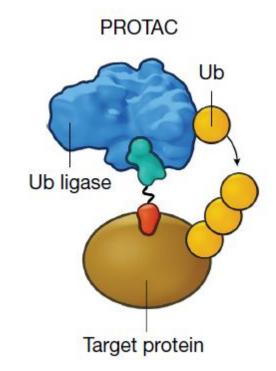
Forms 2 or more drug-target interfaces

MZ1

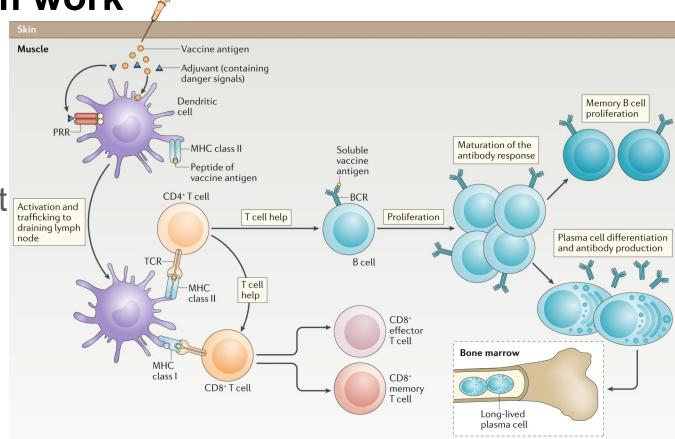
Paradigm shifts and paradigm expansion



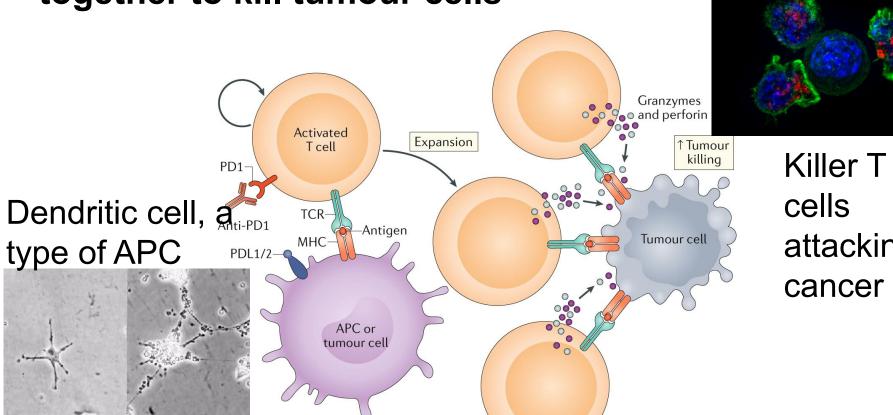



PROteolysis TArgeting Chimera (PROTAC)

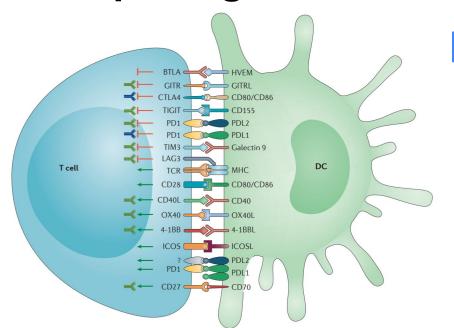
Protein function is modulated via inhibition



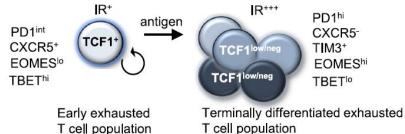
How vaccine and the immune system work

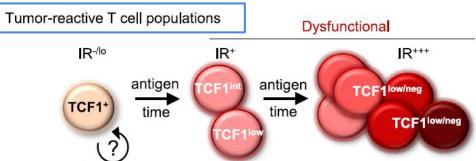

Key players:

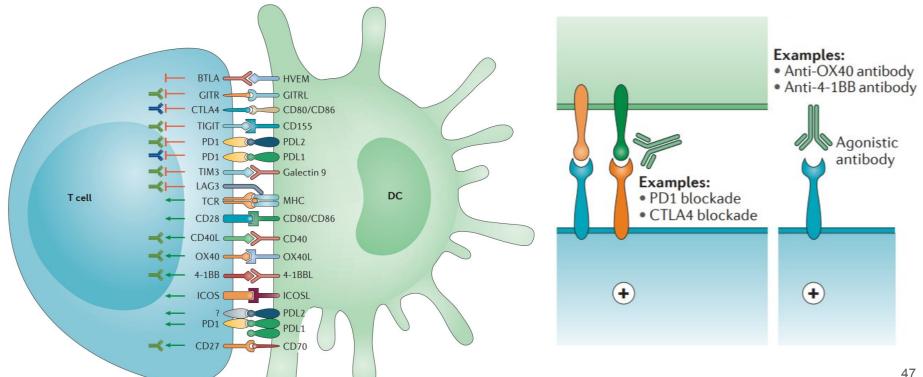
- Antigen-present ing cells (e.g. dendritic cells)
- 2. T cells
- 3. B cells


Vaccine

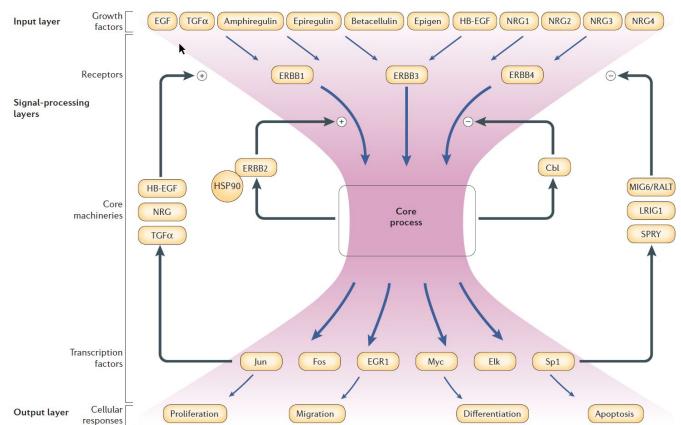
Antigen-presenting cells (APC) and T cells work together to kill tumour cells


attacking a cancer cell


Exhausted T cells reduces immune system's capacity to clear pathogenic cells

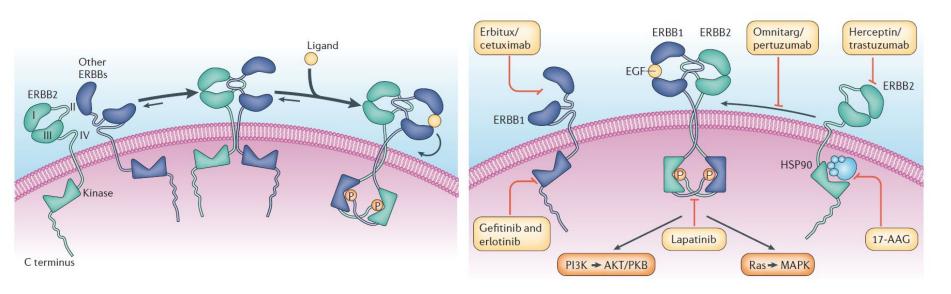


IR=inhibitory receptors (left panel). They are like 'breaks' controlled by dendritic cells.


Cancer Immunotherapy with immune checkpoints as drug targets

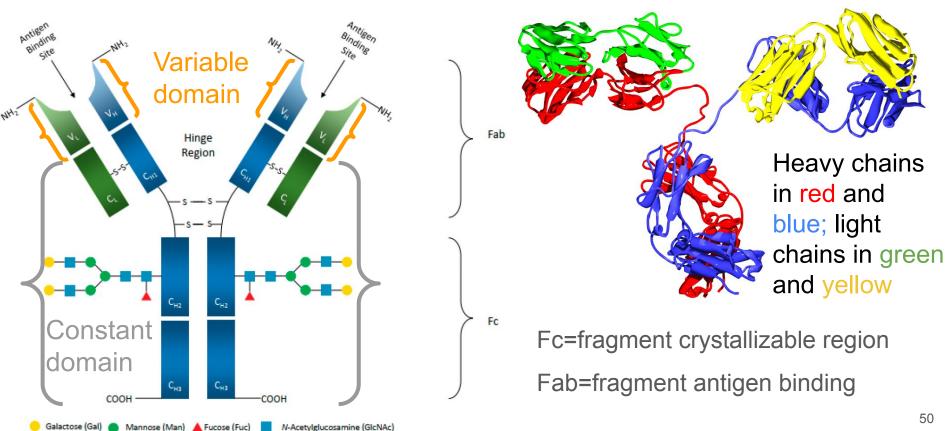
Why antibodies work like a wonder? The Bow-Tie model of signaling transduction

Extracellular Cell Membrane


Cytoplasm

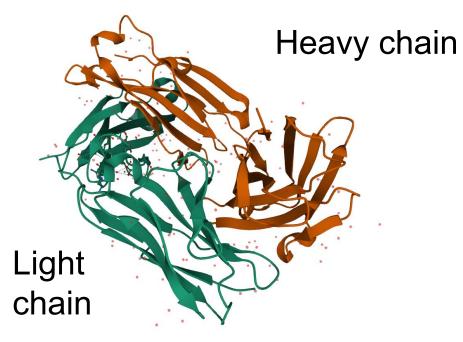
Nucleus

Everywhere



ERBB signaling system and antibody drugs

Structure of antibodies

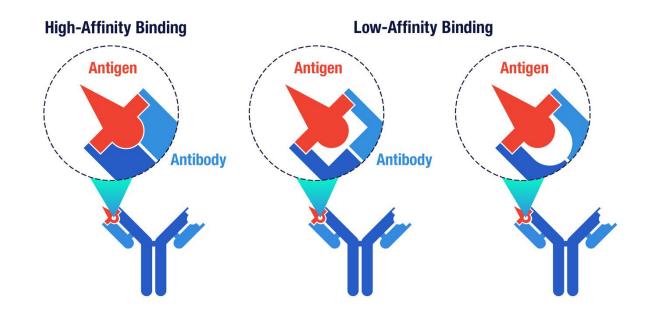

Cetuximab as an example

Variable heavy chain

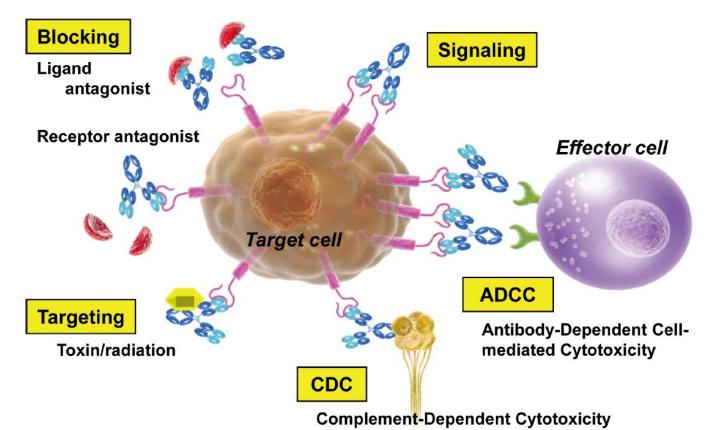
QVQLKQSGPGLVQPSQSLSITCTVSGF SLTNYGVHWVRQSPGKGLEWLGVIWSG GNTDYNTPFTSRLSINKDNSKSQVFFK MNSLQSNDTAIYYCARALTYYDYEFAY WGOGTLVTVSA

Variable light chain

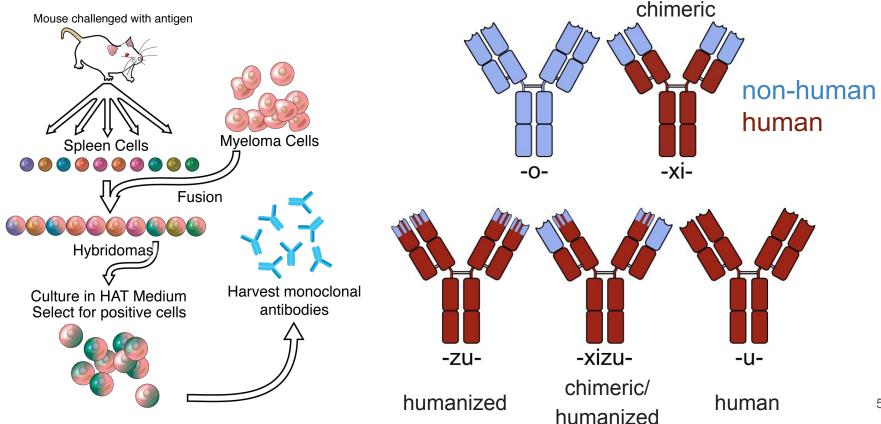
DILLTQSPVILSVSPGERVSFSCRASQ SIGTNIHWYQQRTNGSPRLLIKYASES ISGIPSRFSGSGSGTDFTLSINSVESE DIADYYCQQNNNWPTTFGAGTKLELK

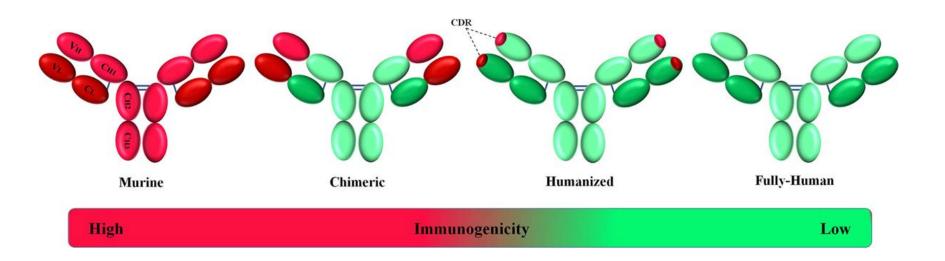


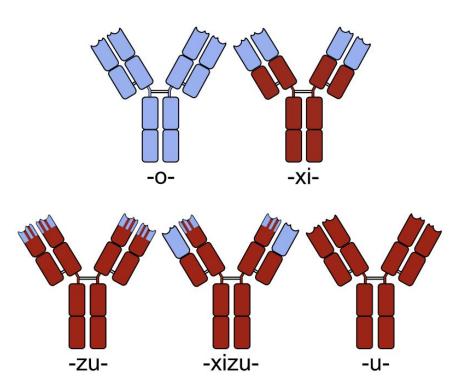
PDB 1YY8


Antibodies work by shape complementarity

Affinity of antibodies for antigens can vary

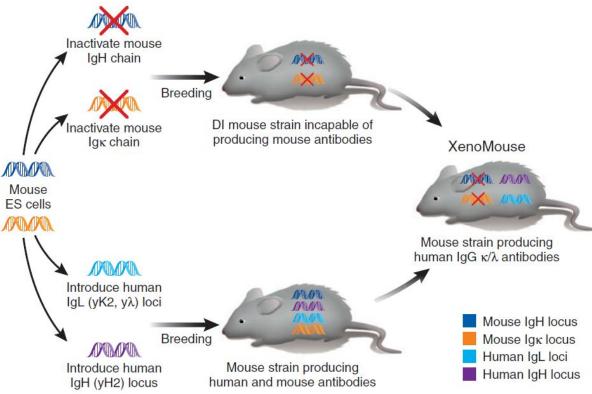

Mechanisms of action of therapeutic antibodies


Therapeutic antibody discovery with hybridoma and humanization



Evolution of therapeutic antibodies

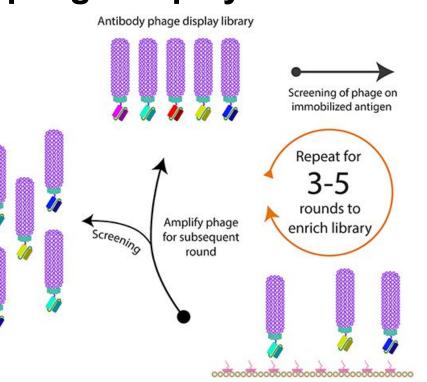
Antibody names suggest their types

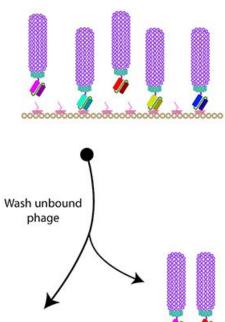


- Chimeric: Abiciximab (Ab against platelet aggregation inhibitor)
- Humanized: Trastuzumab (HER2)
- Chimeric/Humanized:
 Otelixizumab (CD3, a T lymphocyte receptor)
- Human: Adalimumab (TNF-alpha)

Therapeutic antibody discovery with transgenic animals

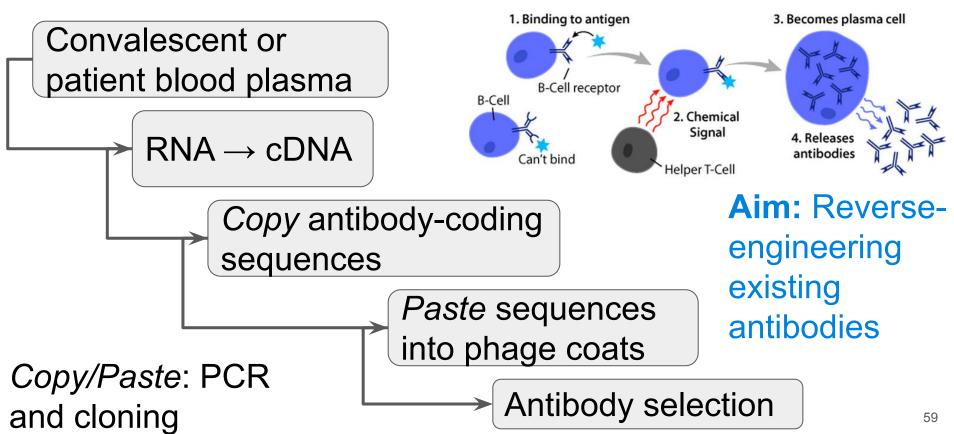
UNI


The XenoMouse model, which led to the discovery of panitumumab (Vectibix). **Panitumumab** targets EGFR for advanced colorectal cancer.

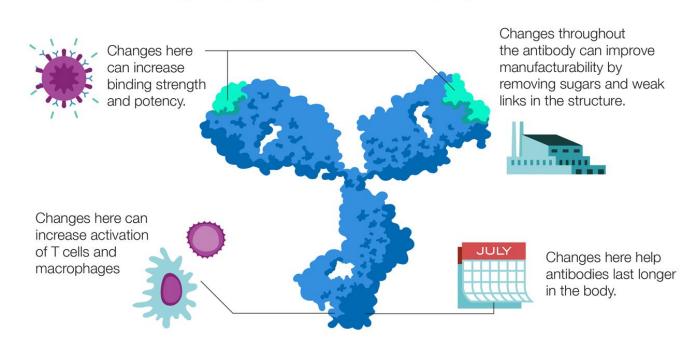


UNI

A protein-encoding gene is inserted into the phage coat protein gene, causing the phage to display the protein, which can be screened in vitro iteratively.



Elution of Surface-bound phage


Antibody discovery with phage display

Discovered antibodies need further development

Engineering antibodies with strong attributes

Selected challenges of antibody discovery and development

- Lack of quantitative rules of developability
- Immunogenicity of therapeutic proteins (see backup)

Biophysical properties of clinical-stage antibodies (N=137 by ~2017)

Clinical

Status

Dhace 2

8.6

19.3

8.7

8.6

12.7

9.3

Original mAb Isotype

or Format

InC2

700.0

300.0

1000.0

0.0

0.0

800.0

8.8

13.4

8.9

9.6

11.5

10.5

Light chain

class

kanna

Type

711

Name

ahituzumah

anifrolumab

atezolizumab

bapineuzumab basiliximab

bavituximab

belimumab

82.0

164.1

151.1

107.5

45.1

10.5

62.5

73.5

73.0

60.5

59.5

60.0

abituzumab	Kap	Ja 2				100		71113						
abrilumab	kapp		Name		VH		VL	LC Class	Source	Source De	etailed ^a			
adalimumab	kapr	oa I.	abituzumab	QVQLQQSGGE	LAKPGASVK	CVSCKASG	DIQMTQ	Skappa	WHO-INN	PL10	09			
	33377		abrilumab	QVQLVQSGAE	/KKPGASVK	VSCKVSG'	DIQMTQ	S kappa	WHO-INN	PL11	L 1			
alemtuzumat	o kapp	2	adalimumab	EVQLVESGGGL	VQPGRSLRI	SCAASGF	DIQMTQ	S kappa	PDB	4NY	'L			
		_	alemtuzumab	QVQLQESGPGL	VRPSOTLSL	TCTVSGF	DIOMTO	S kappa	PDB	1BE	Υ			
alirocumab	kapp)a I	5000 60											
anifralumah	kanr	\^ \ \	alirocumah	EVOLVESGGGI	VOPGGSLRI	SCAASGI	DIVINITOS	Si kanna	WHO-INN Affinity	-Capture Self-	1/			
Name	HEK Titer	Fab Tm by D			SMAC					teraction				
BALL STORY COMM	(mg/L)	(°C)	SGAC-SINS AS10 ((NH4)2SO4 mN		Retention Time (Min) ^a	Slope for Ac Stabi		Poly-Specific Reagent (PSR) Score (0-1)	SMP Nar Spectr	noparticle roscopy (AC- Δλmax (nm)	CIC Retention Time (Min)	CSI-BLI Delta Response (nm)	ELISA	BVP ELISA
abituzumab	(mg/L) 89.6			The state of the s	Retention	A	lity	Reagent (PSR)	SMP Nar Spectr	noparticle roscopy (AC- Δλmax (nm)			1.14	BVP ELISA
abituzumab abrilumab		(°C)	((NH4)2SO4 mN	1) Time (Min) ^a	Retention Time (Min) ^a	Stabi	lity F	Score (0-1)	SMP Nar Spectr	noparticle roscopy (AC- Δλmax (nm)	Time (Min)	Response (nm)	34 32 1 20 2 2 2 2	
	89.6	(°C)	((NH4)2SO4 mN 900.0	7) Time (Min) ^a 9.2	Retention Time (Min) ^a 8.7	Stabi	6 3	Score (0-1)	SMP Nar Spectr	noparticle roscopy (AC- Δλmax (nm) Average 1.5	Time (Min)	Response (nm)	1.14	2.72
abrilumab	89.6 100.2	75.5 71.0	900.0 900.0	9.2 9.4	Retention Time (Min) ^a 8.7 8.7	0.0 0.0	6 3 5	0.17 0.00	SMP Nar Spectr	noparticle roscopy (AC- Δλmax (nm) Δνετασε 1.5 -0.9	8.6 8.4	0.00 -0.02	1.14 1.12	2.72 1.82

0.07

0.06

0.07

0.05

0.04

0.13

Phage^c

No

Year Name

Proposed

2013

0.00

0.07

0.00

0.40

0.56

0.00

-0.6

15.0

-0.7

28.8

29.9

0.8

8.5

10.8

8.6

9.4

11.4

8.6

-0.02

0.06

0.06

0.00

-0.01

-0.03

1.16

1.29

1.21

1.20

1.32

3.61

1.62

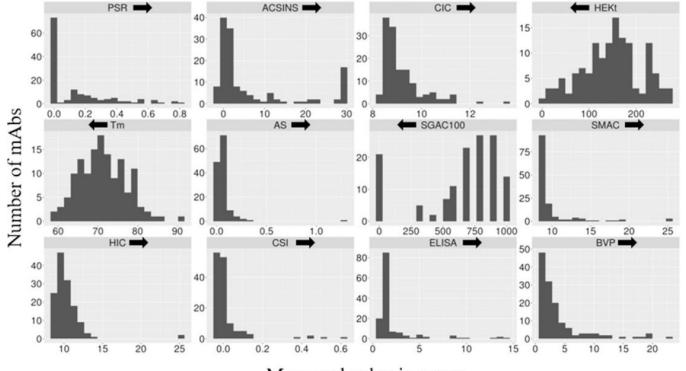
6.20

3.55

2.14

1.69

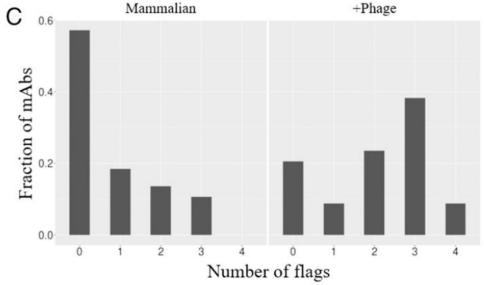
Twelve different biophysical assays


$\overline{\times}\overline{\times}$
UNI

Code	Name	Purpose
AC-SINS	Affinity-capture self-interaction nanoparticle spectroscopy	Self-interaction
CSI	Clone self-interaction by biolayer interferometry	Self-interaction
PSR	Poly-specificity reagent	Cross-interaction
BVP	Baculovirus particle	Cross-interaction
CIC	Cross-interaction chromatography	Cross-interaction
ELISA	Enzyme-linked immunosorbent assay with commonly used antigens	Cross-interaction

Code	Name	Purpose
HEK	Expression titer in HEK cells	Expression
Tm	Melting temperature	Thermostability
HIC	Hydrophobic interaction chromatography	Species separation and analysis
SAGC- SINS	salt-gradient affinity-capture self-interaction nanoparticle spectroscopy	Species separation and analysis
SMAC	standup monolayer adsorption chromatography	Developability
AS	Size-exclusion chromatography in accelerated stability	Stability 63

Unsupervised clustering analysis reveals related


assays

Group	Assay	Worst 10% threshold				
Group 1	PSR	0.27 ± 0.06				
	ACSINS	11.8 ± 6.2				
	CSI	0.01 ± 0.02				
	CIC	10.1 ± 0.5				
Group 2	HIC	11.7 ± 0.6				
	SMAC	12.8 ± 1.2				
	\$GAC-SIN\$	370 ± 133				
Group 3	BVP	4.3 ± 2.2				
	ELISA	1.9 ± 1.0				
Group 4	AS	0.08 ± 0.03				

HEKI												
	Tm									-		
				_							_	
	-0.15	SGAC100										
				-		-	-					
		0.55	SMAC									
	-0.13	0.66	0.85	HIC								
				7.207								
-0.19	-0.06				AS							
							1		4			
-0.13	-0.1		-0.12	-0.07		ELISA						
-0.13	-0.06	0.14			0.37	0.86	BVP		1			
									-			
-0.06	-0.03	0.36		0.09		0.61	0.57	PSR				
-0.14				0.04		0.54		0.57	CSI	-	4	
40.14	-0.02	0.4				0.51	0.54	0.57	CSI			
-0.15	-0.15	0.6		0.19		0.42	0.43	0.65	0.77	ACSINS		
-0.08	-0.13	0.67	0.51	0.47		0.34	0.34	0.59	0.59	0.79	CIC	

Approved antibodies and antibodies discovery not via phage display tend to have fewer flags

UNI BASEL

Conclusions

- Given mechanistic understanding of biological processes underlying diseases, we can develop different modalities as therapeutics.
- Mathematical and computational biology
 - 1. reveals how drug candidate work and ranks them
 - 2. helps with molecule design
 - 3. contributes to modality selection

References

- Valeur, Eric, Stéphanie M. Guéret, Hélène Adihou, Ranganath Gopalakrishnan, Malin Lemurell, Herbert Waldmann, Tom N. Grossmann, and Alleyn T. Plowright. 2017. "New Modalities for Challenging Targets in Drug Discovery." Angewandte Chemie International Edition 56 (35): 10294–323. https://doi.org/10.1002/anie.201611914.
- 2. Naryshkin, N. A., M. Weetall, A. Dakka, J. Narasimhan, X. Zhao, Z. Feng, K. K. Y. Ling, et al. 2014. "SMN2 Splicing Modifiers Improve Motor Function and Longevity in Mice with Spinal Muscular Atrophy." Science 345 (6197): 688–93. https://doi.org/10.1126/science.1250127.
- 3. Sivaramakrishnan, Manaswini, Kathleen D. McCarthy, Sébastien Campagne, Sylwia Huber, Sonja Meier, Angélique Augustin, Tobias Heckel, et al. 2017. "Binding to SMN2 Pre-MRNA-Protein Complex Elicits Specificity for Small Molecule Splicing Modifiers." Nature Communications 8 (November): 1476. https://doi.org/10.1038/s41467-017-01559-4.
- 4. Ratni, Hasane, Martin Ebeling, John Baird, Stefanie Bendels, Johan Bylund, Karen S. Chen, Nora Denk, et al. 2018. "Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)." *Journal of Medicinal Chemistry* 61 (15): 6501–17. https://doi.org/10.1021/acs.jmedchem.8b00741.
- 5. Hagedorn, Peter H., Malene Pontoppidan, Tina S. Bisgaard, Marco Berrera, Andreas Dieckmann, Martin Ebeling, Marianne R. Møller, et al. 2018. "Identifying and Avoiding Off-Target Effects of RNase H-Dependent Antisense Oligonucleotides in Mice." Nucleic Acids Research 46 (11): 5366–80. https://doi.org/10.1093/nar/gky397.
- 6. Ding, Yu, Yiyan Fei, and Boxun Lu. 2020. "Emerging New Concepts of Degrader Technologies." Trends in Pharmacological Sciences 41 (7): 464–74. https://doi.org/10.1016/j.tips.2020.04.005.
- 7. Donovan, Katherine A., Fleur M. Ferguson, Jonathan W. Bushman, Nicholas A. Eleuteri, Debabrata Bhunia, SeongShick Ryu, Li Tan, et al. 2020. "Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development." Cell 183 (6): 1714-1731.e10. https://doi.org/10.1016/j.cell.2020.10.038.
- 8. Ottis, Philipp, Chiara Palladino, Phillip Thienger, Adrian Britschgi, Christian Heichinger, Marco Berrera, Alice Julien-Laferriere, et al. 2019. "Cellular Resistance Mechanisms to Targeted Protein Degradation Converge Toward Impairment of the Engaged Ubiquitin Transfer Pathway." ACS Chemical Biology 14 (10): 2215–23. https://doi.org/10.1021/acschembio.9b00525.

- 9. Stanton, Benjamin Z., Emma J. Chory, and Gerald R. Crabtree. 2018. "Chemically Induced Proximity in Biology and Medicine." Science 359 (6380): eaao5902. https://doi.org/10.1126/science.aao5902.
- 10. Baran, Dror, M. Gabriele Pszolla, Gideon D. Lapidoth, Christoffer Norn, Orly Dym, Tamar Unger, Shira Albeck, Michael D. Tyka, and Sarel J. Fleishman. 2017. "Principles for Computational Design of Binding Antibodies." Proceedings of the National Academy of Sciences 114 (41): 10900–905. https://doi.org/10.1073/pnas.1707171114.
- 11. Jain, Tushar, Tingwan Sun, Stéphanie Durand, Amy Hall, Nga Rewa Houston, Juergen H. Nett, Beth Sharkey, et al. 2017. "Biophysical Properties of the Clinical-Stage Antibody Landscape." Proceedings of the National Academy of Sciences 114 (5): 944–49.

 https://doi.org/10.1073/pnas.1616408114.
- 12. Saka, Koichiro, Taro Kakuzaki, Shoichi Metsugi, Daiki Kashiwagi, Kenji Yoshida, Manabu Wada, Hiroyuki Tsunoda, and Reiji Teramoto. 2021. "Antibody Design Using LSTM Based Deep Generative Model from Phage Display Library for Affinity Maturation." Scientific Reports 11 (1): 5852. https://doi.org/10.1038/s41598-021-85274-7.
- 13. Shirai, Hiroki, Catherine Prades, Randi Vita, Paolo Marcatili, Bojana Popovic, Jianqing Xu, John P. Overington, et al. 2014. "Antibody Informatics for Drug Discovery." Biochimica et Biophysica Acta (BBA) Proteins and Proteomics, Recent advances in molecular engineering of antibody, 1844 (11): 2002–15. https://doi.org/10.1016/j.bbapap.2014.07.006.
- 14. Muttenthaler, Markus, Glenn F. King, David J. Adams, and Paul F. Alewood. 2021. "Trends in Peptide Drug Discovery." Nature Reviews Drug Discovery 20 (4): 309–25. https://doi.org/10.1038/s41573-020-00135-8.
- 15. Hagedorn, Peter H., Robert Persson, Erik D. Funder, Nanna Albæk, Sanna L. Diemer, Dennis J. Hansen, Marianne R. Møller, et al. 2018. "Locked Nucleic Acid: Modality, Diversity, and Drug Discovery." Drug Discovery Today 23 (1): 101–14. https://doi.org/10.1016/j.drudis.2017.09.018.
- 16. Matsui, Masayuki, and David R. Corey. 2017. "Non-Coding RNAs as Drug Targets." Nature Reviews Drug Discovery 16 (3): 167–79. https://doi.org/10.1038/nrd.2016.117.

- 17. Warner, Katherine Deigan, Christine E. Hajdin, and Kevin M. Weeks. 2018. "Principles for Targeting RNA with Drug-like Small Molecules." Nature Reviews Drug Discovery 17 (8): 547–58. https://doi.org/10.1038/nrd.2018.93.
- 18. Wang, Qiong, Yiqun Chen, Jaeyoung Park, Xiao Liu, Yifeng Hu, Tiexin Wang, Kevin McFarland, and Michael J. Betenbaugh. 2019. "Design and Production of Bispecific Antibodies." Antibodies 8 (3): 43. https://doi.org/10.3390/antib8030043.
- 19. Jensen, Karin J., Christian B. Moyer, and Kevin A. Janes. 2016. "Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting." Cell Systems 2 (2): 112–21. https://doi.org/10.1016/j.cels.2016.01.012.
- 20. Suzuki, Masami, Chie Kato, and Atsuhiko Kato. 2015. "Therapeutic Antibodies: Their Mechanisms of Action and the Pathological Findings They Induce in Toxicity Studies." Journal of Toxicologic Pathology 28 (3): 133–39. https://doi.org/10.1293/tox.2015-0031.
- 21. Dammes, Niels, and Dan Peer. 2020. "Paving the Road for RNA Therapeutics." Trends in Pharmacological Sciences 41 (10): 755–75. https://doi.org/10.1016/j.tips.2020.08.004.
- 22. Levin, Arthur A. 2019. "Treating Disease at the RNA Level with Oligonucleotides." New England Journal of Medicine 380 (1): 57–70. https://doi.org/10.1056/NEJMra1705346.
- 23. Baranello, Giovanni, Basil T. Darras, John W. Day, Nicolas Deconinck, Andrea Klein, Riccardo Masson, Eugenio Mercuri, et al. 2021. "Risdiplam in Type 1 Spinal Muscular Atrophy." New England Journal of Medicine 384 (10): 915–23. https://doi.org/10.1056/NEJMoa2009965.
- 24. Ratni, Hasane, Martin Ebeling, John Baird, Stefanie Bendels, Johan Bylund, Karen S. Chen, Nora Denk, et al. 2018. "Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)." Journal of Medicinal Chemistry 61 (15): 6501–17. https://doi.org/10.1021/acs.jmedchem.8b00741.
- 25. Sivaramakrishnan, Manaswini, Kathleen D. McCarthy, Sébastien Campagne, Sylwia Huber, Sonja Meier, Angélique Augustin, Tobias Heckel, et al. 2017. "Binding to SMN2 Pre-MRNA-Protein Complex Elicits Specificity for Small Molecule Splicing Modifiers." Nature Communications 8 (November): 1476. https://doi.org/10.1038/s41467-017-01559-4.
- 26. Singh, N. N., M. D. Howell, E. J. Androphy, and R. N. Singh. 2017. "How the Discovery of ISS-N1 Led to the First Medical Therapy for Spinal Muscular Atrophy." Gene Therapy 24 (9): 520–26. https://doi.org/10.1038/gt.2017.34.

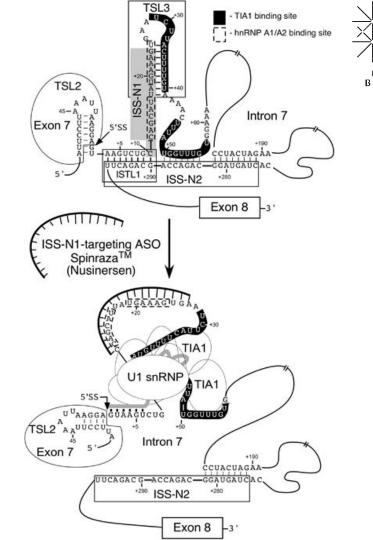
- 27. Roberts, Thomas C., Robert Langer, and Matthew J. A. Wood. 2020. "Advances in Oligonucleotide Drug Delivery." Nature Reviews Drug Discovery BN I (10): 673–94. https://doi.org/10.1038/s41573-020-0075-7.
- 28. Tambuyzer, Erik, Benjamin Vandendriessche, Christopher P. Austin, Philip J. Brooks, Kristina Larsson, Katherine I. Miller Needleman, James Valentine, et al. 2020. "Therapies for Rare Diseases: Therapeutic Modalities, Progress and Challenges Ahead." Nature Reviews Drug Discovery 19 (2): 93–111. https://doi.org/10.1038/s41573-019-0049-9.
- 29. The Shape of Drugs to Come, Amgen, https://www.amgenscience.com/features/the-shape-of-drugs-to-come/
- 30. Citri, Ami, and Yosef Yarden. 2006. "EGF–ERBB Signalling: Towards the Systems Level." Nature Reviews Molecular Cell Biology 7 (7): 505–16. https://doi.org/10.1038/nrm1962.
- 31. SelleckChem tool compounds for the EGFR pathway, https://www.selleckchem.com/EGFR(HER).html
- 32. Zhang, M. May, Raman Bahal, Theodore P. Rasmussen, José E. Manautou, and Xiao-bo Zhong. 2021. "The Growth of SiRNA-Based Therapeutics: Updated Clinical Studies." Biochemical Pharmacology, January, 114432. https://doi.org/10.1016/j.bcp.2021.114432.
- 33. Wikipedia, RNA splicing, https://en.wikipedia.org/wiki/RNA splicing
- 34. Wikipedia, RNA splicing, work by Agathman, used under CC-BY-3.0, https://commons.wikimedia.org/wiki/File:A complex.jpg
- 35. Scotti, Marina M., and Maurice S. Swanson. 2016. "RNA Mis-Splicing in Disease." Nature Reviews Genetics 17 (1): 19–32. https://doi.org/10.1038/nrg.2015.3.
- 36. Jutzi, Daniel, Maureen V. Akinyi, Jonas Mechtersheimer, Mikko J. Frilander, and Marc-David Ruepp. 2018. "The Emerging Role of Minor Intron Splicing in Neurological Disorders." Cell Stress 2 (3): 40–54. https://doi.org/10.15698/cst2018.03.126.
- 37. Smith, C.I. Edvard, and Rula Zain. 2019. "Therapeutic Oligonucleotides: State of the Art." Annual Review of Pharmacology and Toxicology 59 (1): 605–30. https://doi.org/10.1146/annurev-pharmtox-010818-021050.
- 38. Fakhr, E., F. Zare, and L. Teimoori-Toolabi. 2016. "Precise and Efficient SiRNA Design: A Key Point in Competent Gene Silencing." Cancer Gene
- Therapy 23 (4): 73–82. https://doi.org/10.1038/cgt.2016.4.

 Bennett, C. Frank, and Eric E. Swayze. 2010. "RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic 71 Platform." Annual Review of Pharmacology and Toxicology 50 (1): 259–93. https://doi.org/10.1146/annurev.pharmtox.010909.105654.

- 40. General policies for monoclonal antibodies, WHO
- 41. Hammers, Christoph M., and John R. Stanley. 2014. "Antibody Phage Display: Technique and Applications." The Journal of Investigative Dermatology 134 (2): e17. https://doi.org/10.1038/jid.2013.521.
- 42. Alfaleh, Mohamed A., Hashem O. Alsaab, Ahmad Bakur Mahmoud, Almohanad A. Alkayyal, Martina L. Jones, Stephen M. Mahler, and Anwar M. Hashem. 2020. "Phage Display Derived Monoclonal Antibodies: From Bench to Bedside." Frontiers in Immunology 11. https://doi.org/10.3389/fimmu.2020.01986.
- 43. Hammers, Christoph M., and John R. Stanley. 2014. "Antibody Phage Display: Technique and Applications." *The Journal of Investigative Dermatology* 134 (2): e17. https://doi.org/10.1038/jid.2013.521.
- 44. V(D)J recombination, wikipedia, https://en.wikipedia.org/wiki/V(D)J_recombination
- 45. Jakobovits, Aya, Rafael G. Amado, Xiaodong Yang, Lorin Roskos, and Gisela Schwab. 2007. "From XenoMouse Technology to Panitumumab, the First Fully Human Antibody Product from Transgenic Mice." Nature Biotechnology 25 (10): 1134–43. https://doi.org/10.1038/nbt1337.
- 46. Rodríguez-Pérez, Fernando, and Michael Rape. 2018. "Unlocking a Dark Past." ELife 7 (September): e41002. https://doi.org/10.7554/eLife.41002.
- 47. CAR T-cell therapy, National Institute of Cancer, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/car-t-cell-therapy
- 48. Srivastava, Shivani, and Stanley R. Riddell. 2015. "Engineering CAR-T Cells: Design Concepts." Trends in Immunology 36 (8): 494–502. https://doi.org/10.1016/j.it.2015.06.004.
- 49. Waldman, Alex D., Jill M. Fritz, and Michael J. Lenardo. 2020. "A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice." Nature Reviews Immunology 20 (11): 651–68. https://doi.org/10.1038/s41577-020-0306-5.
- 50. Pollard, Andrew J., and Else M. Bijker. 2021. "A Guide to Vaccinology: From Basic Principles to New Developments." Nature Reviews Immunology 21 (2): 83–100. https://doi.org/10.1038/s41577-020-00479-7.
- 51. Nechansky, Andreas, and Ralf Kircheis. 2010. "Immunogenicity of Therapeutics: A Matter of Efficacy and Safety." Expert Opinion on Drug Discovery 5 (11): 1067–79. https://doi.org/10.1517/17460441.2010.514326.
- 52. NIH Image Gallery, https://www.flickr.com/photos/nihgov/20673870162/in/album-72157656657569008/

References (continued)

- 53. Philip, Mary, and Andrea Schietinger. 2019. "Heterogeneity and Fate Choice: T Cell Exhaustion in Cancer and Chronic Infections." Current Opinion B A S E L in Immunology, Antigen processing Special section on precommitted lymphocytes, 58 (June): 98–103. https://doi.org/10.1016/j.coi.2019.04.014.
- 54. 10 Things to Know About Antibodies, Amgen, https://www.amgenscience.com/features/10-things-to-know-about-antibodies/



Supplementary Information

How Spinaraza (nusinersen) works, base by base

Nusinersen binds to ISS-N1, causing structural rearrangement and recruitment of U1 snRNP by TIA1.

- ISS-N1: Intronic splicing silencer N1;
- <u>TIA1</u>: TIA1 cytotoxic granule associated RNA binding protein;
- TSLs: (inhibitory) terminal stem-loop structures;
- ISTL1: internal stem formed by a long-distance interaction

Clinical-stage siRNAs

DA-approved siRNA drugs		Patisiran	Giv	vosiran Lui	masiran
iRNA drugs clinical trials		Vutrisiran	Ne	dosiran	Clisiran Fitusiran
		Teprasira	n Co	sdosiran Tiv	anisiran
	Drug	Alternative name	Company	Disease	Updated status
	Patisiran Givosiran	ONPATTRO	Alnylam	Hereditary transthyretin mediated amyloidosis	FDA approval in 10/08/2018 210922Orig1s000*
		GIVLAARI	Alnylam	Acute hepatic porphyria	FDA approval in 11/20/2019 212194Orig1s000
	Lumasiran	ALN-GO1	Alnylam	Primary hyperoxaluria type 1 (PH1)	FDA approval on 11/23/2020 214103Orig1s000
	Vutrisiran	ALN-TTRsc02	Alnylam	Hereditary transthyretin mediated amyloidosis	Phase 3 trials ELIOS-A (NCT03759379)** HELIOS-B (NCT04153149)
	Nedosiran	DCR-PHXC	Dicerna Alnylam	Primary hyperoxaluria	Phase 3 trial PHYOX 3 (NCT04042402)
	Inclisiran	ALN-PCSSC	Alnylam Novartis	Hypercholesterolemia	Phase 3 trials ORION-9 (NCT03397121) ORION-10 (NCT03399370) ORION-11 (NCT03400800)
	Fitusiran	ALN-AT3sc ALN-APC SAR439774	Alnylam anofi Genzyme	Hemophilia A and B	Phase 3 trials ATLAS-A/B (NCT03417245) ATLAS-INH (NCT03417102) ATLAS-PPX (NCT03549871) ATLAS-PEDS (NCT03974113) ATLAS-OLE (NCT03974790)
	Teprasiran	AKII-5, DGFi, I-5NP, QPI-1002	Quark Novartis	Acute kidney injury Delayed graft function	Phase 3 trial ReGIFT (NCT02610296)
	Cosdosiran	QPI-1007	Quark	Non-arteritic anterior ischemic optic neuropathy (NAION)	Phase 2/3 trial NCT02341560
	Tivanisiran	SYL-1001	Sylentis	Dry eyes Ocular pain	Phase 3 trial HELIX (NCT03108664)

PS 2'-OMe 2'-F 2'-MOE Patisiran + (11) LNP Givosiran + (6) + (28) + (16) GalNAc Lumasiran + (6) + (34) + (10) GalNAc Vutrisiran + (6) + (35) GalNAc + (9) Nedosiran + (6) + (35) + (19) GalNAc Inclisiran + (6) + (32) + (11) + (1) GalNAc Fitusiran + (6) + (23) + (21) GalNAc Teprasiran + (19) None Cosdosiran + (9) None Tivanisiran None O=P-S Base Base он осн ÓН Phosphorothioate (PS) 2-O-methyl (2'-OMe) 2'-fluoro (2'-F) 2'-O-methoxyethyl (2'-MOE)

Chemical modifications

Sugar

Delivery

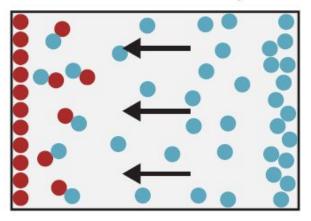
platform

Backbone

Drug

N-acetylgalactosamine (GalNAc)

ClinicalTrials.gov identifier number at https://clinicaltrials.gov/ct2/



Chemically induced proximity

A reaction-diffusion model

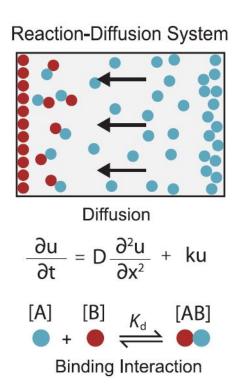
Reaction-Diffusion System

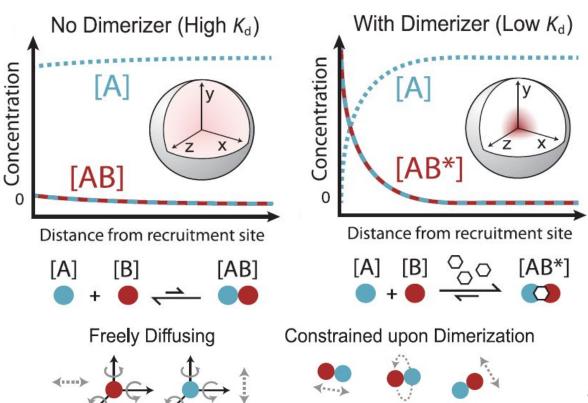
Diffusion

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + ku$$
Diffusion Binding

Binding Interaction

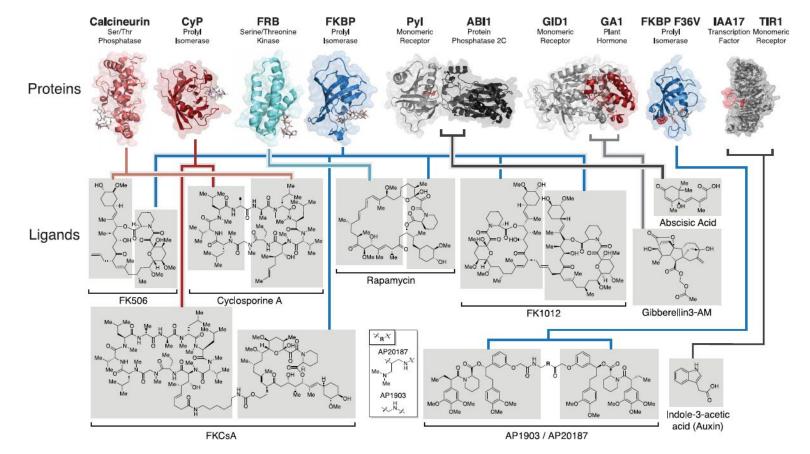
x: position


u: productconcentration

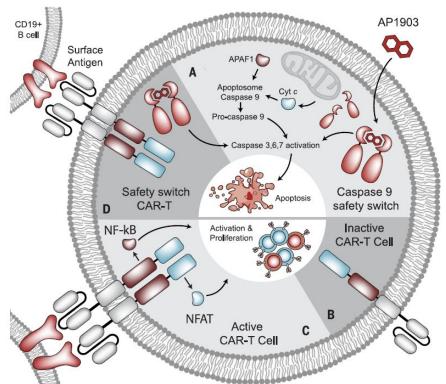

t: time

The diffusion term follows *Fick's* second law of diffusion; the binding term describes the reaction.

Kinetic and thermodynamic contributions of chemically induced proximity

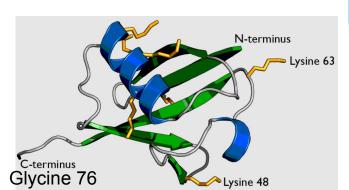


Chemically induced proximity

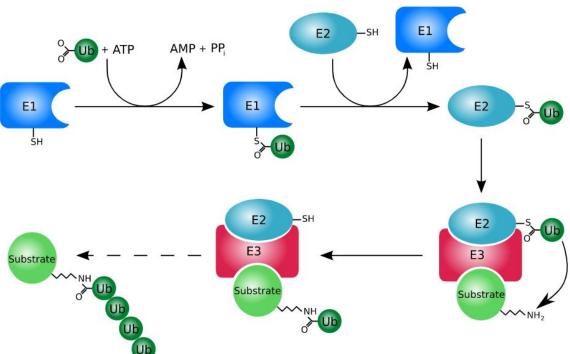


Chemically induced proximity as 'safety switch' for cell therapy

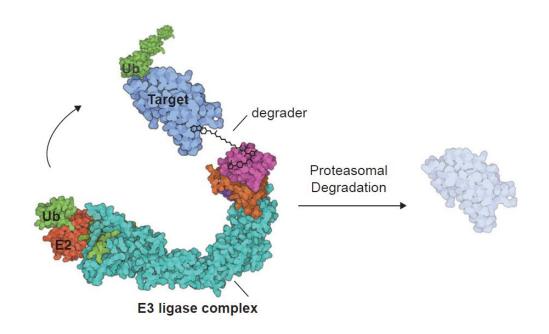
- Too many or too active CAR-T cells may induce serious side effects (cytokine release syndrome, B cell aplasia, etc.)
- Bioinert small molecules
 (AP1903 in this case) can be used as 'safety switch' to kill transplanted CAR-T cells.

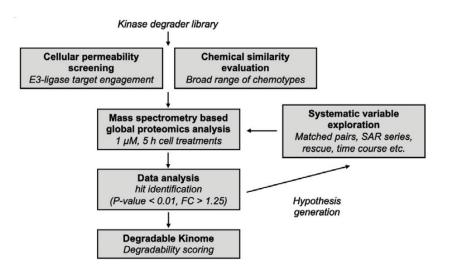


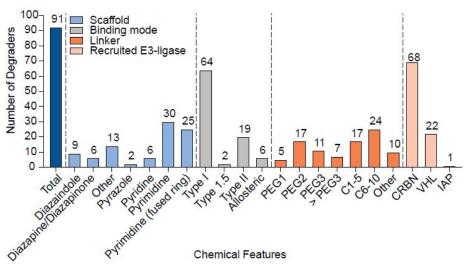
Therapeutic use of protein degradation



Ubiquitination marks proteins to be degraded




work by *Rogerdodd*, used under the CC-BY-SA 3.0 licence.



Donovan *et al.* (2020) reports screening results with 91 kinase degraders

Donovan *et al.* (2020) reports screening results with 91 kinase degraders

Immunogenicity of therapeutic proteins

Immunogenicity affects both efficacy and safety

Immune response underlies immunogenicity

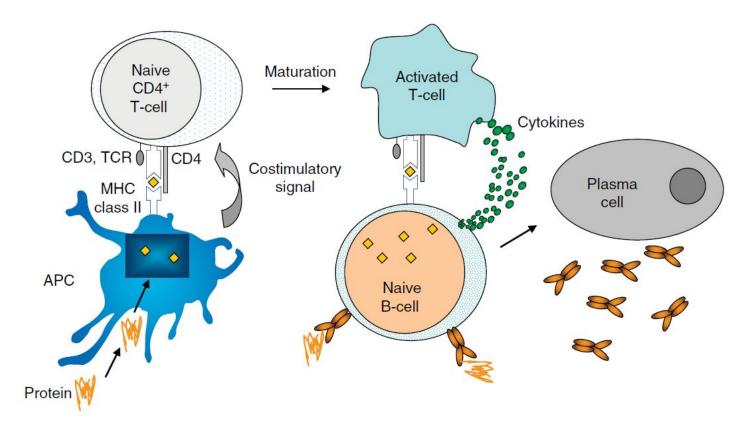
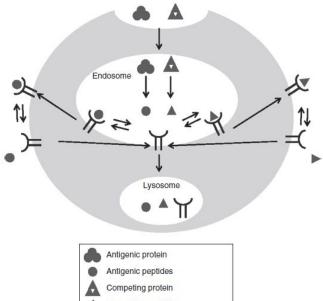


Table 2. The factors contributing to immunogenicity are divided into three groups.

▲: Potential to increase immunogenicity; ▼: Potential to decrease immunogenicity; ?: Most likely; aa: Amino acid.

Immunogenicity potential


Drug product Non-human: A Host Immunomodulatory properties Glycosylation Aggregation Size Molecular mass < 10 kDa: ▼ Formulation Polymers V To be characterized: silicone oil Excipients/stabilizers **Impurities** Product/process related: Post-translational mod. Oxidation, deamidation, etc.: aa Composition Charged aa: ▲: Aromatic aa: ▼ Conjugates Patient Age Disease state Different indication/different response Immune compromised: ▼ Immune status Infective disease: Patient to patient variability Not predictable Concomitant therapy Earlier exposure to similar protein - crossreacting antibodies to similar proteins Genetic factors Defective gene Polymorphisms for cytokines Administration Higher dose: ▲? Dose Intravenous administration less immunogenic than subcutaneous or intramuscular Route Short-term administration less immunogenic than long-term treatment Continuous administration less immunogenic than intermittent More frequent: Frequency Duration of therapy Short term: ▼

90

A mechanistic, multiscale model of immunogenicity: subcellular model

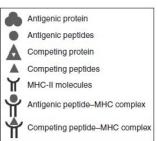


Figure 1. Model structure for the subcellular level, including processes for antigen presentation in mature dendritic cells. The symbols in the figure legends are described below, with corresponding equation number in Supplementary Materials shown between parentheses. . Antigenic protein, including antigenic protein in plasma (Ag, Eq. 27 in Supplementary Material) and antigenic protein in the endosome: $(Aq^{E}, Eq. 4 in$ Supplementary Material); \blacksquare : antigenic peptide in endosome (p_i^E , Eq. 5 in Supplementary Material); A: competing protein in the endosome (cp^E, Eq. 9 in Supplementary Material); ▲: competing peptide in the endosome (cpt^E, Eq. 10 in Supplementary Material); Υ : MHC-II molecules, including those in the endosome (M^{ϵ}_{ν}), Eq. 6 in Supplementary Material) and those on dendritic cell membrane (M_{k} , Eq. 13 in Supplementary Material); \P : antigenic peptide-MHC complex, including those in the endosome (pM^E_{ν}) Eq. 7 in Supplementary Material) and those on cell membrane (p,M,, Eq. 8 in Supplementary Material); *: competing peptide-MHC complex, including those in the endosome (*cptM*^E_k, Eq. 11 in Supplementary Material) and those on cell membrane (cptM, Eq. 12 in Supplementary Material).

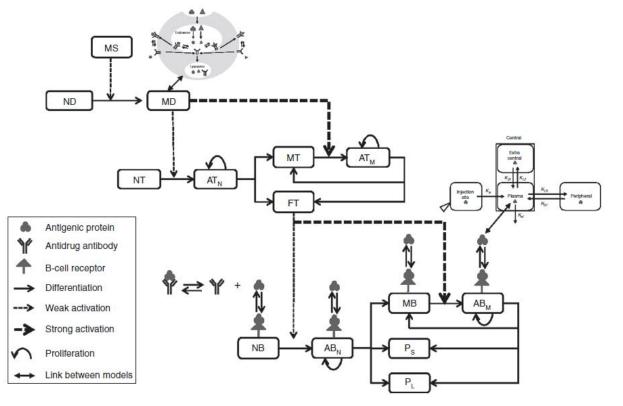
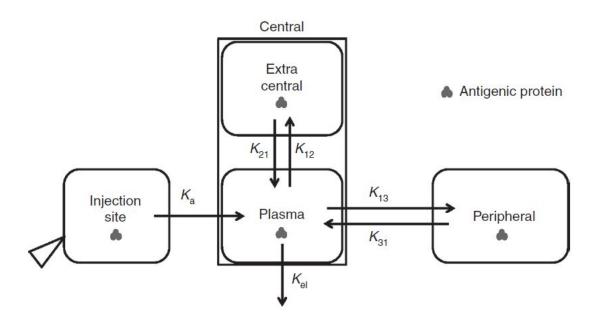



Figure 2. Model structure for the cellular level, including cells, antigen, antidrug antibody, and B-cell receptor. The links between the three levels of the multiscale model are also illustrated to help interpretation. The acronyms are explained below, along with the corresponding equation number in the Supplementary Material shown between parentheses. MS: maturation signal (Eq. 1 in Supplementary Material); ID: immature dendritic (Eq. 2 in Supplementary Material); NT: naïve T (Eq. 14 in Supplementary Material); AT_N: activated T from naïve T (Eq. 15 in Supplementary Material); AT_M: activated T from memory T (Eq. 16 in Supplementary Material); MT: memory T (Eq. 17 in Supplementary Material); FT: functional T (Eq. 18 in Supplementary Material); NB: naïve B (Eq. 19 in Supplementary Material); AB_M: activated B from naïve B (Eq. 20 in Supplementary Material); AB_M: activated B from memory B (Eq. 21 in Supplementary Material); MB: memory B (Eq. 22 in Supplementary Material); P_S: short-lived plasma (Eq. 23 in Supplementary Material); P_S: long-lived plasma cell (Eq. 24 in Supplementary Material).

The whole-body model

Figure 3. Model structure for the whole-body level, accounting for the *in vivo* disposition of antigenic protein. Details are described in the Results section and also by **Eqs. 26–29 in the Supplementary Materials**.

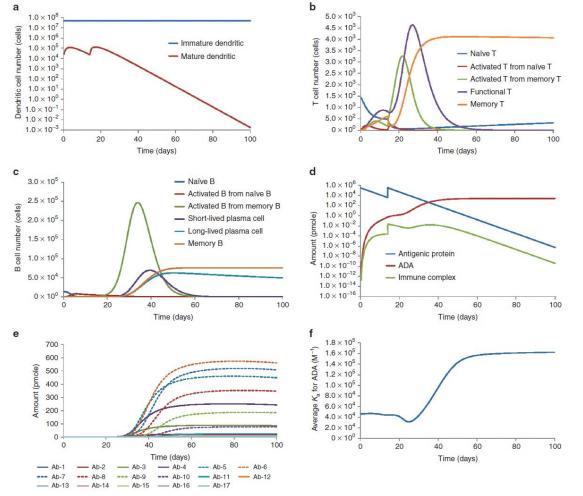
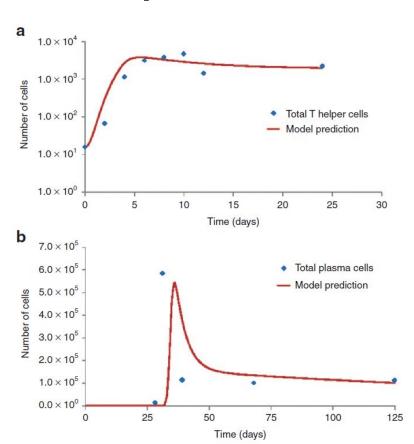
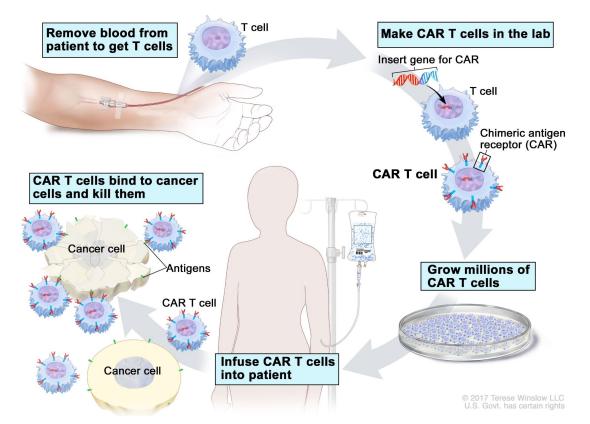



Figure 4. Simulation results of immune responses in human against a theoretical antigenic protein. The results include kinetic profiles for (a) dendritic cells; (b) helper T cells; (c) B cells; (d) antigenic protein, ADA, and immune complex; (e) polyclonal ADA (total 17 clones, whose antigen-binding affinity increases by twofold between clones, from clone 1 to clone 17); (f) average antigen-binding affinity of ADA. ADA, antidrug antibody.

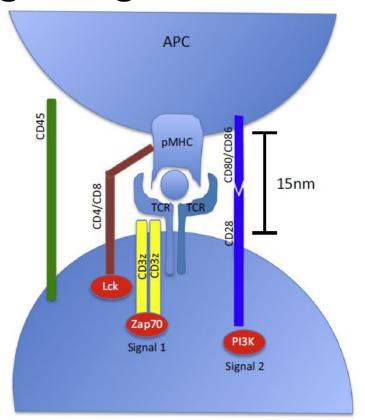
UNI BASEL

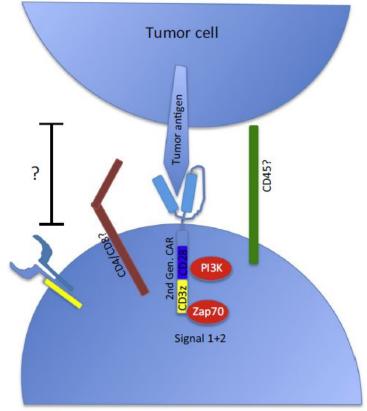
Observation and model prediction

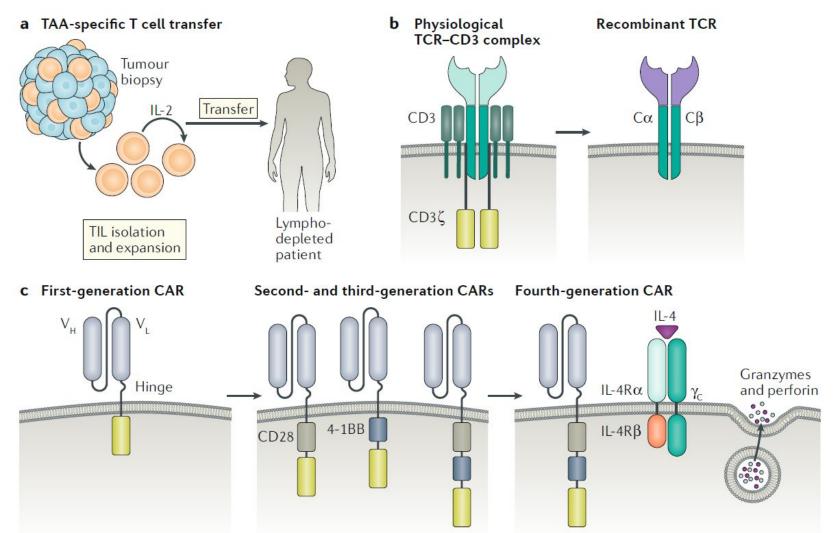


CAR-T and individualized vaccines

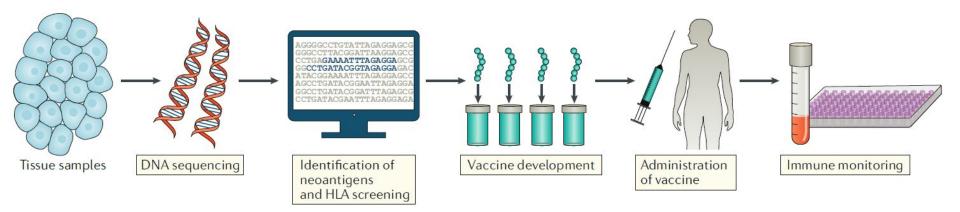
CAR (Chimeric Antigen Receptor) T-Cell Therapy




CAR T-cell Therapy


Signaling of conventional and CAR T cells

Conventional T cell


CAR T cell

Towards personalized vaccine development

