

What are good drug targets and how to find them?

Mathematical and Computational Biology in Drug Discovery (MCBDD), Module I

Dr. Jitao David Zhang, March 2024

Outline

- Always write down numbers and possibilities for inference.
- We review biological foundations of target identification.
- Genetics doubles the success rate of target identification.

Exercise of *inference* (I)

I have three pills and two hamsters. The pills are optically identical. The two hamsters are optically identical, too, while one carries a genetic mutation that affects its response to the pills.

- 1. Pill A makes both hamsters sleep.
- 2. Pill B makes neither animal sleep.
- 3. Pill C makes one animal sleep but not the other.

Now I pick a pill, feed it to one hamster, and the hamster falls asleep. What's the probability that the pill makes the other animal sleep, too?

Exercise of *inference* (II)

The company *Fränzi and Friends* developed a new quick test at home for SARS-Cov-2, which is pending regulatory agency's review. The test has been shown to have a sensitivity of 99% and a specificity of 99%.

Suppose that Fred uses the test by *Fränzi and Friends* and the test was positive. Assume that 5% of the population is in fact infected. Was is your guess about the probability that Fred is indeed infected?

(Sensitivity is predicted true positive divided by all true positive; specificity is predicted true negative divided by all true negative).

Gene structure and gene expression

ng38 chrX 15,560,104-15,603,676+ [len	43.6kb] 15603541		<<<>>>> (+10x) (+5x) (+2x) (-2x)	-5x -10x settings export svg F 의
hg38 chrX 1556010415603676+ [len 43.573 p22.33 p2p22.3 p22.2 p2	kb] 2 1.1 p 11.4 p11.3 p11.p11.22 p11.2	011. q11. q1q12 q13.1 q1q13 q21.1	q2 <mark>q21.31</mark> q2 <mark>q21.33</mark> q22.1 q q22.3 q23 q24	q25 q26£ q26.3 q27,q2 q27.3 q28
15560000 Entrez gene hg38 ACE2	15570000	15580000	15590000	15600000
gencode v22 transcript 519.6 411.1 548.4 473851.1			ENST0000048475	56.1 ENST0000421585.1
► FANTOM5 CAGE phase 1and2 human hg38 FANTOM5 CAGE phase 1and2 human hg38	(q20 TPM) (q20 TPM, min 1TPM CTSS) [rev:0.54	12 fwd:0.015] (mean) q20_tpm		In 4 × 8
18-11-2-1-4-14-14-1-2-1-21-2-2-2-2-2-2	· ··· ·· ·· ·· ·· ·····	• • • • • • • • • • • • • • • • • • •	•*	· · · · · · · · · · · · · · · · · · ·
▼FANTOM5 hg38 fair liftover CAGE peaks, rob	oust DPI clusters, combined phase1+2	2		
FANTOM5 CAGE phase 1and2 human hg38	collated into liftover CAGE cluster peak collated into liftover CAGE cluster peak	ks (q20 TPM, min 1TPM CTSS) [rev:0.3	30 fwd:0] (mean) q20_tpm	4 4 · ●哈☆※ 4 4

ACE2 viewed in FANTOM5/ZENBU

A mRNA of ACE2

protein coding

- RefSeq record <u>NM_001371415.1</u>
- EnsEMBL record
 ENST0000252519.8
- Red and blue boxes: start codon (ATG) and stop codon (TAG). The region between them is called the *coding sequence* (CDS).

1 agtotaggga aagtoattoa gtggatgtga tottggotoa caggggac a tg.caageto 61 ttectggete etteteagee ttgttgetgt aactgetget cagtecacea utgaggaaca 121 ggccaagaca tttttggaca agtttaacca cgaagccgaa gacctgttct atcaaagttc 181 acttgettet tggaattata acaccaatat tactgaagag aatgteeaaa acatgaataa 241 tgctggggac aaatggtctg cctttttaaa ggaacagtcc acacttgecc aaatgtatcc 301 actacaagaa attcagaatc tcacagtcaa gettcagetg caggetette agcaaaatgg 361 gtcttcagtg ctctcagaag acaagagcaa acggttgaac acaattctaa atacaatgag 421 caccatctac agtactggaa aagtttgtaa cccagataat ccacaagaat gcttattact 481 tgaaccaggt ttgaatgaaa taatggcaaa cagtttagac tacaatgaga ggctctgggc 541 ttqqqaaaqc tqqaqatctg aggtcggcaa gcagctgagg ccattatatg aagagtatgt 601 ggtcttgaaa aatgagatgg caagagcaaa tcattatgag gactatgggg attattggag 661 aggagactat gaagtaaatg gggtagatgg ctatgactac agccgcggcc agttgattga 721 aqatqtqqaa catacctttg aagagattaa accattatat gaacatette atgectatgt 781 gagggcaaag ttgatgaatg cctatcette etatateagt ccaattggat geeteeetge 841 tcatttgett ggtgatatgt ggggtagatt ttggacaaat ctgtactett tgacagttee 901 ctttggacag aaaccaaaca tagatgttac tgatgcaatg gtggaccagg cctgggatgc 961 acagagaata ttcaaggagg ccgagaagtt ctttgtatct gttggtcttc ctaatatgac 1021 tcaaggattc tgggaaaatt ccatgctaac ggacccagga aatgttcaga aagcagtctg 1081 ccatcccaca gcttgggacc tggggaaggg cgacttcagg atccttatgt gcacaaaggt 1141 gacaatggac gactteetga cageteatea tgagatgggg catateeagt atgatatgge 1201 atatgctgca caaccttttc tgctaagaaa tggagctaat gaaggattcc atgaagctgt 1261 tggggaaatc atgtcacttt ctgcagccac acctaagcat ttaaaatcca ttggtcttct 1321 gtcacccgat tttcaagaag acaatgaaac agaaataaac ttcctgctca aacaagcact 1381 cacgattgtt gggactctgc catttactta catgttagag aagtggaggt ggatggtctt 1441 taaaggggaa attcccaaag accagtggat gaaaaagtgg tgggagatga agcgagagat 1501 agttggggtg gtggaacctg tgccccatga tgaaacatac tgtgaccccg catctctgtt 1561 ccatgtttct aatgattact cattcattcg atattacaca aggaccettt accaattcca 1621 gtttcaagaa gcactttgtc aagcagctaa acatgaaggc cctctgcaca aatgtgacat 1681 ctcaaactct acagaagctg gacagaaact gttcaatatg ctgaggcttg gaaaatcaga 1741 accordgnace ctageattgg aaaatgttgt aggageaaag aacatgaatg taaggeeact 1801 gotcaactac tttgagcoot tatttacotg gotgaaagac cagaacaaga attotttgt 1861 gggatggagt accgactgga gtccatatgc agaccaaagc atcaaagtga ggataagcct 1921 aaaatcagct cttggagata aagcatatga atggaacgac aatgaaatgt acctgttccg 1981 atcatctgtt gcatatgcta tgaggcagta ctttttaaaa gtaaaaaatc agatgattct 2041 ttttggggag gaggatgtgc gagtggctaa tttgaaacca agaatctcct ttaatttctt 2101 tgtcactgca cctaaaaatg tgtctgatat cattcctaga actgaagttg aaaaggccat 2161 caggatgtcc cggagccgta tcaatgatgc tttccgtctg aatgacaaca gcctagagtt 2221 tetggggata cagecaacac ttggacetee taaccageee cetgttteea tatggetgat 2281 tgtttttgga gttgtgatgg gagtgatagt ggttggcatt gtcatectga tettcactgg 2341 gatcagagat cggaagaaga aaaataaagc aagaagtgga gaaaatcctt atgcctccat 2401 cgatettagc aaaggagaaa ataatccagg attccaaaac actgatgatg ttcagacctc 2461 ctt tag aa aatctatgtt tttcctcttg aggtgatttt gttgtatgta aatgttaatt 2521 tcatggtata gaaaatataa gatgataaag atatcattaa atgtcaaaac tatgactctg 2581 ttcagaaaaa aaattgtcca aagacaacat ggccaaggag agagcatett cattgacatt 2641 getttcagta tttatttetg tetetggatt tgacttetgt tetgtttett aataaggatt 2701 ttgtattaga gtatattagg gaaagtgtgt atttggtctc acaggctgtt cagggataat 2761 ctaaatgtaa atgtctgttg aatttctgaa gttgaaaaca aggatatatc attggagcaa 2821 gtgttggatc ttgtatggaa tatggatgga tcacttgtaa ggacagtgcc tgggaactgg 2881 tgtagctgca aggattgaga atggcatgca ttagctcact ttcatttaat ccattgtcaa 2941 ggatgacatg ctttcttcac agtaactcag ttcaagtact atggtgattt gcctacagtg

O Person one			ł	AGACGCT		
Variant ID	Source	HGVS Consequence	VEP Annotation	<u>LoF</u> Curation	Clinical Significance + Flags	Allele Count
11-1019011-0-1	Ľ	C.14+220>A			Likely benign	1
17-7579831-C-T	E	c.74+8G>A	splice region		Likely benign	1
17-7579924-G-A	EG	c12C>T	• 5' UTR		Likely benign	7
17-7579932-G-C	E	c20C>G	• 5' UTR		Likely benign	2
17-7578142-C-A	EG	c.672+35G>T	intron		not provided	9
17-7577142-C-A	E	p.Gly266Ter	stop gained		Pathogenic	1
17-7578188-C-A	E	p.Glu221Ter	stop gained		Pathogenic	1
17-7578263-G-A	E	p.Arg196Ter	stop gained		Pathogenic	1
17-7576928-TAGGAA	E	c.920-14_920-3delTGC	splice region		Uncertain significance	2
17-7578171-C-A	EG	c.672+6G>T	splice region		Uncertain significance	2
17-7578171-C-T	E	c.672+6G>A	splice region		Uncertain significance	1
17-7579934-C-T	G	c22G>A	• 5' UTR		Uncertain significance	1
17-7565206-T-A	G	c.*51A>T †	• 3' UTR			1
17-7565222-C-T	G	c.*35G>A †	• 3' UTR			1

Cystic fibrosis 117.460 K 117,480 K 117,500 K 117.520 K 117,540 K 117.560 K 117,580 K 117.600 K 117.620 K 117.640 K 117.660 K 117.680 K nes. MANE Project (release v0.93) CFTR H NP 000483.3 111 NM 000492.4 nical, dbSNP b154 v2 1.111.111 1.1.1.1.1 11 11 11 1 11.1 A-seg exon coverage, aggregate (filtered), NCBI Homo sapiens Annotation Release 109 5180 5180 rs113993960 117.559.540 117.559.550 117,559,560 117.559.570 117.559.580 117,559,600 117.559.610 117,559,620 117,559,630 117,559,640 GACAAGAGTCAA AGAA e RefSNPs, dbSNP b154 v2 rs397508215 TTTT/TT rs121908745 ATCATC/ATC rs1225182993 T/C rs1301983423 GAATATAGATACAGAA/GAA rs906983070 C/T rs397508219 C/G/T rs1554384407 TCATCTTT/T rs121908776 ATATA/ATA rs768151081 C/T rs774433839 CC/C TCT/T rs1254047854 **T**/C rs1282142297 = T/C rs768243039 A/G rs879896183 CATCTTT/A/G rs1562898489 AGA/A rs1360070384 A/C/T rs397508227 C/T rs121908775 CA/rs1562898400 A/G rs1554384410 CATC/rs1562898472 = T/A rs747504631 = T/C rs1279717363 G/A rs368516826 = T/C T/G rs1466073638 T/G rs397508218 = G/C rs397508222 = T/A/C/G rs113993960 TCTT/T rs758745885 G/T rs1562898492 A/T rs77646904 G/A/T rs1554384440 📕 G/A 9... **T**/C rs1584798316 T/rs1562898413 = G/A rs869189980 rs1562898496 A/G rs140552874 C/G TCT/TCTCT rs397508225 A/G 782... **G**/T rs1554384382 T/C rs1562898497 A/G rs774945680 G/A rs121909001 rs1174624989 A/C rs1483458563 A/G TTT/rs1554384417 121909017 C/T rs397508216 📕 G/A rs762619288 C/A/T TTT/TT rs781680305 A/C rs757736710 C/T rs121908754 C/A rs77101217 C/T rs200626971 G/A/C rs397508221 A/G rs1800091 A/C/G rs1562898471 rs778175128 = T/C rs1562898510 = T/A TTT/T rs397508214 A/C/G rs1584798328 E C/T rs397508223 G/C/T rs753920616 T/C/G rs1048256995 rs397508226 A/G A/G rs1554384373 📕 G/C rs397508224 = T/C/G rs1554384431 A/G rs1800092 C/A/G rs1801178 A/G/T rs74571530 T/A/C/G rs1400451895 = T/C rs1562898465 📕 G/C rs752955846 = G/A

The CFTR gene (Chr 7), and rs113993960, the most common cause of CF

FACT SHEETS genome.gov

National Human Genome Research Institute

Cost per Raw Megabase of DNA Sequence

Life-threatening influenza infection in human IRF7

End of the first lecture on 08.03.24

Much of the genome is junk, some is regulatory

main components of the human genome

1. Gregory, T. R. Synergy between sequence and size in Large-scale genomics. Nat Rev Genet 6, 699–708 (2005).

2. Kellis, M. et al. Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences 111, 6131–6138 (2014).

Linkage Disequilibrium in human genome

Particular alleles (single gene copies) at neighbouring loci tend to be co-inherited. For tightly linked loci, this might lead to associations between alleles in the population. This property is known as linkage disequilibrium (LD).

Population genetics helps with disease mapping

Is FTO a good target for obesity?

FTO: fat mass and obesity-associated gene, which hosts <u>rs9930506</u> *IRX3*: Iroquois-class homeodomain protein IRX-3

Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

If at all, IRX3 is a more probable target

Recap of the biology we talked so far

ACE2 viewed in NCBI Genome Browser

Genetics helps to find drug targets

Impact of genetics on target identification: a factor of ~2 estimated by Nelson *et al.*

Disease ← Gene ← Drug

Nelson *et al.* inferred that genetic support offers an likelihood ratio ~2

Table 1 The relative value of genetic support for the probability that a target-indication pair progresses along the drug development pipeline, based on historical drug trial information

	<i>p</i> (progress/genetic support)/(progress/no genetic support)				
Progression	GWASdb and OMIM	GWASdb	OMIM		
Phase I to phase II	1.2 (1.1–1.3)	1.2 (1.1–1.3)	1.2 (1.1–1.3)		
Phase II to phase III	1.5 (1.3–1.7)	1.4 (1.2–1.7)	1.6 (1.3–1.9)		
Phase III to approval	1.1 (1.0–1.2)	1.0 (0.8–1.2)	1.1 (0.9–1.3)		
Phase I to phase III	1.8 (1.5–2.1)	1.8 (1.4–2.1)	1.9 (1.5–2.3)		
Phase I to approval	2.0 (1.6-2.4)	1.8 (1.3–2.3)	2.2 (1.6–2.8)		

Values give the ratio of the probability of a target-indication pair progressing given genetic support to the probability of progressing without genetic support; 95% confidence intervals are given in parentheses.

Follow-up study by King et al., 2019

Genes with *biologically understandable* genetic association are more likely to be good targets

Follow-up study Minikel et al. 2023

Follow-follow-up study Minikel et al. 2023

P(G): target-indication pairs with genetic support. Supported/Total: in the unit of target-indication pairs Accumulation of genetic data leads to more targets with genetic support, though only 5-10% target-indication pairs with genetic evidence are exploited. RS=relative success.

The probability of success for drug mechanisms with genetic support is estimated 2.6 times greater than those without

30 - 50%

0

Year: in which a target-indication pair got first support

103/412

19/63

17/72

30/128

37/149

124/455

1/6

4/27

30/104

72/270

88/275

37/100

60/232

28/79

26/82

21/94

22/86

97/341

11/28

41/121

48/171

......

3

2

RS

8/41

29/79

UNI BASEL

Gene count: number of genes associated with the trait that is similar to an indication.

Beta: effect size of an quantitative trait.

Odds ratio: effect size of a binary trait.

MAF: minor allele frequency

OTG: Open Targets Genetics. GWAS Catalog, Neale UKBB, and FinnGen are subsets of OTG. PICCOLO and Genebases are two databases annotated potential causal genes.

Much genetic support nowadays is found retrospectively

Trajanoska, K. et al. From target discovery to clinical drug development with human genetics. Nature 620, 737-745 (2023).

Discussion

What other evidences can we use to increase the likelihood that a gene is a good drug target?

Challenge #1: little experience for much of the genome

 \sim 3 \times 10⁹ DNA bases from maternal and paternal each

Challenge #2: Lack of reproducibility

	Model reproduced 1:1	Model adapted to internal needs (cell line, assays)	Literature data transferred to another indication	Not applicable
In-house data in line with published results	1 (7%)	12 (86%)	0	1 (7%)
Inconsistencies that led to project termination	11 (26%)	26 (60%)	2 (5%)	4 (9%)

Challenge #3: The Target Ladder

- 3. [Real-world test] What would happen if we inhibit the activity of the kinase domain in the *WKN3* gene in patients with Alzheimer's Disease?
- 2. [Intervention] What would happen to human cells or to a rat model if we inhibit the activity of the kinase domain in the *WKN3* gene?
- 1. [Association] What are the evolutionary conservation, sequence, expression profile, expression regulation patterns, ... of the *WKN3* gene?

Conclusions

- Genomics and genetics offer unprecedented opportunities and challenges for target identification and assessment;
- Target identification and assessment involves knowledge integration and experimental validation;
- A central task of mathematical and computational biology in drug discovery is to perform inference, i.e. using information to reduce uncertainty.

References

- Overington, John P., Bissan Al-Lazikani, and Andrew L. Hopkins. 2006. "How Many Drug Targets Are There?" Nature Reviews Drug Discovery 5 (12): 993–96. <u>https://doi.org/10.1038/nrd2199</u>.
- 2. Santos, Rita, Oleg Ursu, Anna Gaulton, A. Patrícia Bento, Ramesh S. Donadi, Cristian G. Bologa, Anneli Karlsson, et al. 2017. "A Comprehensive Map of Molecular Drug Targets." *Nature Reviews Drug Discovery* 16 (1): 19–34. <u>https://doi.org/10.1038/nrd.2016.230</u>.
- 3. Oprea, Tudor I., Cristian G. Bologa, Søren Brunak, Allen Campbell, Gregory N. Gan, Anna Gaulton, Shawn M. Gomez, et al. 2018. "Unexplored Therapeutic Opportunities in the Human Genome." Nature Reviews Drug Discovery 17 (February): 317–32. <u>https://doi.org/10.1038/nrd.2018.14</u>.
- 4. Finan, Chris, Anna Gaulton, Felix A. Kruger, R. Thomas Lumbers, Tina Shah, Jorgen Engmann, Luana Galver, et al. 2017. "The Druggable Genome and Support for Target Identification and Validation in Drug Development." Science Translational Medicine 9 (383): eaag1166. https://doi.org/10.1126/scitranslmed.aag1166.
- 5. Plenge, Robert M., Edward M. Scolnick, and David Altshuler. 2013. "Validating Therapeutic Targets through Human Genetics." Nature Reviews Drug Discovery 12 (8): 581–94. https://doi.org/10.1038/nrd4051.
- 6. Prinz, Florian, Thomas Schlange, and Khusru Asadullah. 2011. "Believe It or Not: How Much Can We Rely on Published Data on Potential Drug Targets?" Nature Reviews Drug Discovery 10 (9): 712–712. <u>https://doi.org/10.1038/nrd3439-c1</u>.
- Matsui, Masayuki, and David R. Corey. 2017. "Non-Coding RNAs as Drug Targets." Nature Reviews Drug Discovery 16 (3): 167–79. <u>https://doi.org/10.1038/nrd.2016.117</u>.
- 8. Setten, Ryan L., John J. Rossi, and Si-ping Han. 2019. "The Current State and Future Directions of RNAi-Based Therapeutics." Nature Reviews Drug Discovery 18 (6): 421–46. https://doi.org/10.1038/s41573-019-0017-4.
- 9. Warner, Katherine Deigan, Christine E. Hajdin, and Kevin M. Weeks. 2018. "Principles for Targeting RNA with Drug-like Small Molecules." Nature Reviews Drug Discovery 17 (8): 547–58. <u>https://doi.org/10.1038/nrd.2018.93</u>.
- Donovan, Katherine A., Fleur M. Ferguson, Jonathan W. Bushman, Nicholas A. Eleuteri, Debabrata Bhunia, SeongShick Ryu, Li Tan, et al. 2020.
 "Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development." Cell 183 (6): 1714-1731.e10. <u>https://doi.org/10.1016/j.cell.2020.10.038</u>.

References (continued)

- 11. Shih, Hsin-Pei, Xiaodan Zhang, and Alex M. Aronov. 2017. "Drug Discovery Effectiveness from the Standpoint of Therapeutic Mechanisms and Indications." *Nature Reviews Drug Discovery*, October. <u>https://doi.org/10.1038/nrd.2017.194</u>.
- 12. Nguyen, Phuong A., David A. Born, Aimee M. Deaton, Paul Nioi, and Lucas D. Ward. 2019. "Phenotypes Associated with Genes Encoding Drug Targets Are Predictive of Clinical Trial Side Effects." *Nature Communications* 10 (1): 1–11. <u>https://doi.org/10.1038/s41467-019-09407-3</u>.
- 13. Ding, Li, Matthew H. Bailey, Eduard Porta-Pardo, Vesteinn Thorsson, Antonio Colaprico, Denis Bertrand, David L. Gibbs, et al. 2018. "Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics." Cell 173 (2): 305-320.e10. https://doi.org/10.1016/j.cell.2018.03.033.
- 14. Hon, Chung-Chau, and Piero Carninci. 2020. "Expanded ENCODE Delivers Invaluable Genomic Encyclopedia." Nature 583 (7818): 685–86. https://doi.org/10.1038/d41586-020-02139-1.
- 15. Moore, Jill E., Michael J. Purcaro, Henry E. Pratt, Charles B. Epstein, Noam Shoresh, Jessika Adrian, Trupti Kawli, et al. 2020. "Expanded Encyclopaedias of DNA Elements in the Human and Mouse Genomes." Nature 583 (7818): 699–710. <u>https://doi.org/10.1038/s41586-020-2493-4</u>.
- 16. Kim-Hellmuth, Sarah, François Aguet, Meritxell Oliva, Manuel Muñoz-Aguirre, Silva Kasela, Valentin Wucher, Stephane E. Castel, et al. 2020. "Cell Type–Specific Genetic Regulation of Gene Expression across Human Tissues." Science 369 (6509). <u>https://doi.org/10.1126/science.aaz8528</u>.
- 17. Uhlén, Mathias, Linn Fagerberg, Björn M. Hallström, Cecilia Lindskog, Per Oksvold, Adil Mardinoglu, Åsa Sivertsson, et al. 2015. "Tissue-Based Map of the Human Proteome." Science 347 (6220): 1260419. <u>https://doi.org/10.1126/science.1260419</u>.
- 18. Wang, Dongxue, Basak Eraslan, Thomas Wieland, Björn Hallström, Thomas Hopf, Daniel Paul Zolg, Jana Zecha, et al. 2019. "A Deep Proteome and Transcriptome Abundance Atlas of 29 Healthy Human Tissues." Molecular Systems Biology 15 (2): e8503. <u>https://doi.org/10.15252/msb.20188503</u>.
- Wang, Mingcong, Christina J. Herrmann, Milan Simonovic, Damian Szklarczyk, and Christian von Mering. 2015. "Version 4.0 of PaxDb: Protein Abundance Data, Integrated across Model Organisms, Tissues, and Cell-Lines." PROTEOMICS 15 (18): 3163–68. https://doi.org/10.1002/pmic.201400441.
- 20. Emmerich, Christoph H., Lorena Martinez Gamboa, Martine C. J. Hofmann, Marc Bonin-Andresen, Olga Arbach, Pascal Schendel, Björn Gerlach, et al. 2021. "Improving Target Assessment in Biomedical Research: The GOT-IT Recommendations." Nature Reviews Drug Discovery 20 (1): 64–81. https://doi.org/10.1038/s41573-020-0087-3.

References (continued)

- 21. Cao, Chen, and John Moult. 2014. "GWAS and Drug Targets." BMC Genomics 15 (4): S5. <u>https://doi.org/10.1186/1471-2164-15-S4-S5</u>.
- Patron, Jonas, Arnau Serra-Cayuela, Beomsoo Han, Carin Li, and David Scott Wishart. 2019. "Assessing the Performance of Genome-Wide Association Studies for Predicting Disease Risk." *PLOS ONE* 14 (12): e0220215. <u>https://doi.org/10.1371/journal.pone.0220215</u>.
- 23. <u>https://www.genome.gov/About-Genomics/Introduction-to-Genomics</u>
- 24. Jansen, An, and Kevin J. Verstrepen. 2011. "Nucleosome Positioning in Saccharomyces Cerevisiae." Microbiology and Molecular Biology Reviews 75 (2): 301–20. <u>https://doi.org/10.1128/MMBR.00046-10</u>.
- 25. https://gnomad.broadinstitute.org/gene/ENSG00000141510?dataset=gnomad_r2_1
- Collins, Ryan L., Harrison Brand, Konrad J. Karczewski, Xuefang Zhao, Jessica Alföldi, Laurent C. Francioli, Amit V. Khera, et al. 2020. "A Structural Variation Reference for Medical and Population Genetics." Nature 581 (7809): 444–51. <u>https://doi.org/10.1038/s41586-020-2287-8.</u>
- 27. NCBI Gene of CFTR: https://www.ncbi.nlm.nih.gov/gene/1080
- 28. Hughes, Maria F., Yvonne M. Lenighan, Catherine Godson, and Helen M. Roche. 2018. "Exploring Coronary Artery Disease GWAs Targets With Functional Links to Immunometabolism." Frontiers in Cardiovascular Medicine 5. <u>https://doi.org/10.3389/fcvm.2018.00148</u>.
- Consortium, The GTEx. 2020. "The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues." Science 369 (6509): 1318–30. <u>https://doi.org/10.1126/science.aaz1776</u>.
- 30. Baralle, Marco, and Francisco Ernesto Baralle. 2018. "The Splicing Code." Biosystems, Code Biology, 164 (February): 39–48. https://doi.org/10.1016/j.biosystems.2017.11.002.

References (continued)

- 32. https://en.wikipedia.org/wiki/Haemophilia_in_European_royalty
- Smemo, Scott, Juan J. Tena, Kyoung-Han Kim, Eric R. Gamazon, Noboru J. Sakabe, Carlos Gómez-Marín, Ivy Aneas, et al. 2014. "Obesity-Associated Variants within FTO Form Long-Range Functional Connections with IRX3." Nature 507 (7492): 371–75. <u>https://doi.org/10.1038/nature13138</u>.
- 34. Nelson, Matthew R., Hannah Tipney, Jeffery L. Painter, Judong Shen, Paola Nicoletti, Yufeng Shen, Aris Floratos, et al. 2015. "The Support of Human Genetic Evidence for Approved Drug Indications." Nature Genetics 47 (8): 856–60. <u>https://doi.org/10.1038/ng.3314</u>.
- 35. Ardlie, Kristin G., Leonid Kruglyak, and Mark Seielstad. 2002. "Patterns of Linkage Disequilibrium in the Human Genome." Nature Reviews Genetics 3 (4): 299–309. <u>https://doi.org/10.1038/nrg777</u>.
- 36. Brennan, Richard J. 2017. "Target Safety Assessment: Strategies and Resources." In Drug Safety Evaluation: Methods and Protocols, edited by Jean-Charles Gautier, 213–28. Methods in Molecular Biology. New York, NY: Springer. <u>https://doi.org/10.1007/978-1-4939-7172-5_12</u>.
- Lambert, Samuel A., Arttu Jolma, Laura F. Campitelli, Pratyush K. Das, Yimeng Yin, Mihai Albu, Xiaoting Chen, Jussi Taipale, Timothy R. Hughes, and Matthew T. Weirauch. "The Human Transcription Factors." Cell 172, no. 4 (February 8, 2018): 650–65. <u>https://doi.org/10.1016/j.cell.2018.01.029</u>.

Offline activity of Module I: <u>submission link</u> (submission deadline: March 29th, 2024)

Offline activity of Module I (Part 1)

<u>Task 1</u>: The company Fränzi and Friends developed a 2nd-generation quick test at home for SARS-Cov-2, which is pending regulatory agency's review. The test has been shown to have a sensitivity of 99.5% and a specificity of 99.5%. Suppose that Fred uses the test by Fränzi and Friends and the test was positive. Assume that 5% of the population is in fact infected. Was is your guess about the probability that Fred is indeed infected?

<u>Task 2</u>: Please share a piece of code that visualizes the probability that Fred is indeed infected as the dependent variable, with the infection prevalence (5% in the example above, which takes any real-number value between 0.001% to 50%) and the specificity (99% in the example above, which takes values 99%, 99.9%,99.99%, and 99.999%) as independent variables. For simplicity, we fix the sensitivity at 99%. Visualize the results if possible, and use integers to check and explain your results. Use any programming language that you prefer. Please put your code in GitHub or GitLab or other code-hosting service and paste the link below.

Task 3: What are your interpretations of the results?

Offline activity of Module I (Part 2)

- Cao and Moult (BMC Genomics, 2014) reported studied overlap between drug targets and GWAS hits.
- Use the data in the Table 1 of the paper (<u>cloned here</u>) to answer following the following two questions:
 - a. Assuming we know *nothing* about a gene (let's call it gene *WKN1*), what is the probability that the gene is a target for a disease listed here?
 - b. Assuming that we know nothing about another gene *WKN2* but that it is a GWAS hit for a disease, what is the probability that *WKN2* is a target for that disease?

Backup

An example of complementary views

We want to work on hepatocarcinoma (liver cancer) and have the following information about a potential target X:

- X is a receptor expressing on the surface of most cell types;
- Upon binding ligands, X activates innate immune response;
- Gene sequence of X is conserved in primates but *not* in rodents;
- Protein X interacts with protein Y, which is essential, namely Y knockout causes lethal embryos;
- Asian population has a unique genetic variant in the non-coding region of X;

Discussion: what are the consequences of having these information?

Questions from courses

- Why I recommended the GOT-IT paper? How can academia and industry work together towards good targets?
- Did sequencing cost always follow the Moore's law?
- What happens if there are ATGs (AUGs in RNA) in 5'-untranslated region?
 - In some cases, there are alternative start codons;
 - However, in most cases, the ATGs in 5'-untranslated region seem to be always ignored by the translational machinery. <u>A study</u> (Rogozin, Bioinformatics, 2001) suggested that those AUGs may ensure low basal expression and generate regulatory elements.
- Which target level (gene or protein) is more useful for the target identification? In the lecture, gene-level approach seems not so promising.
- Is blue eyeness a marker of Neanderthalian origin? *The story of OAC2*

Why autoimmune diseases are more prevalent in females, though one X chromosome is randomly inactivated?

- Sex hormone signaling plays an important role in immune functions, especially estrogens. The hormone signalling apparently explains a lot, but not all, sex differences in autoimmune diseases.
- Mutations of genes on the X-chromosome, as expected, cause many primary immunodeficiencies only in males, because they have only one copy of the X chromosome.
- One of the two X chromosomes in females indeed get inactivated during the embryo stage. However, about 15-20% genes regularly escape the inactivation, among others important genes involved in innate and adaptive immune response, including TLR7 and CD40L.
- There are a few other hypotheses besides X-inactivation escaping, including loss of mosaicism, reactivation, and haploinsufficiency.

Correlation between DNase I hypersensitive (DHS) sites helps linking genetic variants with genes

Transcription factors induce gene expression

TFs bind to candidate cis-regulatory elements (cCRE) to regulate gene expression

GOT-IT recommendations for target-disease linkage

AB1: target-disease linkage (human targets)

- 1. Is the target perturbation a cause or consequence of the human disease process?
- 2. Is the therapeutic relevance (such as human connection) of models used sufficiently high for decision-making?
- 3. Is the target expression pattern known (that is, within the anticipated patient population)?
- 4. Is the target manipulation process clinically relevant?
- 5. Is the read-out used to detect target-dependent processes disease-relevant?
- 6. Is the stimulus used to activate or influence target-dependent processes disease-relevant?
- 7. Are the biological consequences of an observed effect size known?

Public resources for target assessment

AB1: target-disease linkage (human targets)

- 1. Is the target perturbation a cause or consequence of the human disease process?
- 2. Is the therapeutic relevance (such as human connection) of models used sufficiently high for decision-making?
- 3. Is the target expression pattern known (that is, within the anticipated patient population)?
- 4. Is the target manipulation process clinically relevant?
- 5. Is the read-out used to detect target-dependent processes disease-relevant?
- 6. Is the stimulus used to activate or influence target-dependent processes disease-relevant?
- 7. Are the biological consequences of an observed effect size known?

- OpenTargets
- Online Mendelian

Inheritance in Man (OMIM)

- Scattered in diverse information sources such as <u>Wikipedia</u> and literature
- Health: <u>GTEx</u>, <u>The Human</u>
 <u>Protein Atlas</u>
- Disease: <u>Gene Expression</u> <u>Atlas</u>, scattered

Public resources for target safety assessment

AB2: target-related safety (human targets)

- 8. Is the target selective and not genetically linked to other diseases (or phenotypes or organ systems)?
- 9. Is there prior knowledge on safety of the target or reported evidence for the role of the target in a known pathway and/or physiological process that may be harmful if disrupted?
- 10. Are in vitro or pharmacologically relevant animal models available for safety testing?
- 11. Do models used for safety testing translate well to humans?
- 12. Are safety biomarkers available and can adverse effects be monitored and/or predicted by safety biomarkers?
- 13. Is there sufficient confidence that a necessary safety window has been or can be established?
- 14. Is the disease life-threatening (at what stage of the disease is the target of relevance)?
- 15. Is the tissue distribution of the target known (in humans or in animals)?

- <u>Comparative</u>
 <u>Toxicogenomics Database</u>
 (CTD)
- DrugBank, DrugCentral
- FDA Adverse Event
 Reporting System (FAERS)
- <u>NCBI HomoloGene</u>
- ENSEMBL ComparaGenom
- <u>Mouse Genome Informatics</u>
 (MGI)

Other important information resources

- Genomic variations: <u>gnomAD</u>, <u>dbSNP</u>, and <u>TCGA</u> for oncology;
- Protein domain and static structure: InterPro, Pfam, and PDB;
- Interaction network and pathway: <u>BioGRID</u>, IntAct, <u>Reactome</u>, and <u>KEGG</u>;
- Gene expression profiles associated with the target: <u>NCBI GEO</u> (Gene Expression Omnibus), <u>ARCHS4</u>

Solution: ²/₃, not ¹/₂ or ¹/₃.

- We name the hamsters H1 and H2.
 - We cannot tell between H1 and H2 optically.
 - Upon treatment with pill A, H1 and H2 fall asleep.
 - Upon treatment with pill B, H1 and H2 stay awake.
 - Let's assume that upon treatment with pill C, H1 will sleep and H2 will stay awake. Once can switch the labeling of H1 and H2, without affecting the results.
- Having observed that one hamster, either H1 or H2, falls asleep, the option of pill B is excluded.
- The asleep hamster can be either H1 or H2. So three options are equally possible:
 - Pill A was given to H1, and H1 fell asleep;
 - Pill A was given to H2, and H2 fell asleep;
 - Pill C was given to H1, and H1 fell asleep.
- The possibility that the pill makes the other hamster asleep (i.e. the Pill A) is ²/₃.

	H1	H2
Pill A	Sleep	Sleep
Pill B	Awake	Awake
Pill C	Sleep	Awake

Exercise of inference (II) - variants

The company *Fränzi and Friends* developed a new quick test at home for SARS-Cov-2 which is pending regulatory agency's review. When test with 100 SARS-Cov-2 patients, 99 report positive and one reports negative. When test with 100 healthy volunteers, 99 report negative and one reports positive.

Suppose that Fred uses the test by *Fränzi and Friends* and the test was positive. There are 30,000 people in the city where Fred lives; among them 1,500 are infected with SARS-Cov-2. What is the likelihood that Fred is truly infected given his positive test?