

For which patients shall the drug work, and how?

Mathematical and Computational Biology in Drug Discovery (MCBDD)

Module V

Dr. Jitao David Zhang May-June 2023

Outline of Module V

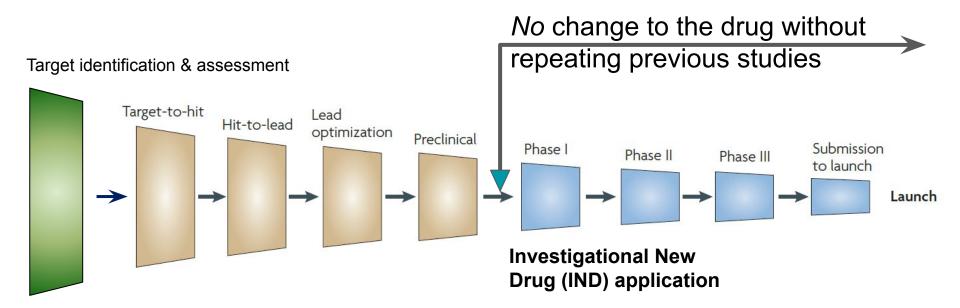
Lecture 11

- Biomarker for dose prediction
- o Biomarker for patient-stratification and biology understanding: Merck/Genentech
- Challenges and caveats

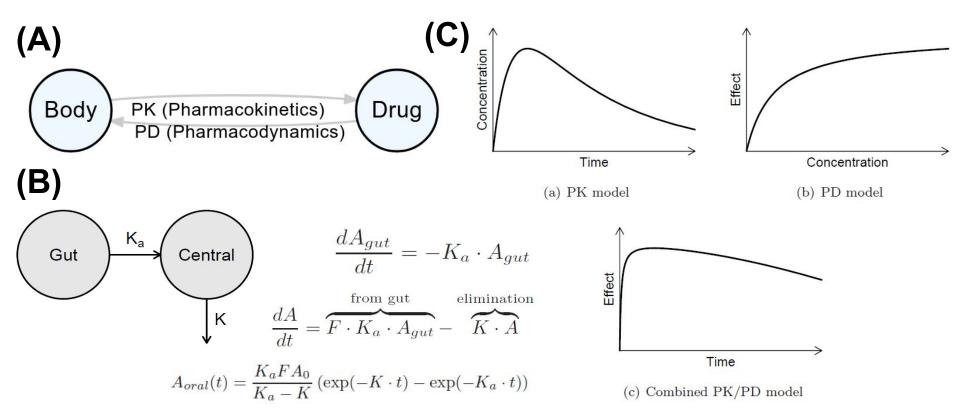
Lecture 12

- Integrating statistical and mechanistic modelling: Griffiths et al.
- Mechanistic modelling of biological systems: from Boolean network to Agent-based modelling
- Causal inference

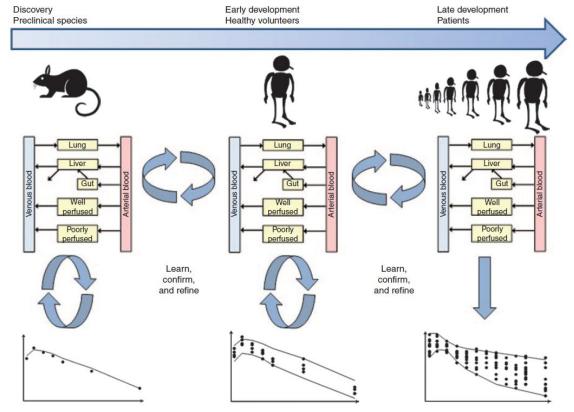
From drug discovery to drug development



A refresher of PK/PD Modelling



Physiologically-based pharmacokinetic modelling (PBPK) is a natural extension of PK modelling



Phases of clinical trials

healthy subjects

Time: A few weeks

Investigational New Drug New Drug Application (NDA) (IND) application Phase 0* Phase II Phase I Phase III ~70% ~50% Finding safe dose Comparing efficacy, **Aim:** Getting PK/PD Assessing efficacy data to verify the ranges and optimal and safety profiles effectiveness, and drug behaves as dosing regimens with of the drug, and safety profiles with further PK/PD data. determining the the standard-of-care expected. **Dose:** Microdosing, Sub-therapeutic dosing regimen. treatment option. e.g. 1% of predicted single and multiple Therapeutic dose Therapeutic dose ascending doses Usually 100-300 Usually 300-3000 dose. Subjects: <15 20-100 healthy patients with a patients

specific disease

A year or longer

subjects (patients)

A few months

Usually several years

Empirical, stratified, and individualized medicine

Empirical medicine

- Vaccines
- Non-steroid anti-inflammatory drugs (NSAIDs)

Stratified Medicine

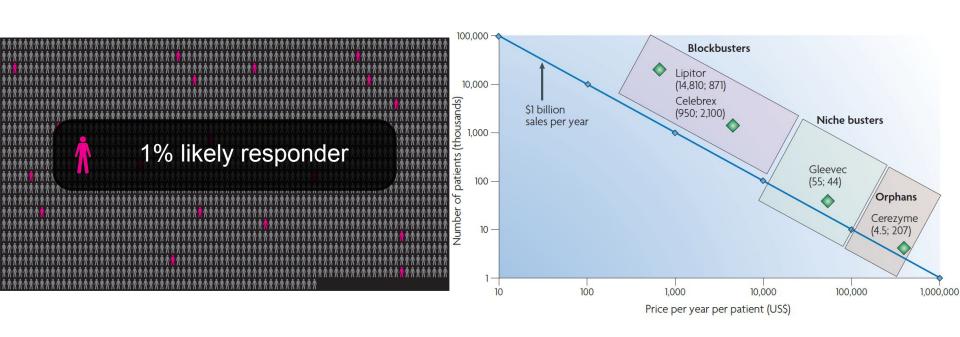
- Vemurafenib (Zelboraf)
- Trastuzumab (Herceptin)

Individualized medicine

CAR-T therapy

UNI

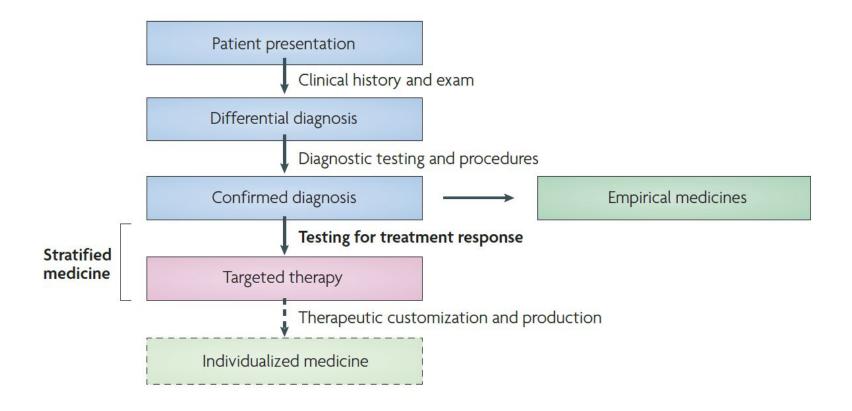
Why stratified medicines are becoming popular?



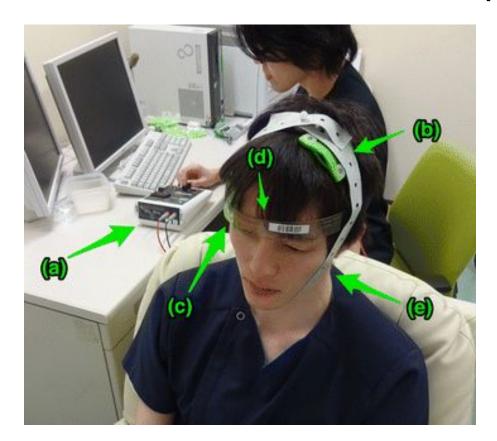
Medical reasons

Commercial reasons

Empirical, stratified, and individualized medicine in the clinical context



Transcranial Direct Current Stimulation (tDCS)



Transcranial Direct Current Stimulation (tDCS)

LIFTID tDCS Gerät zur Verbesserung von Fokus, Aufmerksamkeit, Gedächtnis und Produktivität

Marke: LIFTiD

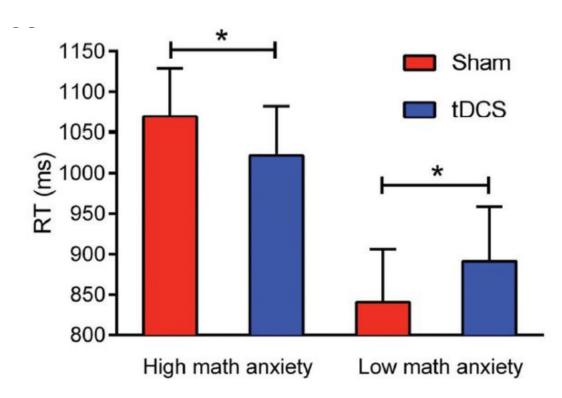
Preisangaben inkl. USt. Abhängig von der Lieferadresse kann die USt. an der Kasse variieren. Weitere Informationen.

Ausgaben im Blick behalten und 8€ Aktionsgutschein sichern: Jetzt Amazon-Konto aufladen Mehr erfahren

- Verbessern Sie Ihre Leistung: Entwickelt für Gamer, Studenten, vielbeschäftigte Profis, Musiker und Sportler.
 Jeder kann LIFTiD verwenden, um seine Leistung zu erhöhen, es dauert nur 20 Minuten, um LIFTID während Ihrer Lieblingsaufgabe zu verwenden.
- tDCS leicht gemacht: leicht (nur 70 Gramm), keine Kabel und einfach zu bedienen (Plug 'n Play). Einfach die Pads anfeuchten, aufsetzen und losdrücken. Gerät läuft automatisch für 20 Minuten bei 1,2 mA.
- Reisesicher: Wiederaufladbarer, langlebiger Lithium-Ionen-Akku. Vergessen Sie die Suche nach einem 9V Akku, der LIFTID Gerät Akku ist langlebig und schnell zu laden. Liftid ist eine Freisprecheinrichtung und benötigt keine Basiseinheit. Absolut tragbar. Verwenden Sie es beim Sitzen, Stehen, Gehen oder Dehnen.

Not tested in randomized clinical trials (https://clinicaltrials.gov)

Cognitive Enhancement or Cognitive Cost? It depends!



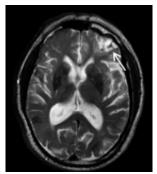
UNI

Biomarkers

A objectively measured and evaluated characteristic as an indicator of (1) normal biological process, (2) pathogenic processes, or (3) pharmacological responses to a therapeutic intervention.

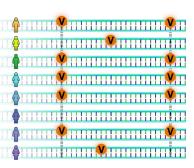
Physiological On 100 200 300 400 500 Time after stimulus (ms)

Imaging



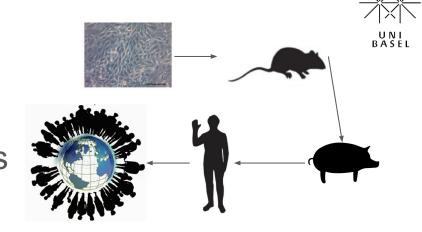
Functional

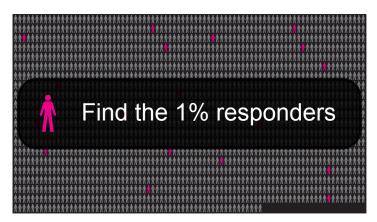
Molecular

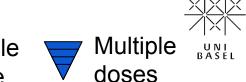


Applications of biomarkers

- Compound optimization and differentiation from competitors in preclinical study
- 2. Human-dose prediction in translational PK/PD modelling
- 3. Patient stratification in clinical studies







Translational PK/PD Modelling

Single dose

Acute efficacy model

Sampling

Samples from blood and

the target organ can be

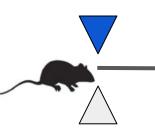
analysed for

pharmacokinetics,

pharmacodynamics, and

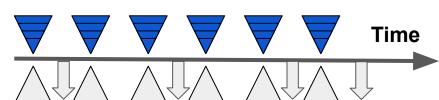
dose-exposure-response

relationships.



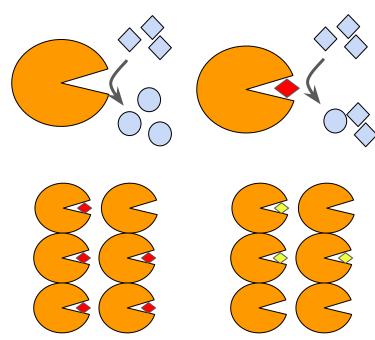
Time

Chronic PK/PD model



Target Occupancy as Biomarkers

Target occupancy, percentage of the protein target occupied by drugs, affects target engagement, which describes the process a drug interacts with its intended protein target in a living system to induce downstream effects (Mechanism of Action).

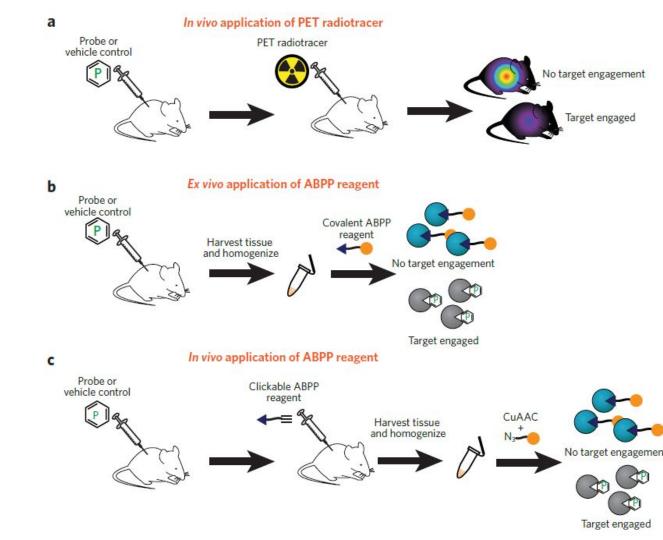


Target occupancy of 83% and 50%, respectively

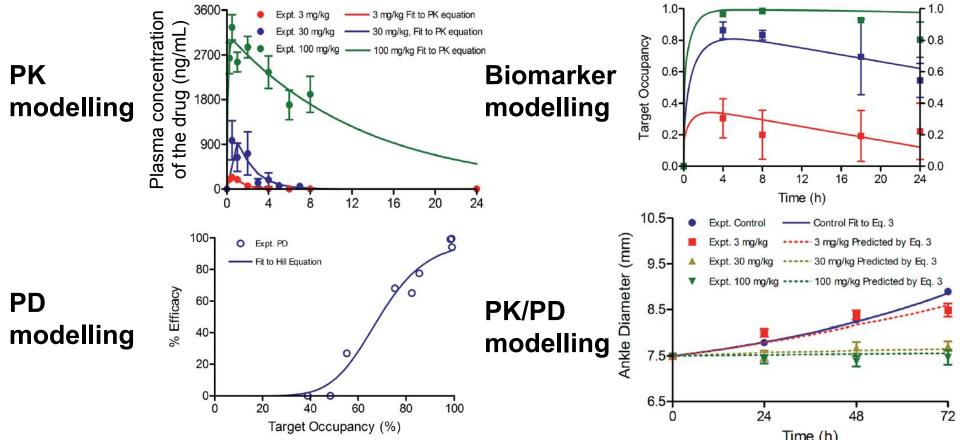
Target occupancy and engagement profiling in vivo

ABPP: Activity-based protein profiling; PET: positron-emission tomography.

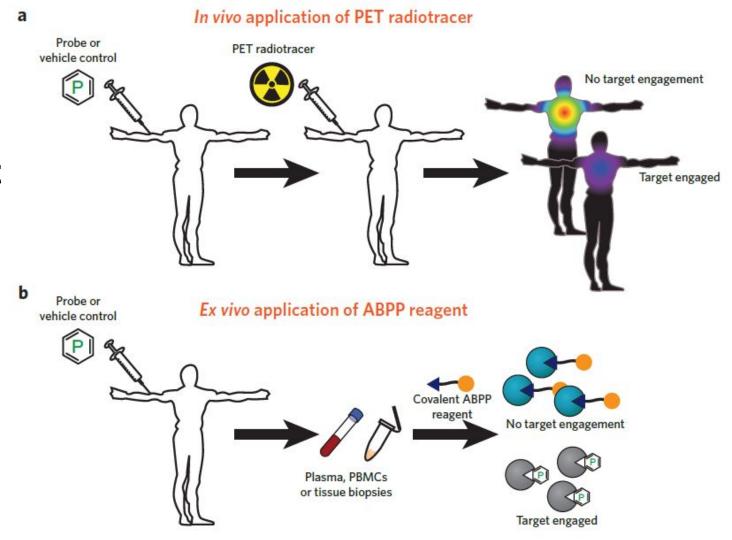
Both ABPP reagent and radiotracer binds to the same protein target.



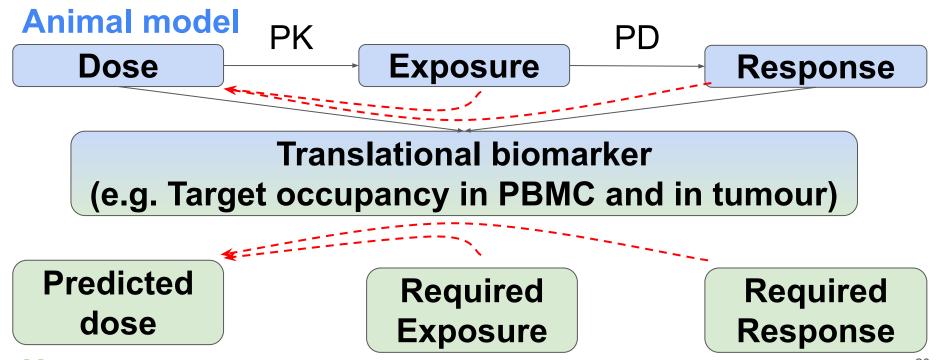
Target occupancy as a biomarker links pharmacokinetics and pharmacodynamics



Target occupancy and engagement profiling in human



A mental model of biomarker for human-dose prediction



20

A real-word example with a bispecific antibody

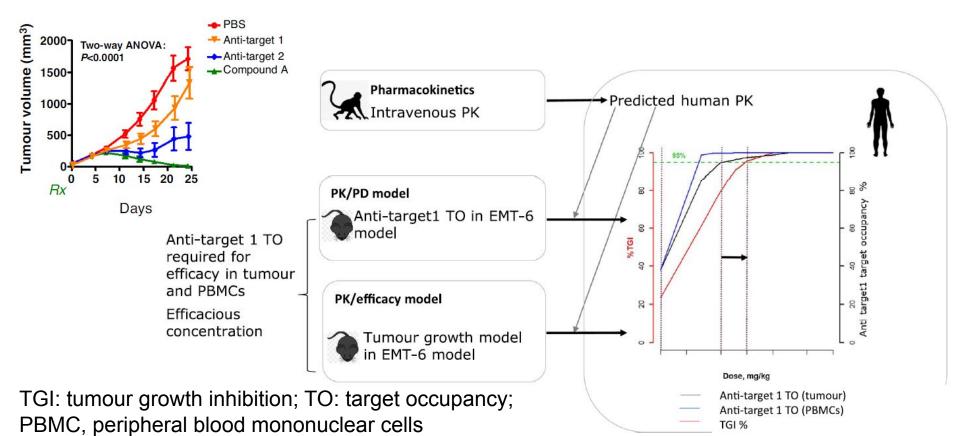
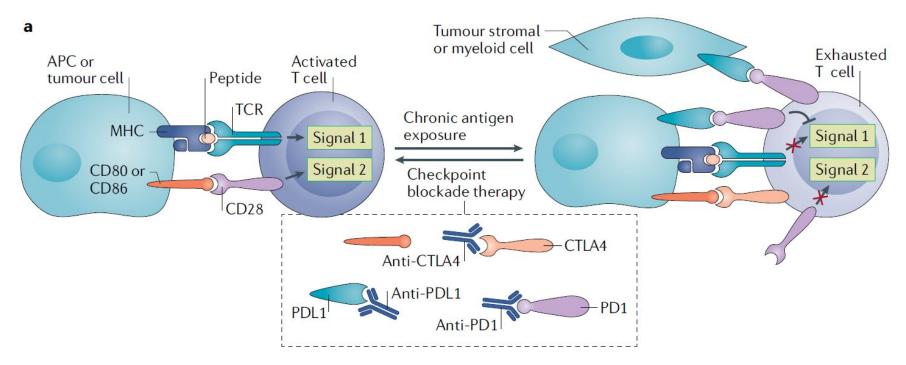


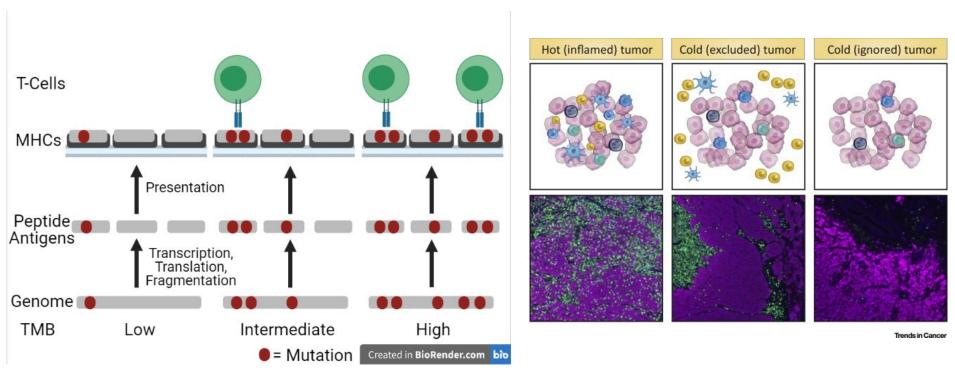
TABLE 2

Category	Q1: desired exposure-response in appropriate animal model?	Q2: Translatable biomarkers?	Number of drugs for which model-based active dose prediction is within twofold or clinical efficacy is observed within predicted dose range out of total number in category
2ª	No	No	1/6
3	No	Yes	2/2
4 ^b	Yes	No	0/1

Molecular basis of cancer immunotherapy

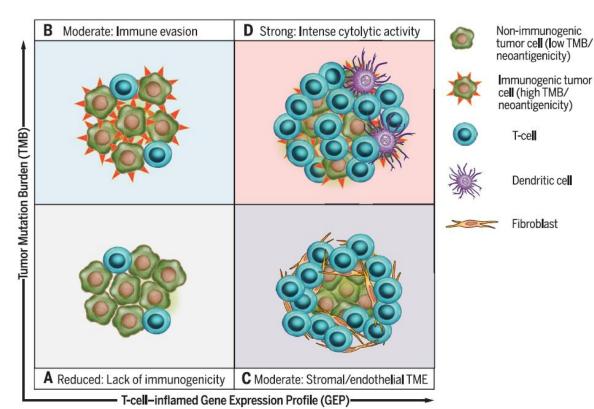


Tumour mutation burden and immune phenotype may affect the effect of immunotherapy



Cristescu et al. established TMB and T-cell-inflamed Gene Expression Profile (GEP) as biomarkers

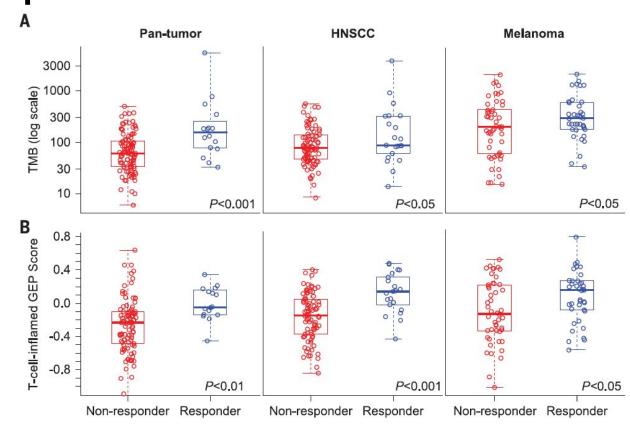
Patients with high tumor mutation burden AND a T-cell-inflamed gene expression profile (TME) are more likely to respond to cancer immunotherapy.



Univariate analysis establishes correlation between TMB/GEP and responsiveness

GEP: weighted sum of normalized expression of 18 genes related with immune response (CCL5, CD27, CD274 (PD-L1), CD276 (B7-H3), CD8A, CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2 (PDL2), PSMB10, STAT1. and TIGIT).

HNSCC: head and neck cancer



Receiver Operating Characteristic (ROC) curves of using either TMB or GEP for binary classification. Metrics: Area **Under ROC**

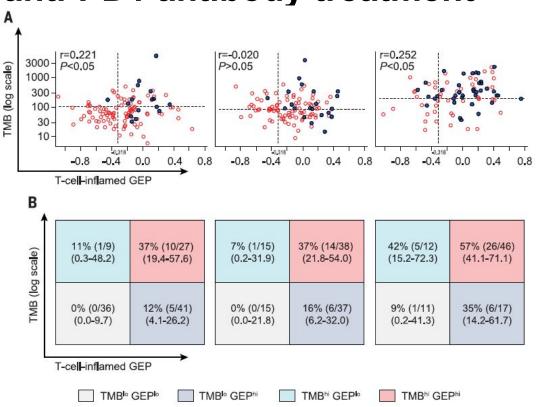
(AUROC)

TMB T-Cell Inflamed GEP 100 -80 Sensitivity 60 40 **TMB** GEP 20 Pan-tumor: 0.74 Pan-tumor: 0.782 HNSCC: 0.617 HNSCC: 0.768 Melanoma: 0.602 Melanoma: 0.638 20 60 80 40 60 80 1-Specificity

High TMB and high GEP are associated with higher responsiveness to anti-PD1 antibody treatment

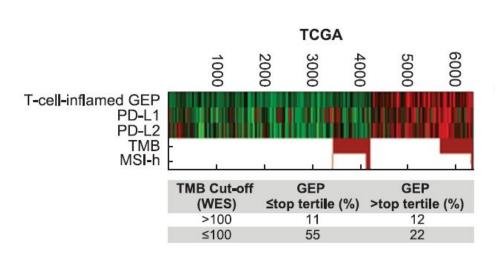
- From left to right:

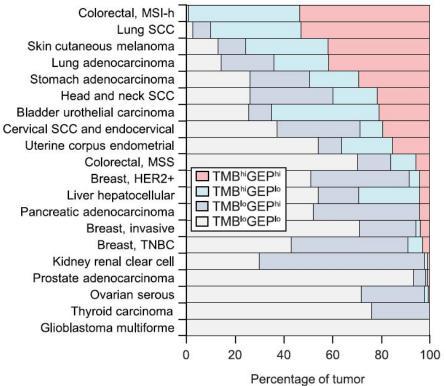
 three patient cohorts
 (pan-cancer;
 head-and-neck
 cancer; melanoma)
- Open red circles: non responders; Black dots: responders.



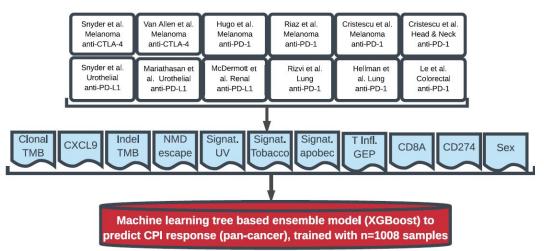
UNI BASEL

Data mining in public cancer database TCGA suggests potential indications

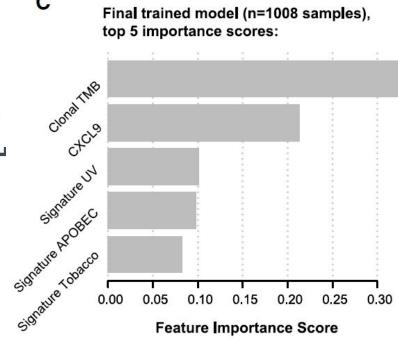




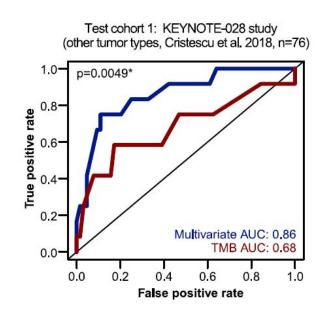
Meta-analysis (Litchfield *et al.* 2021) confirms TMB and T-cell infiltration as predictors of responsiveness:

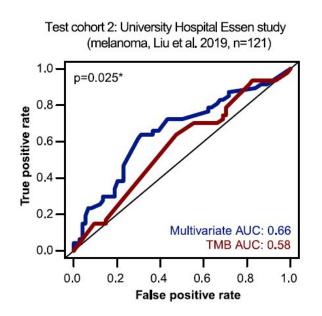


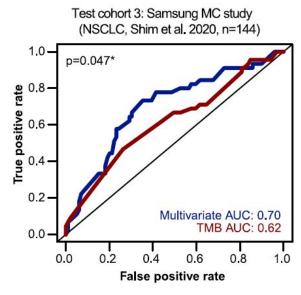
CXCL9 is a chemokine that enhances recruitment of cytotoxic CD8⁺ T cells into the tumor.



Testing of TMB versus multivariable CPI stratifier performance in three independent test cohorts (total n=341):



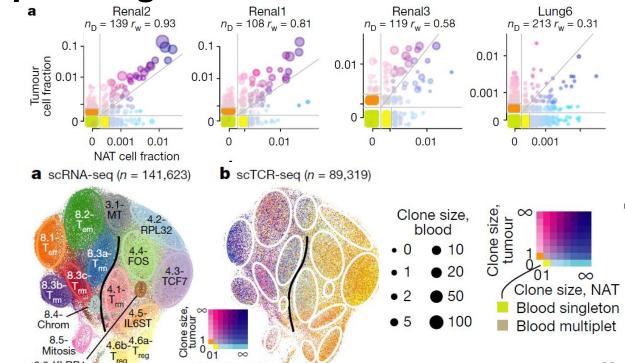




Wu et al. characterized T cells in tumour, normal adjacent tissue (NAT), and blood using single-cell RNA and TCR sequencing

UNIBASEL

- Expanded clonotypes (T cells) found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood.
- Intra-tumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour.



Caveats and challenge

- The curse of dimensionality
- Separation of mechanistic modelling and of statistical modelling
- Lack of causal models

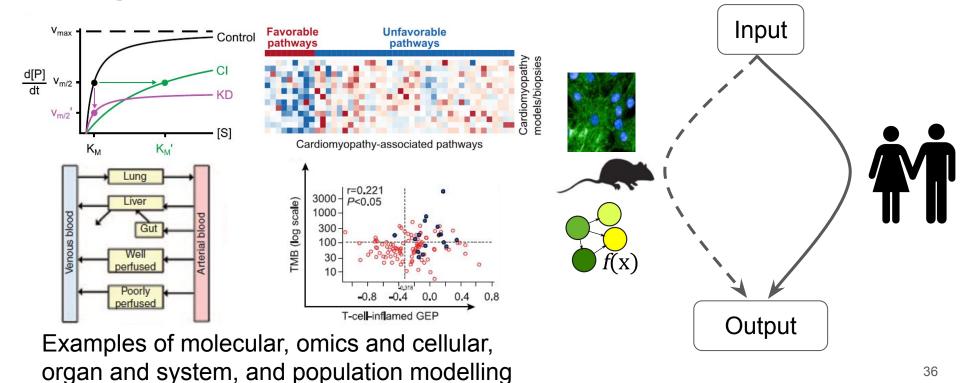
Conclusions

- Biomarkers (1) guide compound optimization and differentiation in preclinical studies, (2) support human dose prediction in translational PK/PD studies, and (3) allow patient stratification in clinical trials;
- Mathematical and computational biology is indispensable for biomarker identification;
- Caveats in biomarker identification calls for integrated mechanistic and statistical modelling to establish causal relations.

Outline of lecture 12

- An example of integrating statistical and mechanistic modelling: Griffiths et al.
- Mechanistic modelling of biological systems: from Boolean network to Agent-based modelling
- Causal inference
- Where can we go from here

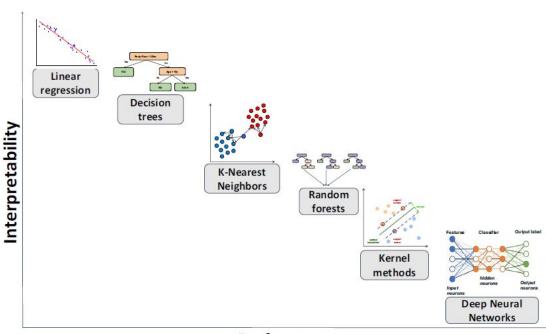
Drug discovery relies on in vitro, in vivo, and computational models across scales



t

Most statistical models predict output without knowing underlying mechanisms

Useful for hypothesis generation and exploratory analysis, dangerous for extrapolation and 'black-box' prediction.



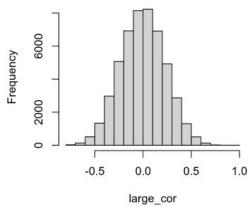
Performance

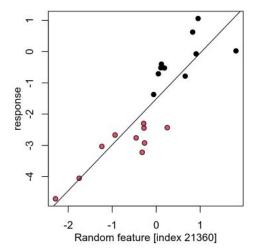
Simulation help us mind the curse of dimensionality

```
set.seed(1887)
patient_group <- gl(2,10)
response <- c(rnorm(10, 0), rnorm(10, -3))
random_features_large <- matrix(rnorm(20*50000), nrow=20)
large_cor <- cor(response, random_features_large, method="spearman")
hist(large_cor)</pre>
```

```
largest_cor_ind <- which.max(large_cor)
{
  compactPar()
  plot(random_features_large[, largest_cor_ind],
      response,
      bg=patient_group,pch=21,
      xlab=sprintf("Random feature [index %d]", largest_cor_ind))
  abline(lm(response ~ random_features_large[, largest_cor_ind]))
}</pre>
```

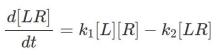
Histogram of large_cor



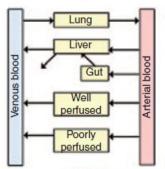


Mechanistic and computational models explain

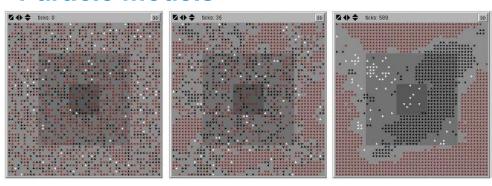
Compartment models



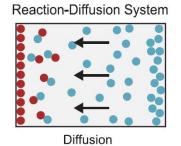
Kinetics of ligand-target interaction



Particle models

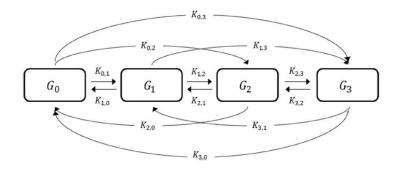


Transport models

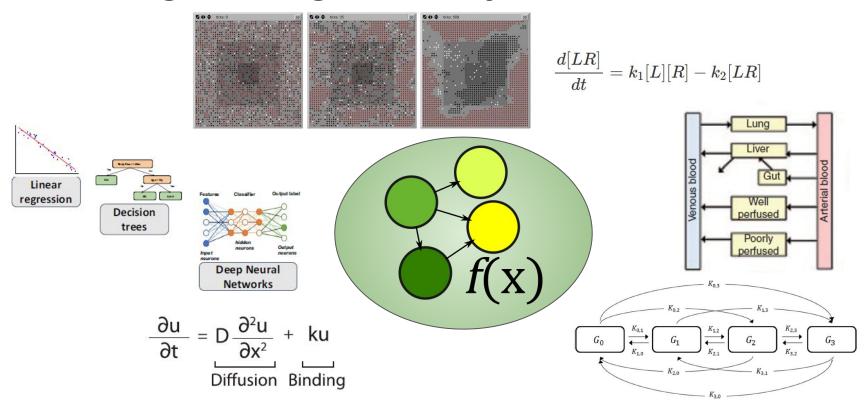


$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + ku$$
Diffusion Binding

Finite state models

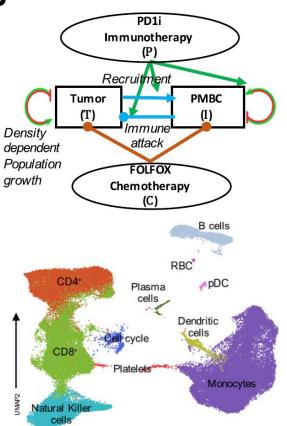


Integrating models across scales is a grand challenge in drug discovery



An example of integrated modelling

- Griffiths et al. (PNAS 2020) profiled peripheral immune cell abundance in time series following treatment of Gastrointestinal (GI) tumours with immunotherapy in a small clinical trial.
- The authors used compartment models to characterize cell-cell interactions and analysed single-cell omics data to reveal immune cell abundance, pathway activity patterns, and differentiation status.

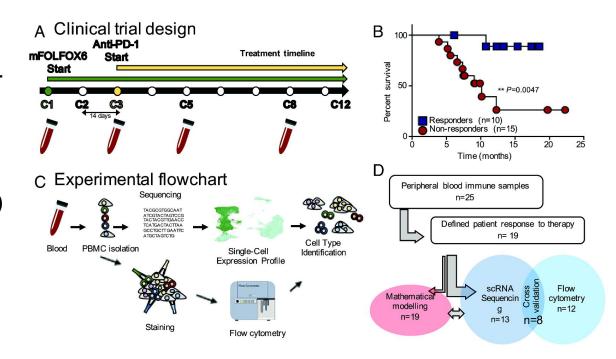


Facts

- Clinical response to immune checkpoint inhibitors varies substantially.
- Possible contributing factors correlate only weakly with patient response, including (1) tumor cell mutational load and antigen production, (2) immune-cell infiltration and signalling status, (3) Cross-talk between tumour and immune cells.
- It is challenging to obtain tumour tissue samples.
- Questions: Can circulating immune cells serve as a surrogate measurement of a tumour's interaction with the host immune cells and reflect response to therapy early in the course of treatment?
- Conclusions: It is possible to predict patient response with the evolution of peripheral immune cell abundance and signalling over time, as well as how immune cell interact with the tumor.

Design of the clinical trial

- mFOLFOX6 (modified FOLFOX6): a chemotherapy regiment.
- Patient response was assessed by RECIST (Response Evaluation Criteria in Solid Tumors)
 1.1 guidelines, using computer tomography (CT).



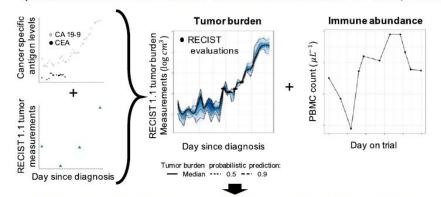
Mathematical modelling of tumour-immune cell interactions

Model inputs (all in time series):

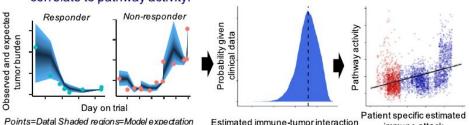
- Tumour burden, inferred by combining antigen values and RECIST evaluation with a Gaussian process latent variable model.
- Abundance of PBMCs

Model output: estimated ability of immune cells to kill tumour cells

Mathematical model flowchart: tumor-immune cell interactions
 i) Construct time course of tumor and immune abundance for each patient:



ii) Model how strongly immune cells interact and attack tumor and correlate to pathway activity:



immune attack

UNIBASEL

Gaussian Process

The Lotka-Volterra model of predator-prey relationships

• The Lotka-Volterra equations modelling predator-prey relationships.

$$\frac{dx}{dt} = \alpha x - \beta x y, \tag{1}$$

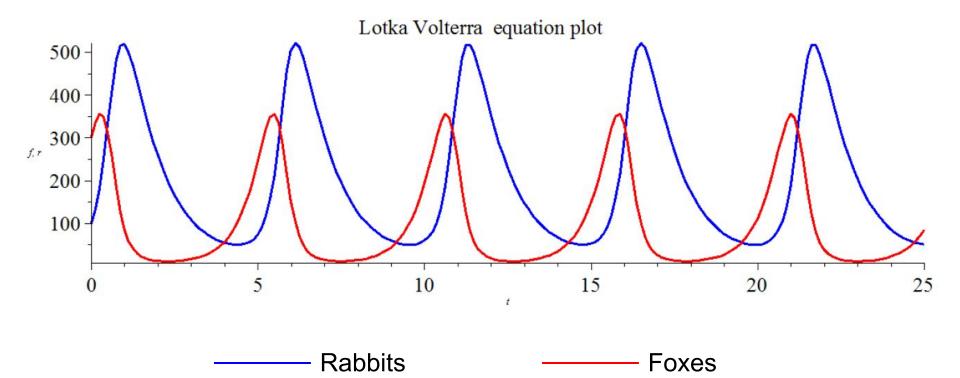
$$\frac{dy}{dt} = -\gamma y + \delta x y, \tag{2}$$

$$\frac{dy}{dt} = -\gamma y + \delta x y,\tag{2}$$

where

- x is the number of prey (e.g. rabbits),
- y is the number of predator (e.g. foxes),
- $\frac{dx}{dt}$ and $\frac{dy}{dt}$ represent growth rates of the two populations,
- t represents time,
- α , β , γ , and δ are real parameters specifying the interaction of the two species.

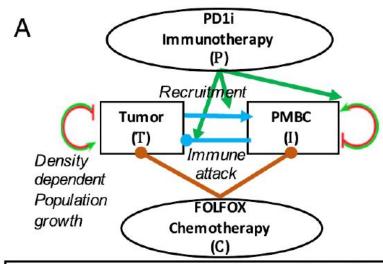
The Lotka-Volterra equations, visualized



Modelling of interactions between tumour and immune cells

Modelling assumptions:

- Tumor cells are attacked by immune cells
- Tumor cells recruit immune cells
- Chemotherapy kills both tumour and immune cells
- Anti-PD1 inhibitor immunotherapy impacts immune proliferation, recruitment, and cytotoxic tumor activity.

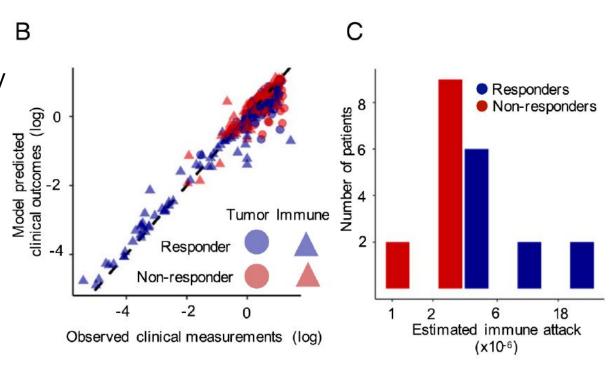


$$RGR_{T} = \frac{1}{T} \frac{dT}{dt} = r_{T} (1 - \gamma_{T} T) - (\alpha + \beta_{\varphi} P) I - \sum_{i} \overrightarrow{\mu_{T}}[i] C_{i}$$

$$RGR_{I} = \frac{1}{T} \frac{dI}{dt} = (r_{I} + \beta_{r} P) (1 - \gamma_{I} I) + (\lambda + \beta_{\lambda} P) T - \sum_{i} \overrightarrow{\mu_{I}}[i] C_{i}$$

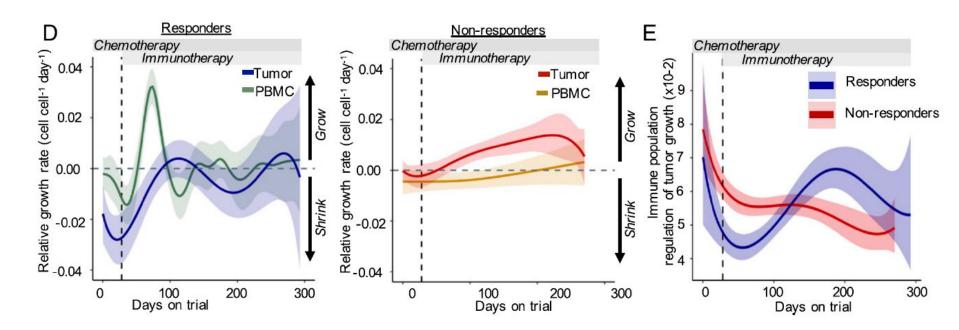
$$\underline{Immune \ growth} \qquad \underline{Recruitment} \qquad \underline{Chemotherapy}$$

- The strength of immune-tumor interaction is estimated by statistically fitting the growth rate of immune cells and tumor size to model predictions.
- Changes in tumor burden and immune cell abundance are described by data fitting, using a Bayesian hierarchical model.



Multilevel/hierarchical models

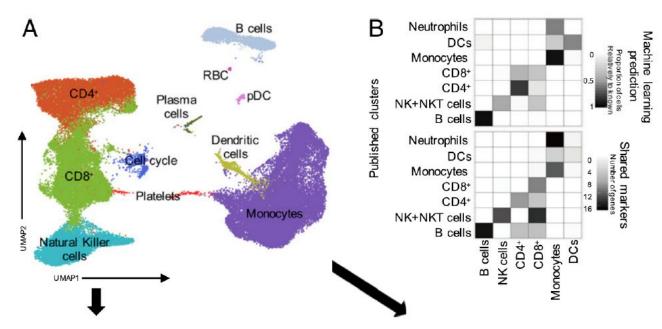
Profiles of relative growth rates differ between responders and non-responders



- Neither tumor nor PBMC responds to chemotherapy in non-responders.
- Responders have lower PBMC abundance in general at baseline.

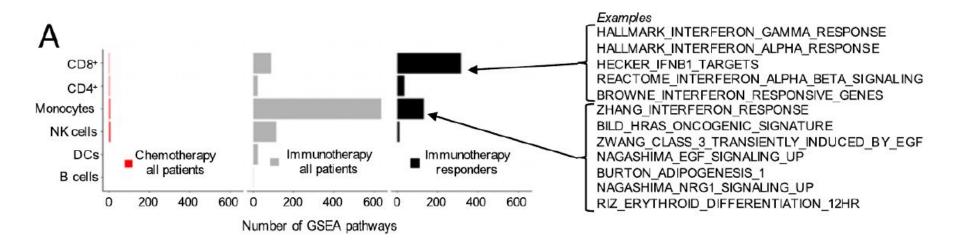
PBMCs were analysed at three time points:

- 1. Cycle 1 (C1): baseline before treatment;
- 2. Cycle 3 (C3): chemotherapy alone;
- 3. Cycle 5 (C5): chemotherapy + anti-PD-1.

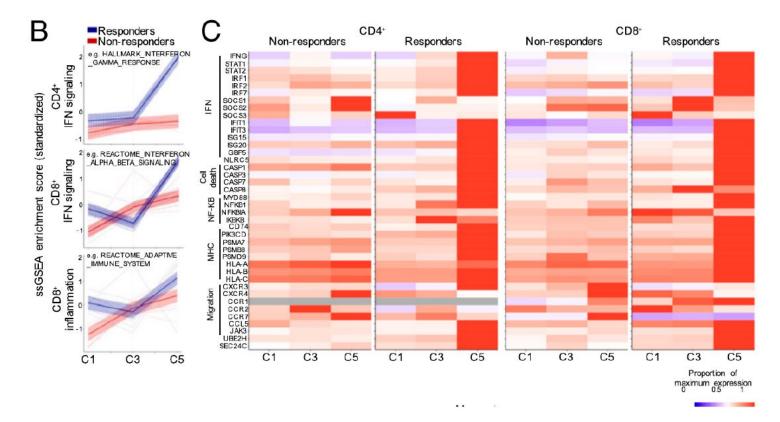


A total number of 70781 cells from 13 patients (7 responders and 6 non-responders) were profiled.

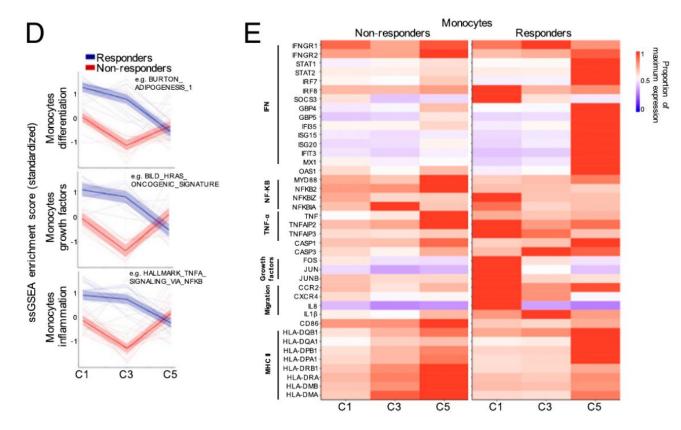
Single-sample gene-set enrichment analysis was performed to identify pathway differences before therapy, during chemotherapy, and during the early combo of chemotherapy and immunotherapy using a *random effects linear model*.



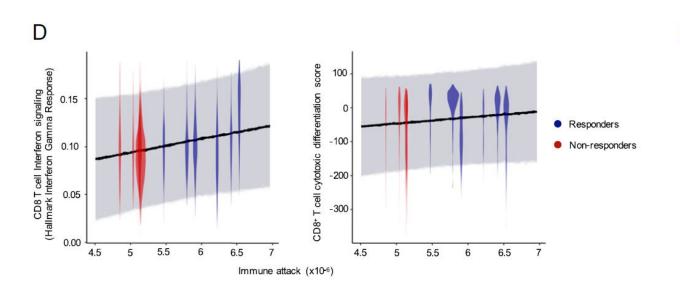
Responders show changes in T-cell signalling during treatment

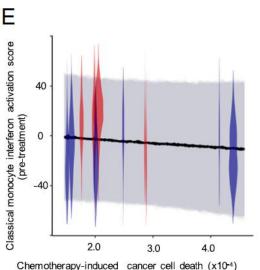


Responders show changes in monocyte signalling during treatment



Associations between omics data and inferred model parameter





- On the biological side, the results suggest that peripheral blood phenotypes can be used as biomarker of patient responsiveness to therapy. The idea seems to be confirmed the findings by Wu et al., <u>Peripheral T cell expansion predicts tumour infiltration and clinical response</u>, Nature 2020.
- On the modelling side, the study integrates machine learning, omics data analysis, mathematical modelling techniques to link macroscopic findings, for instance antigen and RECIST scores, with cellular findings, including scRNAseq and flow cytometry. This study exemplifies what we call multiscale modelling of drug mechanism and safety.
- We do not know why some patients respond to anti-PD-1 or anti-PDL1 therapies better than other patients based on findings reported in both papers. Nevertheless, both studies suggest that immune cells in peripheral blood may be used as biomarkers in certain settings.

Bonus: Mathematical modelling of epidemiology

The SIR (S=susceptible, I=infectious, R=removed) model modelling epidemiology (without viral dynamics, N = S + I + R).

$$\frac{dS}{dt} = -\frac{\beta IS}{N},\tag{3}$$

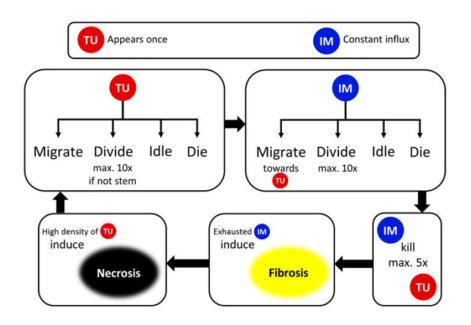
$$\frac{dI}{dt} = \frac{\beta IS}{N} - \gamma I,\tag{4}$$

$$\frac{dR}{dt} = \gamma I \tag{5}$$

Agent-based modelling of cancer immunotherapy for colorectal cancer without high TMB

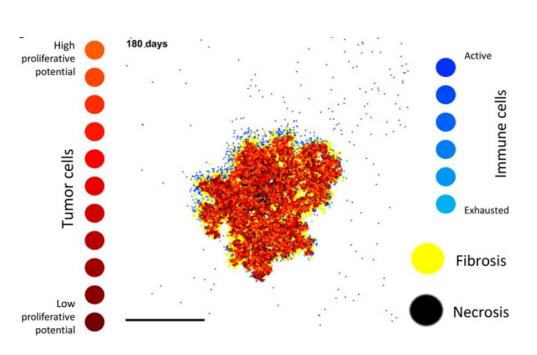
Table 1.	Assumptions	for the model a	nd references for	or each assumption
----------	-------------	-----------------	-------------------	--------------------

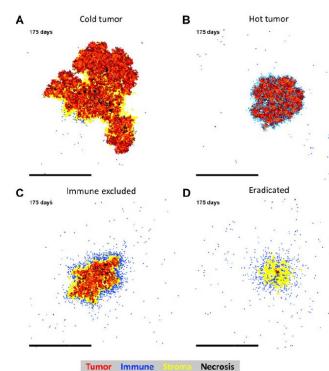
Assumption	Ref.
All cells can migrate, proliferate, and die.	Trivial
Tumor cells are composed of stem cells and non-stem cells. Stem cells can divide symmetrically with a fixed probability.	(14)
Stem cells can proliferate indefinitely, all other cells die after a fixed number of proliferation cycles.	(14)
All cells can spontaneously enter apoptosis.	Own data
Tumor cells can spontaneously enter necrosis.	Own data
Tumor cells that are far from the outer margin have a higher probability of entering necrosis than those cells closer to the margin.	Own data
Immune cells are generated through a steady influx into the domain and proliferation within the domain.	(32), own data
Immune cells move by a "random walk" but have a tendency to migrate toward tumor cells.	(31-33), own data
Immune cells can kill adjacent tumor cells whenever they are close enough. Killing, like other events in the model, occurs stochastically with a fixed probability and is not regulated by other factors.	(23)
Immune cells can kill five times before they become exhausted, which means that they cannot kill anymore but can still proliferate.	(23, 34)
Activated immune cells give rise to stroma through a desmoplastic reaction (stroma reaction). For simplicity, this behavior is restricted to immune cells that have successfully killed five times in the model.	(35, 36)
By default, cells cannot migrate through stroma, but stromal permeability can be increased optionally.	(37)



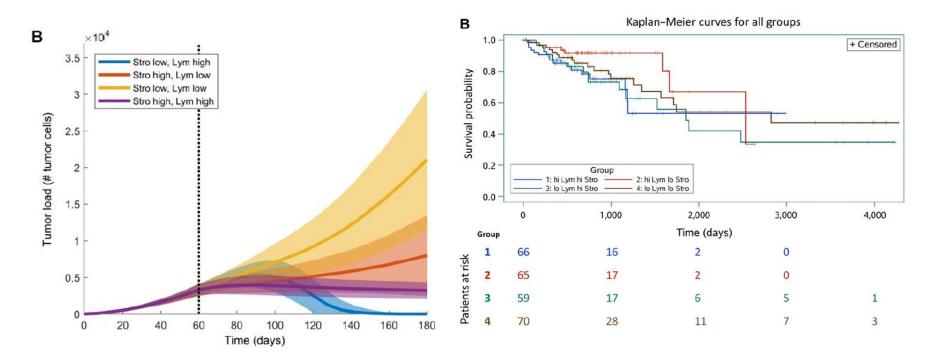
UNI

Agent-based modelling of cancer immunotherapy for colorectal cancer without high TMB





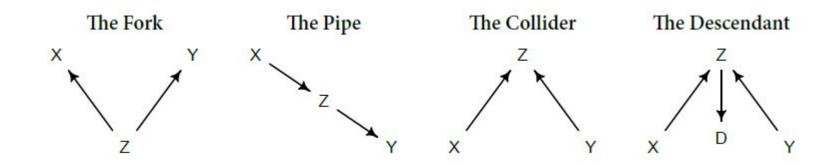
Counterfactual and statistical analysis allow us learn from the models confirm the learnings



Bradford Hill Criteria for causation

- 1. Strength (effect size)
- 2. **Consistency** (reproducibility)
- 3. Specificity
- 4. Temporality
- **5. Biological gradient** (dose-response relationship)
- 6. Plausibility
- 7. Coherence
- 8. Experiment
- **9. Analogy** (similarity)
- 10. Reversibility (proposed by others)

Statistical causal inference with Directed Acyclic Graphs (DAGs)



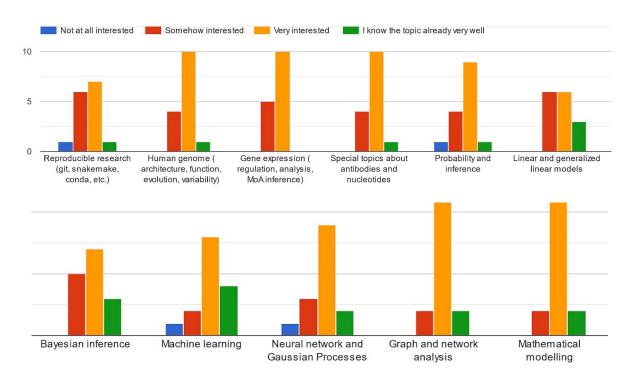
Reading: chapter 1-6 of Statistical Rethinking (2nd Edition)

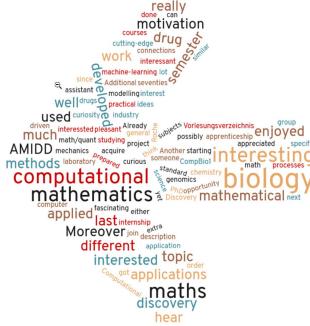
Conclusions

- Understanding how drugs work and how to develop better drugs requires causal reasoning, for which there are no scientific consensus yet.
- I personally argue for integrated mechanistic, computational, and statistical modelling across scales as a approach towards causal reasoning.
- Mathematical and computational biology is indispensable to address this grand challenge.

Ways to learn more about mathematical & computational biology in drug discovery

- People around you, both with the same and different backgrounds;
- Reading, including Journal <u>Nature Reviews Drug Discovery</u>, blogs <u>In</u>
 <u>the Pipeline</u>, <u>CureFFI</u>, and newsletter <u>This Week in Mathematical</u>
 <u>Oncology</u>;
- Online courses: Statistical Rethinking by Richard McElreath, with freely available lecture videos on YouTube, and Information Theory, Inference, and Learning Algorithms by David MacKay, with freely available lecture videos.





References

- 1. Cristescu, Razvan, Robin Mogg, Mark Ayers, Andrew Albright, Erin Murphy, Jennifer Yearley, Xinwei Sher, et al. 2018. "Pan-Tumor Genomic Biomarkers for PD-1 Checkpoint Blockade—Based Immunotherapy." *Science* 362 (6411): eaar3593. https://doi.org/10.1126/science.aar3593.
- 2. Litchfield, Kevin, James L. Reading, Clare Puttick, Krupa Thakkar, Chris Abbosh, Robert Bentham, Thomas B. K. Watkins, et al. 2021. "Meta-Analysis of Tumor- and T Cell-Intrinsic Mechanisms of Sensitization to Checkpoint Inhibition." Cell 184 (3): 596-614.e14. https://doi.org/10.1016/j.cell.2021.01.002.
- 3. Krishnamoorthy, Vijay, Danny J. N. Wong, Matt Wilson, Karthik Raghunathan, Tetsu Ohnuma, Duncan McLean, S. Ramani Moonesinghe, and Steve K. Harris. 2020. "Causal Inference in Perioperative Medicine Observational Research: Part 1, a Graphical Introduction." British Journal of Anaesthesia 125 (3): 393–97. https://doi.org/10.1016/j.bja.2020.03.031.
- 4. Krishnamoorthy, Vijay, Duncan McLean, Tetsu Ohnuma, Steve K. Harris, Danny J. N. Wong, Matt Wilson, Ramani Moonesinghe, and Karthik Raghunathan. 2020. "Causal Inference in Perioperative Medicine Observational Research: Part 2, Advanced Methods." British Journal of Anaesthesia 125 (3): 398–405. https://doi.org/10.1016/j.bja.2020.03.032.
- 5. Wright, Sewall. 1934. "The Method of Path Coefficients." The Annals of Mathematical Statistics 5 (3): 161–215. https://doi.org/10.1214/aoms/1177732676.
- 6. Emdin, Connor A., Amit V. Khera, and Sekar Kathiresan. 2017. "Mendelian Randomization." JAMA 318 (19): 1925–26. https://doi.org/10.1001/jama.2017.17219.
- 7. Lawlor, Debbie A., Roger M. Harbord, Jonathan A. C. Sterne, Nic Timpson, and George Davey Smith. 2008. "Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology." Statistics in Medicine 27 (8): 1133–63. https://doi.org/10.1002/sim.3034.
- 8. Lv, Bo-Min, Yuan Quan, and Hong-Yu Zhang. 2021. "Causal Inference in Microbiome Medicine: Principles and Applications." Trends in Microbiology, April. https://doi.org/10.1016/j.tim.2021.03.015.
- 9. Smith, George Davey, and Shah Ebrahim. 2008. Mendelian Randomization: Genetic Variants as Instruments for Strengthening Causal Inference in Observational Studies. Biosocial Surveys. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK62433/.
- 10. Williamson, Jon. 2019. "Establishing Causal Claims in Medicine." International Studies in the Philosophy of Science 32 (1): 33–61. https://doi.org/10.1080/02698595.2019.1630927.

References (continued)

- 11. Vasudevan, Rama K., Maxim Ziatdinov, Lukas Vlcek, and Sergei V. Kalinin. 2021. "Off-the-Shelf Deep Learning Is Not Enough, and Requires Parsimony, Bayesianity, and Causality." *Npj Computational Materials* 7 (1): 1–6. https://doi.org/10.1038/s41524-020-00487-0.
- 12. Chetty, R. K., J. S. Ozer, A. Lanevschi, I. Schuppe-Koistinen, D. McHale, J. S. Pears, J. Vonderscher, F. D. Sistare, and F. Dieterle. 2010. "A Systematic Approach to Preclinical and Clinical Safety Biomarker Qualification Incorporating Bradford Hill's Principles of Causality Association." *Clinical Pharmacology & Therapeutics* 88 (2): 260–62. https://doi.org/10.1038/clpt.2010.77.
- 13. Havel, Jonathan J., Diego Chowell, and Timothy A. Chan. 2019. "The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy." Nature Reviews Cancer 19 (3): 133–50. https://doi.org/10.1038/s41568-019-0116-x.
- 14. Litchfield, Kevin, James L. Reading, Clare Puttick, Krupa Thakkar, Chris Abbosh, Robert Bentham, Thomas B. K. Watkins, et al. 2021. "Meta-Analysis of Tumor- and T Cell-Intrinsic Mechanisms of Sensitization to Checkpoint Inhibition." Cell 184 (3): 596-614.e14. https://doi.org/10.1016/j.cell.2021.01.002.
- 15. Trusheim, Mark R., Ernst R. Berndt, and Frank L. Douglas. 2007. "Stratified Medicine: Strategic and Economic Implications of Combining Drugs and Clinical Biomarkers." Nature Reviews Drug Discovery 6 (4): 287–93. https://doi.org/10.1038/nrd2251.
- 16. Trusheim, Mark R., Ernst R. Berndt, and Frank L. Douglas. 2007. "Stratified Medicine: Strategic and Economic Implications of Combining Drugs and Clinical Biomarkers." *Nature Reviews Drug Discovery* 6 (4): 287–93. https://doi.org/10.1038/nrd2251.
- 17. Bender, Andreas, and Isidro Cortés-Ciriano. 2020. "Artificial Intelligence in Drug Discovery: What Is Realistic, What Are Illusions? Part 1: Ways to Make an Impact, and Why We Are Not There Yet." *Drug Discovery Today*, December. https://doi.org/10.1016/j.drudis.2020.12.009.
- 18. Bender, Andreas, and Isidro Cortes-Ciriano. 2021. "Artificial Intelligence in Drug Discovery: What Is Realistic, What Are Illusions? Part 2: A Discussion of Chemical and Biological Data." *Drug Discovery Today* 26 (4): 1040–52. https://doi.org/10.1016/j.drudis.2020.11.037.
- 19. Robers, M.B., R. Friedman-Ohana, K.V.M. Huber, L. Kilpatrick, J.D. Vasta, B.-T. Berger, C. Chaudhry, et al. 2020. "Quantifying Target Occupancy of Small Molecules Within Living Cells." Annual Review of Biochemistry 89 (1): 557–81. https://doi.org/10.1146/annurev-biochem-011420-092302.
- 20. Simon, Gabriel M., Micah J. Niphakis, and Benjamin F. Cravatt. 2013. "Determining Target Engagement in Living Systems." *Nature Chemical Biology* 9 (4): 200–205. https://doi.org/10.1038/nchembio.1211.
- 21. Grimwood, Sarah, and Paul R. Hartig. 2009. "Target Site Occupancy: Emerging Generalizations from Clinical and Preclinical Studies." Pharmacology & Therapeutics 122 (3): 281–301. https://doi.org/10.1016/j.pharmthera.2009.03.002

References (continued)

- Woude, Lieke L. van der, Mark A. J. Gorris, Altuna Halilovic, Carl G. Figdor, and I. Jolanda M. de Vries. 2017. "Migrating into the Tumor: A Roadmap for T Cells." Trends in Cancer 3 (11): 797–808. https://doi.org/10.1016/j.trecan.2017.09.006.
- 23. Griffiths, Jason I., Pierre Wallet, Lance T. Pflieger, David Stenehjem, Xuan Liu, Patrick A. Cosgrove, Neena A. Leggett, et al. 2020. "Circulating Immune Cell Phenotype Dynamics Reflect the Strength of Tumor–Immune Cell Interactions in Patients during Immunotherapy." Proceedings of the National Academy of Sciences, June. https://doi.org/10.1073/pnas.1918937117.
- 24. Lotka-Volterra equation visualization: https://upload.wikimedia.org/wikipedia/commons/d/d7/Lotka Volterra equation Maple plot.png, adapted due to possible mislabelling
- 25. MacKay, David J. C. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge, UK; New York: Cambridge University Press. http://www.inference.org.uk/mackay/itila/book.html.
- 26. McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 2nd ed. CRC Texts in Statistical Science. Boca Raton: Taylor and Francis, CRC Press.
- 27. Macnamara, Cicely K. 2021. "Biomechanical Modelling of Cancer: Agent-Based Force-Based Models of Solid Tumours within the Context of the Tumour Microenvironment." Computational and Systems Oncology 1 (2): e1018. https://doi.org/10.1002/cso2.1018.
- 28. Gündner, Anna Lisa, Gonzalo Duran-Pacheco, Silke Zimmermann, Iris Ruf, Tim Moors, Karlheinz Baumann, Ravi Jagasia, Wilma D. J. van de Berg, and Thomas Kremer. 2019. "Path Mediation Analysis Reveals GBA Impacts Lewy Body Disease Status by Increasing α-Synuclein Levels." Neurobiology of Disease 121 (January): 205–13. https://doi.org/10.1016/j.nbd.2018.09.015.
- 29. Wright, Sewall. 1920. "The Relative Importance of Heredity and Environment in Determining the Piebald Pattern of Guinea-Pigs." Proceedings of the National Academy of Sciences 6 (6): 320–32. https://doi.org/10.1073/pnas.6.6.320.
- 30. Pearl, Judea. 2009. "Causal Inference in Statistics: An Overview." Statistics Surveys 3: 96–146. https://doi.org/10.1214/09-SS057.

References (continued)

- 31. Krishnamoorthy, Vijay, Danny J. N. Wong, Matt Wilson, Karthik Raghunathan, Tetsu Ohnuma, Duncan McLean, S. Ramani Moonesinghe, and Steve K. Harris. 2020. "Causal Inference in Perioperative Medicine Observational Research: Part 1. a Graphical Introduction." British Journal of Anaesthesia 125 (3): 393–97. https://doi.org/10.1016/j.bia.2020.03.031.
- 32. Krishnamoorthy, Vijay, Duncan McLean, Tetsu Ohnuma, Steve K. Harris, Danny J. N. Wong, Matt Wilson, Ramani Moonesinghe, and Karthik Raghunathan. 2020. "Causal Inference in Perioperative Medicine Observational Research: Part 2, Advanced Methods." British Journal of Anaesthesia 125 (3): 398–405. https://doi.org/10.1016/j.bja.2020.03.032.
- 33. Senn, Stephen. 2018. "Statistical Pitfalls of Personalized Medicine." Nature 563 (7733): 619. https://doi.org/10.1038/d41586-018-07535-2.
- 34. Xu, Chao, Patanjali Ravva, Jun Steve Dang, Johann Laurent, Céline Adessi, Christine McIntyre, Georgina Meneses-Lorente, and François Mercier. 2018. "A Continuous-Time Multistate Markov Model to Describe the Occurrence and Severity of Diarrhea Events in Metastatic Breast Cancer Patients Treated with Lumretuzumab in Combination with Pertuzumab and Paclitaxel." Cancer Chemotherapy and Pharmacology 82 (3): 395–406. https://doi.org/10.1007/s00280-018-3621-9.
- 35. Kather, Jakob Nikolas, Jan Poleszczuk, Meggy Suarez-Carmona, Johannes Krisam, Pornpimol Charoentong, Nektarios A. Valous, Cleo-Aron Weis, et al. 2017. "In Silico Modeling of Immunotherapy and Stroma-Targeting Therapies in Human Colorectal Cancer." Cancer Research 77 (22): 6442–52. https://doi.org/10.1158/0008-5472.CAN-17-2006.