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Administrivia

e Please fill the pre-course survey.

e (Grades are given by participation (50%) and
offline activities (50%).

e | hope the course is a seminar more than a
lecture: share your question and let’s discuss!

e Any more questions?


https://forms.gle/xQwbAa4GFtnrqzuP7

A linear view of drug discovery

Target identification & assessment
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Discussion: conclusions from the figures?
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Failure analysis: 2013-2015
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The Eroom’s Law

Number ot NMEs per billion US$ R&D spending
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R&D productivity of leading pharma
companies (2001-2020).
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Investment and collaboration are necessary
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Number of NMEs
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Learnings from numbers

1.

Cost of target assessment and identification is
not explicit.

. Clinical studies are expensive, but picking a

wrong target is twice as expensive.

It is probably wise to infer efficacy and safety
profiles of drugs as accurately as possible.



Questions that we will address in this course

V: For which patients will the drug
work and how does it work, really?

Target identification & assessment
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IIIWhat kind of drug should we develop?
IV. What efficacy and safety profiles can we expect?

. What makes a good drug target?
ll. What can we do if there are no good targets? 0



Drug Discovery

Biology

Math./Comp.

Target identification,
assessment, and
phenotypic screening

Genomics
Genetics

Gene expression
Chemical biology

e Statistical modelling
e Machine learning
e Mechanistic modelling

Drug modality and
preclinical modelling

RNA, antisense
oligonucleotides, and
antibodies

Gene expression
Network analysis

e Monte-Carlo methods
e Generative models
e (Clustering

Biomarker, clinical
modelling and reverse
translation

Population genetics
Gene expression
Pharmacokinetics and
pharmacodynamics

e Causal analysis
e Machine learning
e Agent-based modelling
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Common modelling approaches

e Statistical modelling
e Causal inference
e Mechanistic modelling
o ODEs (compartment models)
o Agent-based models (particle models)
o Networks (graphical and boolean models)
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Learn more about reproducible research

e The Missing Semester of Computer Science

e Software Carpentry (Unix Shell, Git, Python & R)
e Genomics Workshop of Data Carpentry

e (lean Code by Robert C. Martin

e Open-source tutorials of respective tools, such as
sphinx, Snakemake, conda, or docker. Videos or
podcasts work just as fine.

13


https://missing.csail.mit.edu/
https://software-carpentry.org/lessons/
https://datacarpentry.org/lessons/#genomics-workshop
https://www.oreilly.com/library/view/clean-code-a/9780136083238/
https://sphinx-tutorial.readthedocs.io/start/
https://snakemake.readthedocs.io/en/stable/tutorial/tutorial.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://docker-curriculum.com/

Take-home messages

e Drug discovery identifies agents modulating human
disease biology as a hierarchical complex adaptive
system.

e Mathematical and computational biology studies
interactions within the system and help to build
predictive models.

e Reproducible computational research help ourselves
and others build a sustainable working environment.
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Offline activities

1. Fill the pre-course survey.

2. Read ‘How a pioneering diabetes drug offers
hope for preventing autoimmune disorders’ by
Elie Dolgin (Nature, 2023). Think about the
qguestion: what roles/parties of interest (pharma
company, patients, etc.) are involved in the
business of drug discovery and development?
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https://forms.gle/jJZe8pSAiBneaYcF8
https://www.nature.com/articles/d41586-023-00400-x
https://www.nature.com/articles/d41586-023-00400-x

10.

1.
12.
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Complex Adaptive System

1. Parallel information channels
2. Conditional actions (if/then)

3. Modularity
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Fig.1| Genetic variants associated with severe COVID-19. a, Manhattan plot
ofagenome-wide associationstudy of 3,199 hospitalized patients with

COVID-19and 897,488 population controls. The dashed line indicates genome-

wide significance (P=5x107%). Data were modified from the COVID-19 Host
Genetics Initiative? (https://www.covidl9hg.org/). b, Linkage disequilibrium
between theindexrisk variant (rs35044562) and genetic variantsin the1000
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Complex Adaptive System

4. Adaptation and evolution

Minor allele frequency -~
at rs35044562, a risk -
allele for SARS-Cov-2 &
that we inherited from |
Neanderthals. \ !
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https://www.ncbi.nlm.nih.gov/snp/rs35044562

Chroma: a generative model for proteins and
protein complexes learning from evolution
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Propositions about the course

1.

Human (disease) biology is a hierarchical complex
adaptive system.

Drug discovery aims at identifying new agents that
change the system’s behaviour with acceptable benefit

and risk profiles.

We use mathematical and computational biology to
study the system in order to predict and study the effect

of modulation.
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A multiscale-modelling view of drug discovery

Forward translation
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Drug Discovery Today
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Complementary views of biological systems

Metabolism

Energy

Information machine
Evolution
Computing machine
Network
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Skipped in the class

An example of complementary views

We want to work on hepatocarcinoma (liver cancer) and have the following
information about a potential target X:

X is a receptor expressing on the surface of most cell types;

Upon binding ligands, X activates innate immune response;

Gene sequence of X is conserved in primates but not in rodents;
Protein X interacts with protein Y, which is essential, namely Y knockout
causes lethal embryos;

e Asian population has a unique genetic variant in the non-coding region
of X:

Discussion: what are the consequences of having these information?
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Right target

* Strong link between target and disease
e Differentiated efficacy
* Available and predictive biomarkers

Exercise

Right tissue

* Adequate bioavailability and tissue exposure

* Definition of PD biomarkers

e Clear understanding of preclinical and clinical PK/PD
¢ Understanding of drug—drug interactions

Right safety

e Differentiated and clear safety margins

* Understanding of secondary pharmacology risk

* Understanding of reactive metabolites, genotoxicity and drug—drug interactions
¢ Understanding of target liability

Right patient

Wh e re d O yo u th i n k * |dentification of the most responsive patient population

* Definition of risk-benefit for a given population

m ath e m ati Ca I a n d Right commercial potential

e Differentiated value proposition versus future standard of care

CO m p u tati O n a I b i O I Ogy * Focus on market access, payer and provider

* Personalized health-care strategy, including diagnostics and biomarkers

will make a difference? .

Nature Reviews | Drug Discovery



Nine steps toward reproducible research

Version control (git)

Don’t Repeat Yourself (DRY)

Keep It Simple, Stuipid (KISS)

Automatic testing (pytest/Hypothesis, testthat, GitHub Actions)
Documentation (sphinx, pkdown)

Dependency Management (conda, packrat)

Containerization (Docker/Singularity, Bioconda/conda-forge)
Pipelining (Snakemake, NextFlow, drake)

Self-reporting analysis (Jupyter Notebook, Rmarkdown)

© 00 NSO OWDN-=
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Arguments for reproducible research

e Egoism and altruism
e You will have to do it again

e Sustainable long-term work

29



S

=2

Tao, Path, or Way

Shu, Technique, or Art
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This work is published at MCBDD.ch under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Contact the author
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