

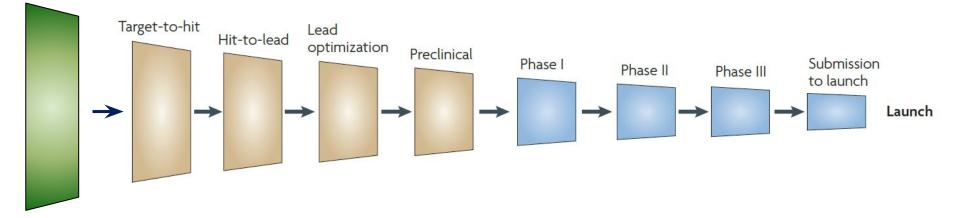
What can we do if there are no good targets

Mathematical and Computational Biology in Drug Discovery Module II

Dr. Jitao David Zhang March-April 2024

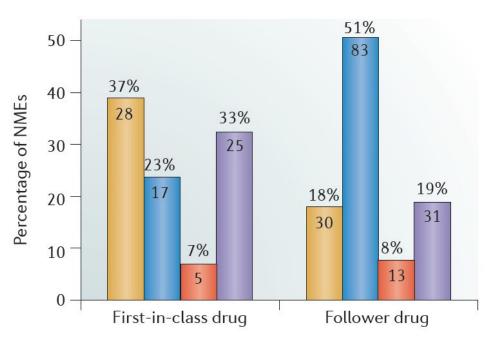
The linear view of drug discovery builds on target-based approaches

Target identification & assessment



Five strategies when no good target is found

- 1. Phenotypic drug discovery
- 2. Natural products
- 3. Biologics
- 4. Interaction-based (multispecific) drug discovery
- 5. Drug repurposing or combination studies



Connect the lines!

- Phenotypic screening
- Modified natural products
- Biologics
- Target-based screening

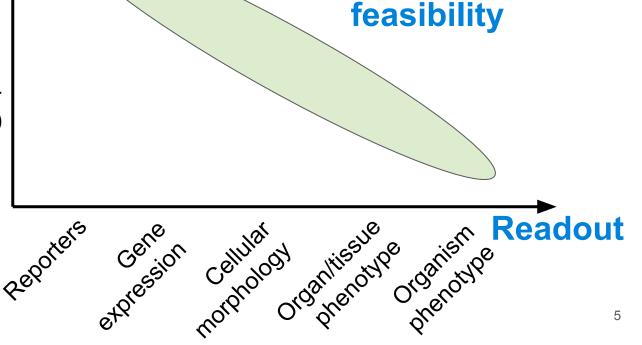
Phenotypic screenings by agent and readout

High-throughput screening libraries (≥10⁶ molecules)

Genetic libraries (~10⁴)

Natural products and chemogenomic libraries (~10³)

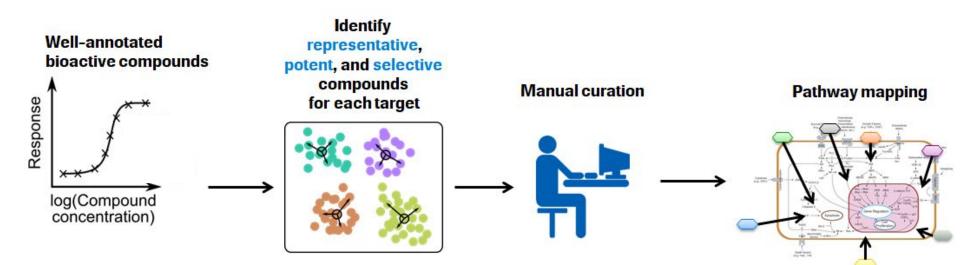
Custom libraries ($\sim 10^{0}$ - 10^{2})



Boundary of

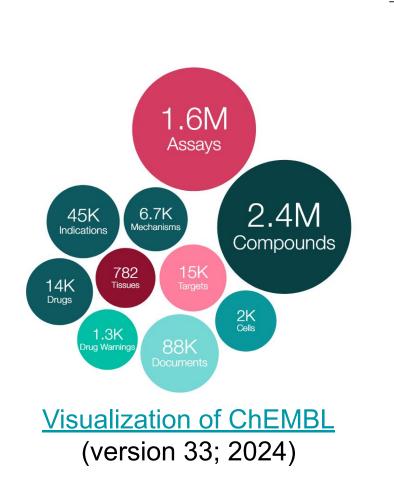
The Small-molecule PAthway Research Kit (SPARK)

Now known as the Pathway Annotated Chemical Ensemble (PACE) library



The ChEMBL database

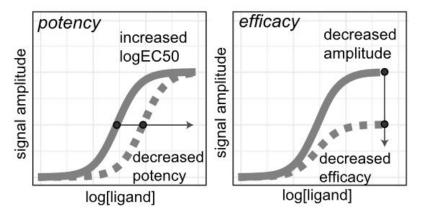
- An example of query: <u>aspirin</u>.
- Systematic and programmatic accession via <u>ChEMBLAPI</u> (<u>source code</u>).
- We can use dose-response data to annotate the *triplets* of compound, assay activity, and targets.

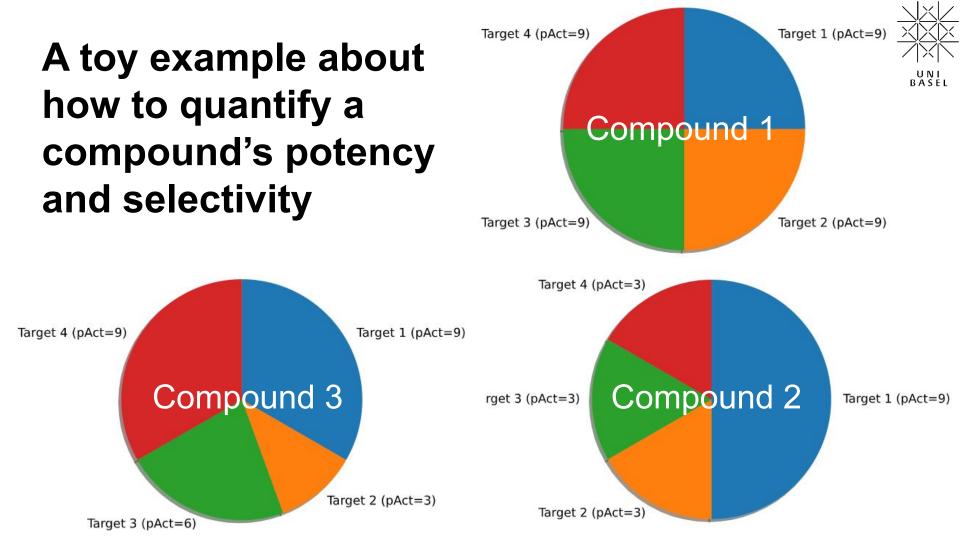


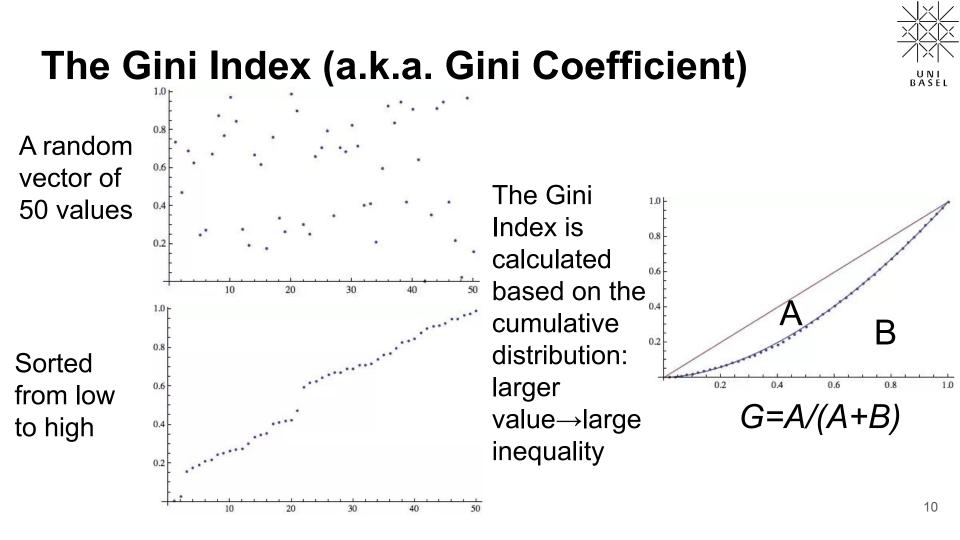
UNI BASEL

Discussion

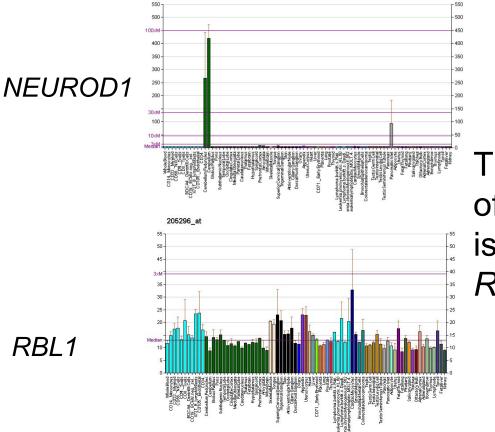
- 1. Why do we care selecting *representative*, *potent*, and *selective* compounds?
- 2. How to define following terms mathematically ...
 - a. Representativity?
 - b. Potency?
 - c. Selectivity?



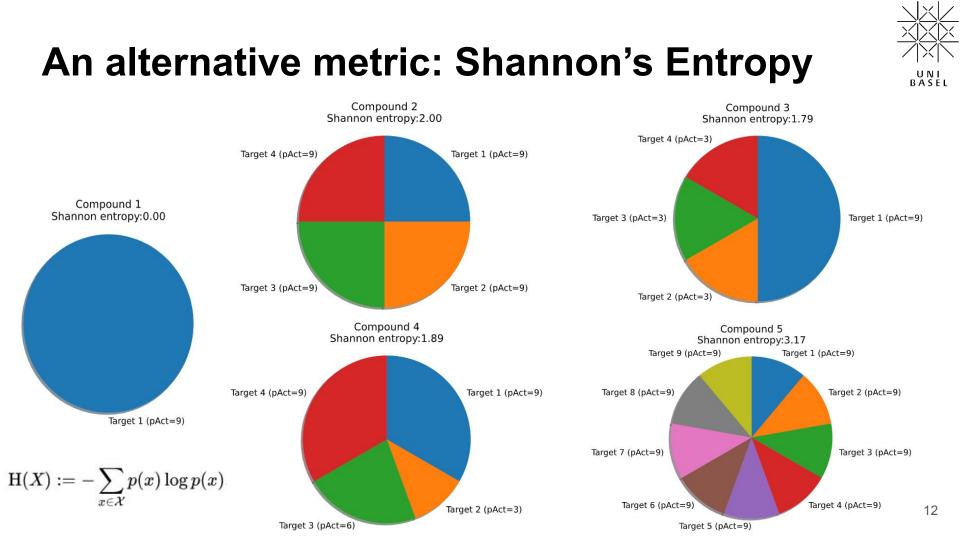




The Gini Index quantifies inequality/ selectivity

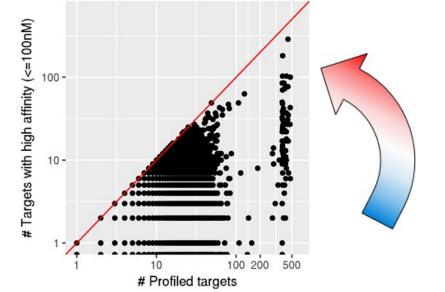


The Gini Index of expression of *NEUROD1* across tissues is near 1, whereas that of *RBL1* is near 0.

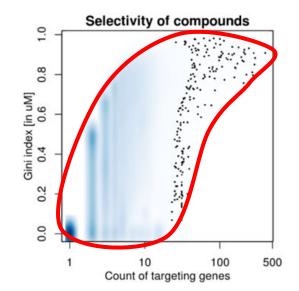


Count of targets and selectivity of ChEMBL molecules

U N I B A S E L

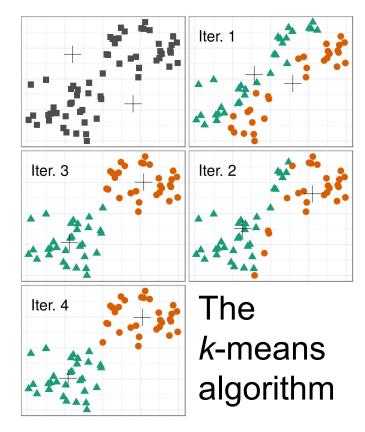


With some exceptions, most compounds are profiled against <100 targets. We distinguish between specific and pleiotropic compounds.



The **shark-fin shape** curve suggests that frequently profiled compounds tend to be more selective (and *vice versa*).

Unsupervised clustering

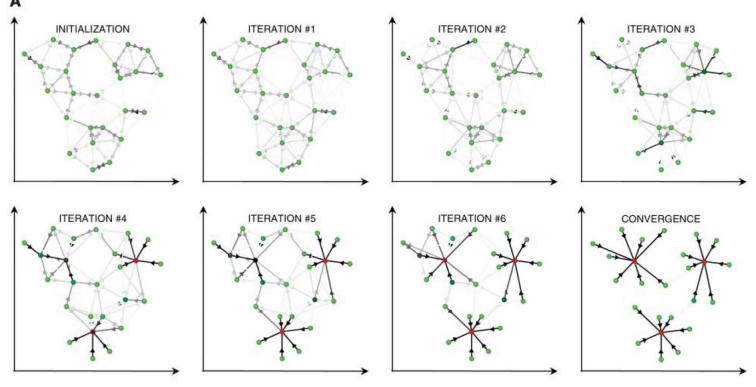


B С Sending responsibilities Sending availabilities Candidate Candidate Competing exemplar k exemplar k candidate exemplar k' r(i',k)Supporting r(i,k)data point i a(i,k" a(i,k)Data point i Data point i

Affinity Propagation updates **responsibilities** and **availabilities** iteratively

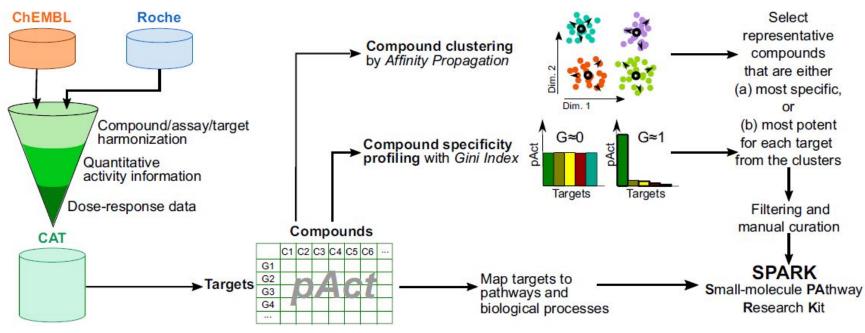
UNI BASEL

Affinity Propagation in action



A movie of iterations

Construction of SPARK in detail



Harmonization

... of public and

Roche internal data

Machine learning... to select

compounds

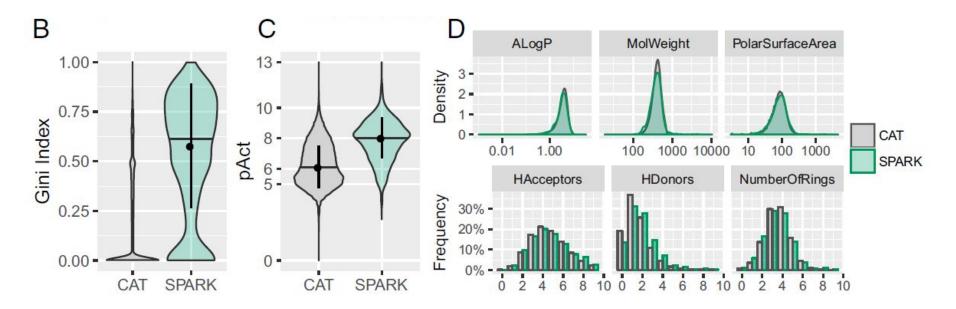
Pathways

... mapped to compounds

Curation

... to enrich quality compounds

SPARK covers the chemical space evenly with representative, potent, and specific compounds

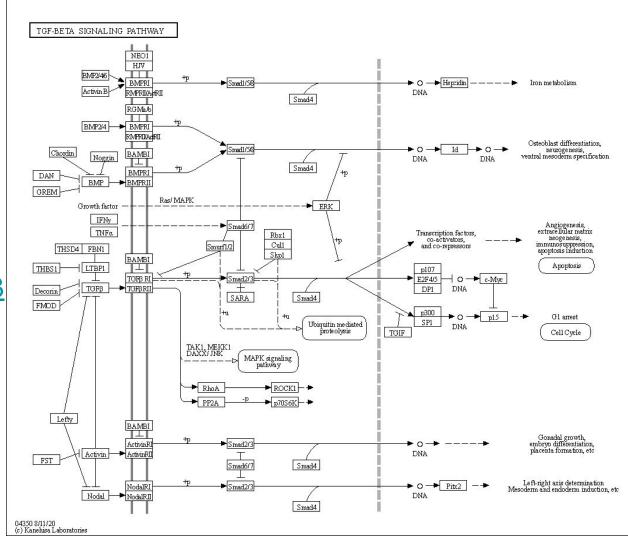


Roudnicky *et al.*, PNAS, 2020, https://www.pnas.org/content/ea rly/2020/08/04/1911532117

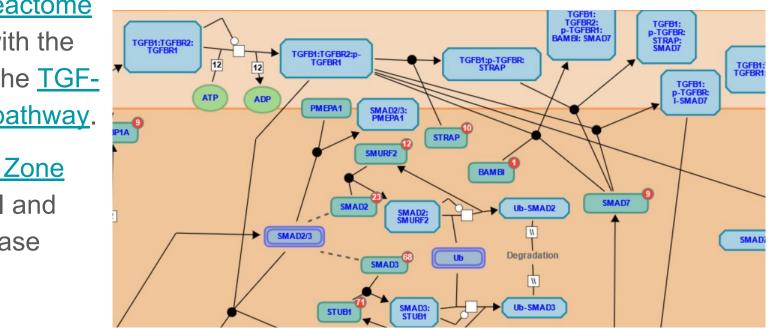
Mapping genes to biological pathways

Option 1: <u>KEGG pathways</u>, with the example of <u>TGF- β </u> <u>signaling pathway</u>.

<u>A RESTful API</u> is available for academic use, with clients in Python and R.



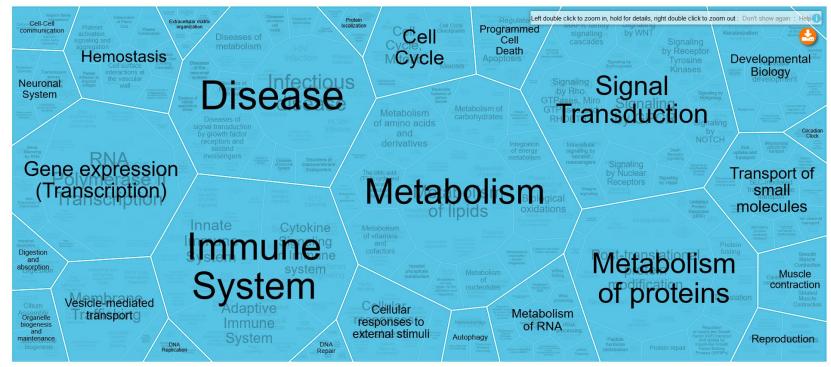
Mapping genes to biological pathways



Option 2: <u>Reactome</u> pathways, with the example of the <u>TGF-</u> <u>β signaling pathway</u>.

Developer's Zone provides API and graph database interfaces.

Overview of pathways captured by Reactome



The Voronoi (Reacfoam) view of all pathways in Reactome

Mapping genes to biological processes

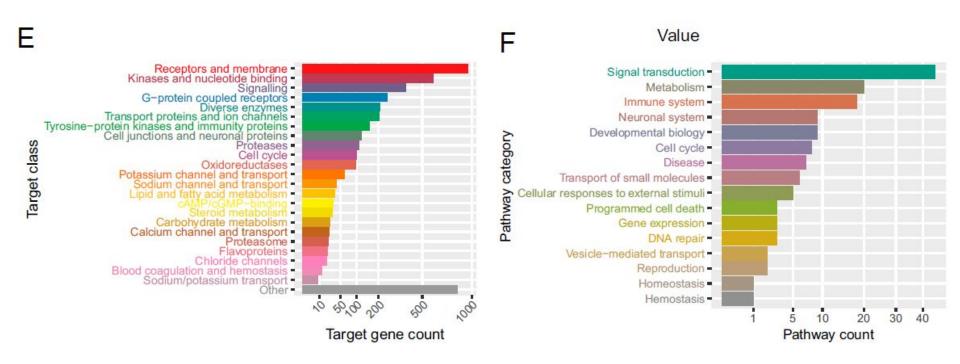
- Gene Ontology
- UniProtKB keywords
- Example: <u>TGFBR2_HUMAN</u> (TGF-beta receptor type -2, P37173)
- - GO Biological process¹
 - activation of protein kinase activity Source: BHF-UCL
 - aging Source: Ensembl

 - apoptotic process Source: UniProtKB -
 - atrioventricular valve morphogenesis Source: BHF-UCL
 - blood vessel development Source: BHF-UCL -
 - brain development Source: BHF-UCL

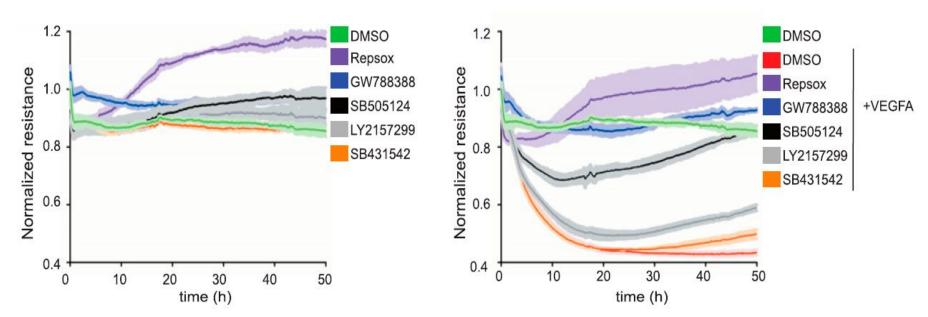
Keywordsⁱ

Molecular function	Kinase, Receptor, Serine/threonine-protein kinase, Transferase
Biological process	Apoptosis, Differentiation, Growth regulation
Ligand	ATP-binding, Magnesium, Manganese, Metal-binding, Nucleotide-binding

SPARK covers the target space evenly with γ representative, potent, and specific compounds



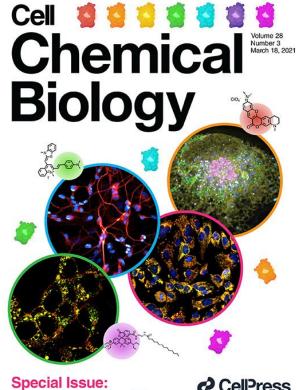
Screening with SPARK in endothelial cells identified TGF- β pathway genes as potential targets for diabetic retinopathy



Phenotypic screenings by agent and readout UNI BASEL Agent High-throughput screening **Boundary of** libraries ($\geq 10^6$ molecules) **Feasibility** Genetic libraries (~10⁴) Natural products and chemogenomic libraries ($\sim 10^3$) Custom libraries (~10⁰-10²) Cellular norphology organities of Readout Reporters Steresion Stars

Conclusions about chemogenomic library

- Phenotypic drug discovery can lead to first-in-class drugs with novel mechanisms;
- Unsupervised machine learning and data modelling contribute to build chemogenomic libraries;
- We can link drug candidates via targets to biological pathways and processes.

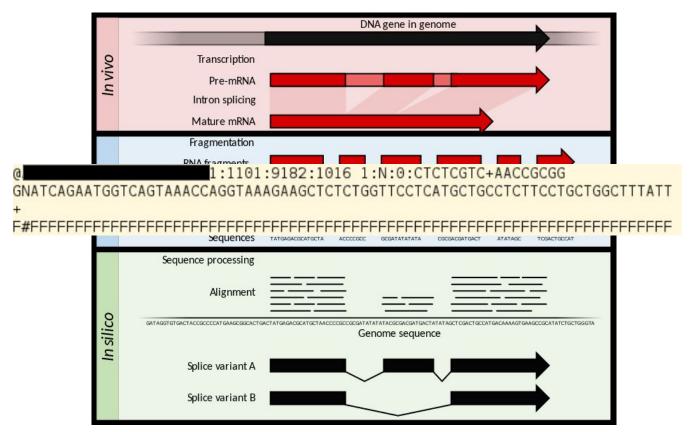


Offline activities of Module II

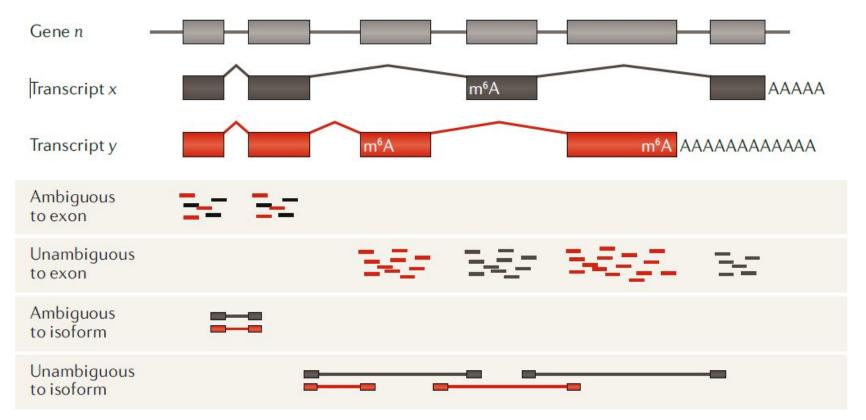
Please use your favourite programming language (shell scripts, python, R, for instance) and APIs (Application Programming Interfaces) of databases to perform following operations. Submit your code.

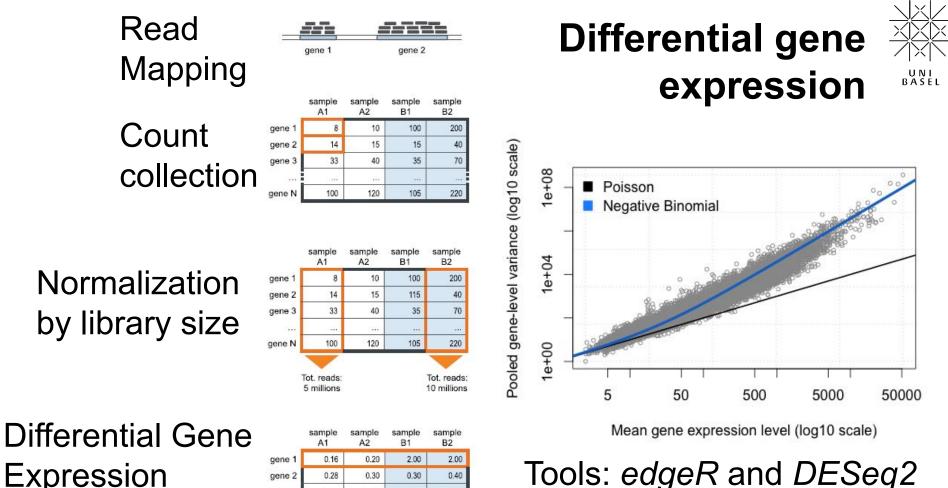
- Retrieve all approved drugs from the ChEMBL database, sort them by approval year and name (<u>a Python example is here</u>; documentations of the ChEMBL API can be found <u>here</u>);
- 2. For each approved drug **since 2014** that you identified in step (1), retrieve a list of UniProt accession numbers, namely protein targets associated with the drug;
- For each protein with a UniProt accession number that you identified in step (2), retrieve UniProt keywords associated with it. <u>You can use the UniProt API,</u> <u>documented here</u>. <u>Python</u> and <u>R</u> clients are also available.

Transcriptome profiling by RNA sequencing



Transcriptome profiling by RNA sequencing

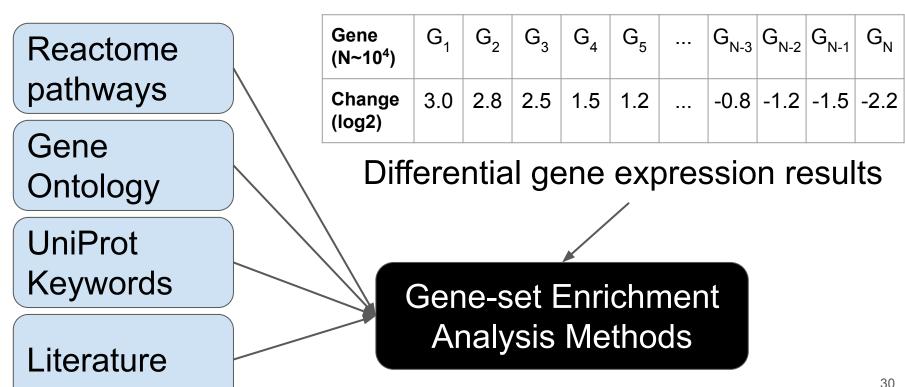




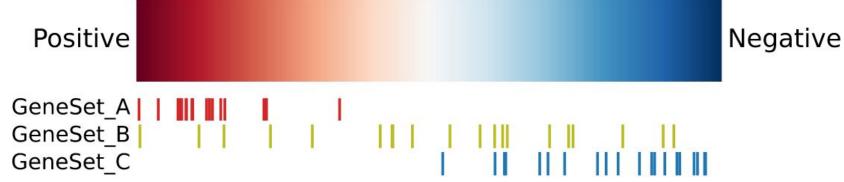
Expression Analysis

	sample A1	sample A2	sample B1	sample B2
gene 1	0.16	0.20	2.00	2.00
gene 2	0.28	0.30	0.30	0.40
gene 3	0.66	0.80	0.70	0.70
	1444		144	
gene N	2.00	2.40	2.10	2.20

Interpret differential gene expression data with gene-set enrichment analysis



Gene-set enrichment analysis



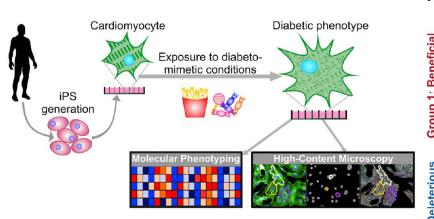
Input: (1) a differential geneOLexpression profile; (2) a set ofofgene-sets {G}, each a set of genes.by

Output: a ranked list of the input gene-sets by *enrichment*.

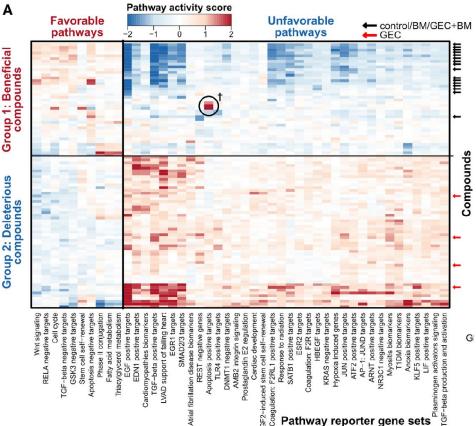
Probability theory and statistical tools discussed

- Distributions
 - Gaussian distribution (used in linear model)
 - $\circ \quad \text{Bernoulli distribution} \rightarrow \text{Binomial distribution} \rightarrow \text{Negative binomial distribution}$
 - \circ Poisson distribution \rightarrow Negative binomial distribution
 - \circ Poisson distribution \longleftrightarrow Exponential distribution
- Statistical methods
 - Bootstrapping method
 - Student's t-test
 - Wilcoxon-Mann-Whitney test
 - Kolmogorov-Smirnov test

Gene expression as screening readout

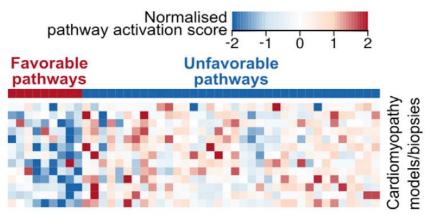


Differential gene expression profiles are molecular snapshots of drugs' action in the cell.



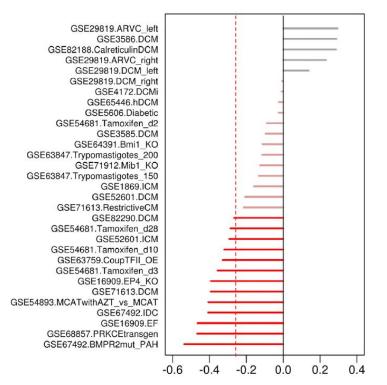
33

Gene expression from patient and animal models help compound selection



Cardiomyopathy-associated pathways

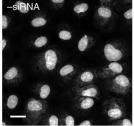
We can prioritise molecules that reverse disease-induced changes.



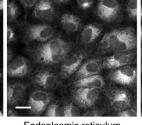
Pathway regulation by beneficial compounds and in cardiomyopathy: the correlation

Morphology as screening readout

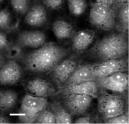
UNI BASEL



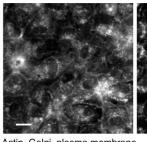
Nucleus

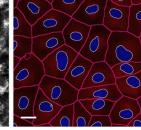


Endoplasmic reticulum

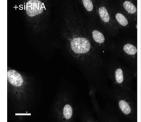


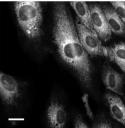
Nucleoli, cytoplasmic RNA Actin, Golgi, plasma membrane

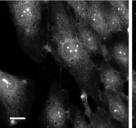


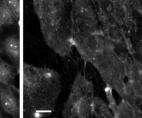


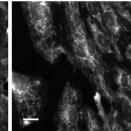
Segmentation

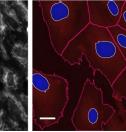


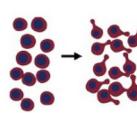


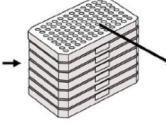


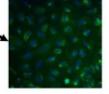












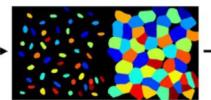
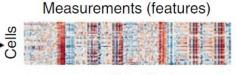


Image analysis



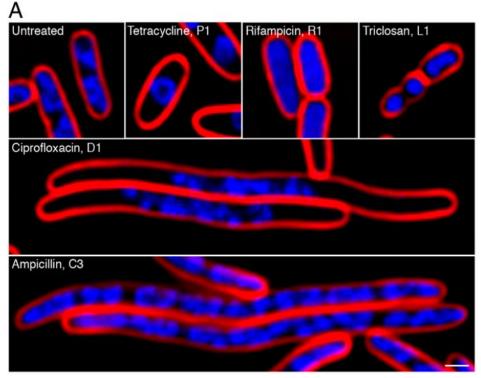
 \times 384 wells \times *N* plates

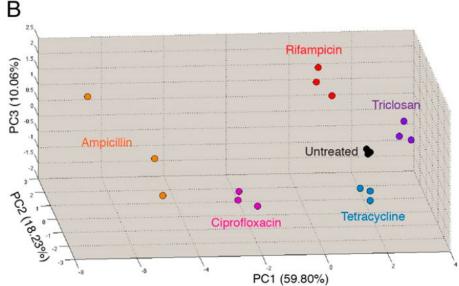
Morphological profiles

Genetic or chemical perturbations Experiments in multiwell plates

Microscopy imaging

Cytological profiling for antibiotics discovery





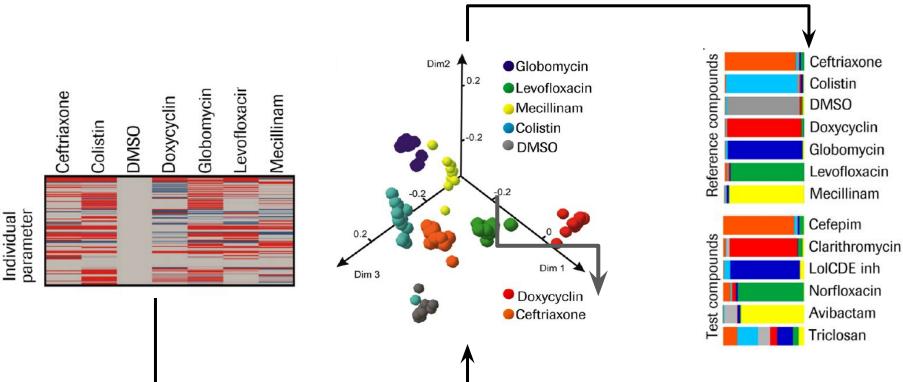
- P: Protein translation inhibitors
- **R**: RNA transcription inhibitors
- D: DNA replication inhibitors
- L: Lipid biosynthesis inhibitors
- **C**: Cell-wall synthesis inhibitors (peptidoglycan)



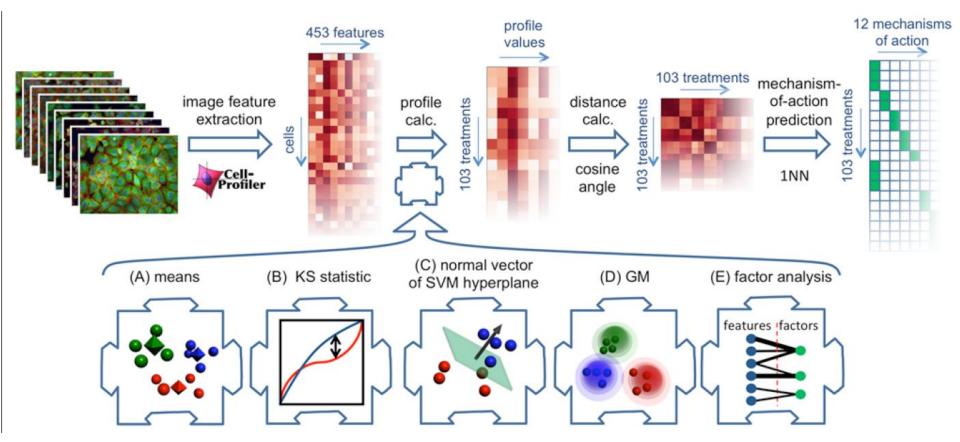
Membrane area,
μm²DNA area,
μm²Membrane perimeter,
μmDNA perimeter,
μmMembrane length,
μmDNA length,
No. of nucleoids per
μmμm²μmμmμmμmcellMembrane width,DNA width,

μm μm Membrane circularity DNA circularity SytoxG intensity DAPI intensity Decondensation

Morphology classifies compounds by MoA



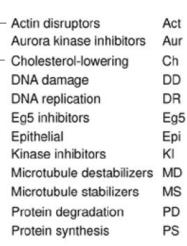
Comparison of computational methods



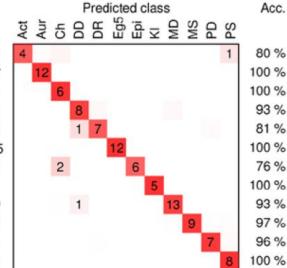
Do the benchmark and use Occam's Razor

Table 1. Accuracies for classifying compound treatments intomechanisms of action.

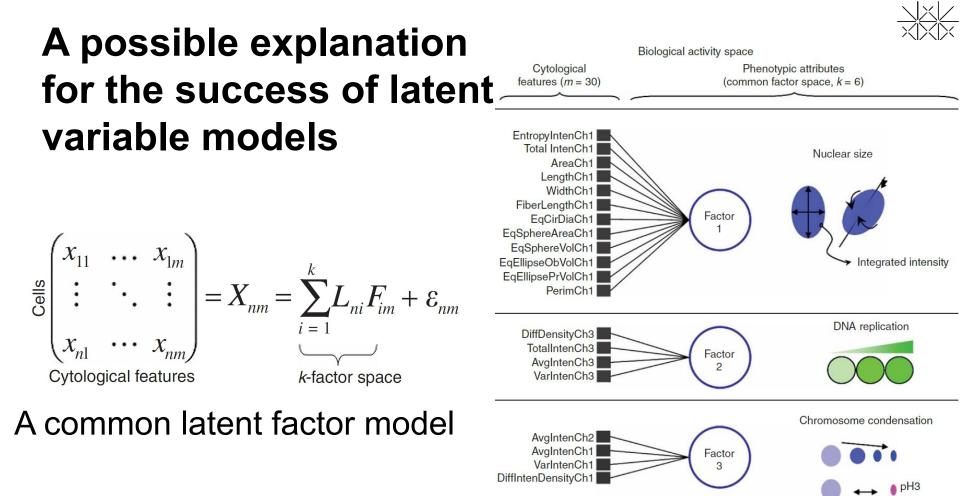
Method	Accuracy, %
Means	83
KS statistic	83
Normal vector to support-vector machine hyperplane	81
With recursive feature elimination	64
Distribution over Gaussian mixture components	83
Factor analysis + means	94



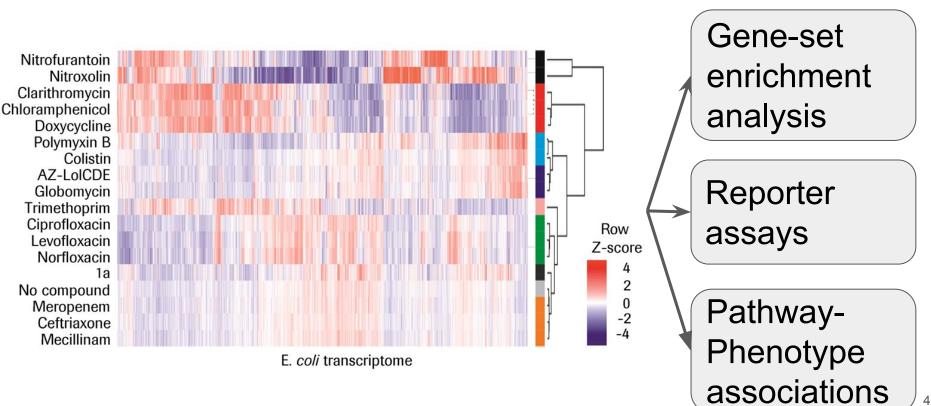
True mechanistic class



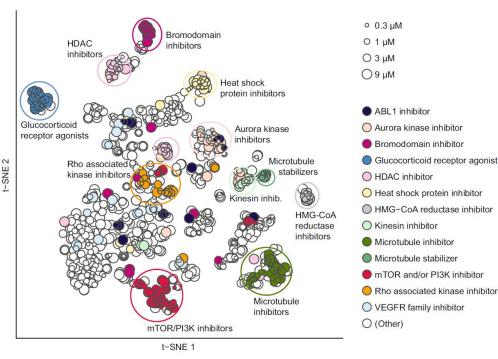
Overall accuracy: 94 %

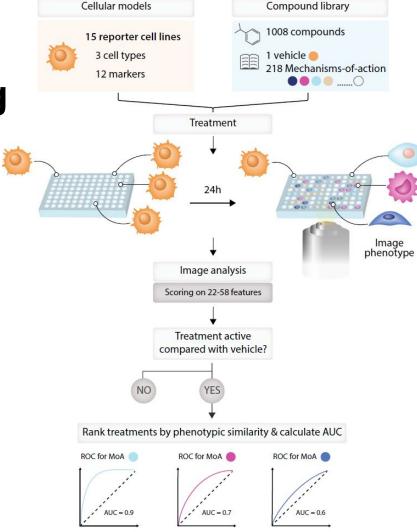


Morphology and gene expression used jointly



A multi-cell-type, 1008-compound screening by Cox *et al.* (2020)





Conclusions

- Gene expression and image-based profiling can be used individually or jointly for phenotypic screening;
- Integration of biological knowledge, high-throughput data, and statistical modelling empowers phenotypic drug discovery.

References

- 1. Swinney, David C., and Jason Anthony. 2011. "How Were New Medicines Discovered?" *Nature Reviews Drug Discovery* 10 (7): 507–19. https://doi.org/10.1038/nrd3480.
- Marx, Uwe, Tommy B. Andersson, Anthony Bahinski, Mario Beilmann, Sonja Beken, Flemming R. Cassee, Murat Cirit, et al. 2016. "Biology-Inspired Microphysiological System Approaches to Solve the Prediction Dilemma of Substance Testing." ALTEX - Alternatives to Animal Experimentation 33 (3): 272–321. <u>https://doi.org/10.14573/altex.1603161</u>.
- 3. Dickey, Seth W., Gordon Y. C. Cheung, and Michael Otto. 2017. "Different Drugs for Bad Bugs: Antivirulence Strategies in the Age of Antibiotic Resistance." Nature Reviews Drug Discovery 16 (7): 457–71. <u>https://doi.org/10.1038/nrd.2017.23</u>.
- 4. Lewis, Kim. 2013. "Platforms for Antibiotic Discovery." Nature Reviews Drug Discovery 12 (5): 371–87. https://doi.org/10.1038/nrd3975.
- 5. Warner, Katherine Deigan, Christine E. Hajdin, and Kevin M. Weeks. 2018. "Principles for Targeting RNA with Drug-like Small Molecules." Nature Reviews Drug Discovery 17 (8): 547–58. <u>https://doi.org/10.1038/nrd.2018.93</u>.
- 6. Berg, Ellen L. 2021. "The Future of Phenotypic Drug Discovery." Cell Chemical Biology 28 (3): 424–30. https://doi.org/10.1016/j.chembiol.2021.01.010.
- Chin, Marcus Y., Jether Amos Espinosa, Grace Pohan, Sarine Markossian, and Michelle R. Arkin. 2021. "Reimagining Dots and Dashes: Visualizing Structure and Function of Organelles for High-Content Imaging Analysis." Cell Chemical Biology 28 (3): 320–37. https://doi.org/10.1016/i.chembiol.2021.01.016.
- Conway, Louis P., Weichao Li, and Christopher G. Parker. 2021. "Chemoproteomic-Enabled Phenotypic Screening." Cell Chemical Biology 28 (3): 371–93. <u>https://doi.org/10.1016/j.chembiol.2021.01.012</u>.
- 9. Dahlin, Jayme L., Douglas S. Auld, Ina Rothenaigner, Steve Haney, Jonathan Z. Sexton, J. Willem M. Nissink, Jarrod Walsh, et al. 2021. "Nuisance Compounds in Cellular Assays." Cell Chemical Biology 28 (3): 356–70. <u>https://doi.org/10.1016/j.chembiol.2021.01.021</u>.
- 10. Ha, Jaeyoung, Hankum Park, Jongmin Park, and Seung Bum Park. 2021. "Recent Advances in Identifying Protein Targets in Drug Discovery." Cell Chemical Biology 28 (3): 394–423. <u>https://doi.org/10.1016/j.chembiol.2020.12.001</u>.

46

- 11. Hsu, Ku-Lung. 2021. "Shining a Light on Phenotypic Drug Discovery." Cell Chemical Biology 28 (2): 115–17. https://doi.org/10.1016/j.chembiol.2021.01.020.
- 12. Hughes, Rebecca E., Richard J. R. Elliott, John C. Dawson, and Neil O. Carragher. 2021. "High-Content Phenotypic and Pathway Profiling to Advance Drug Discovery in Diseases of Unmet Need." Cell Chemical Biology 28 (3): 338–55. <u>https://doi.org/10.1016/j.chembiol.2021.02.015</u>.
- 13. Vandana, J. Jeya, Lauretta A. Lacko, and Shuibing Chen. 2021. "Phenotypic Technologies in Stem Cell Biology." Cell Chemical Biology 28 (3): 257–70. https://doi.org/10.1016/j.chembiol.2021.02.001.
- 14. Ziegler, Slava, Sonja Sievers, and Herbert Waldmann. 2021. "Morphological Profiling of Small Molecules." Cell Chemical Biology 28 (3): 300–319. https://doi.org/10.1016/j.chembiol.2021.02.012.
- 15. Moffat, John G., Fabien Vincent, Jonathan A. Lee, Jörg Eder, and Marco Prunotto. 2017. "Opportunities and Challenges in Phenotypic Drug Discovery: An Industry Perspective." Nature Reviews Drug Discovery 16 (8): 531–43. <u>https://doi.org/10.1038/nrd.2017.111</u>.
- Drawnel, Faye Marie, Jitao David Zhang, Erich Küng, Natsuyo Aoyama, Fethallah Benmansour, Andrea Araujo Del Rosario, Sannah Jensen Zoffmann, et al.
 2017. "Molecular Phenotyping Combines Molecular Information, Biological Relevance, and Patient Data to Improve Productivity of Early Drug Discovery." Cell Chemical Biology 18 (24(5)): 624–34. <u>https://doi.org/10.1016/j.chembiol.2017.03.016</u>.
- 17. Roudnicky, Filip, Jitao David Zhang, Bo Kyoung Kim, Nikhil J. Pandya, Yanjun Lan, Lisa Sach-Peltason, Heloise Ragelle, et al. 2020. "Inducers of the Endothelial Cell Barrier Identified through Chemogenomic Screening in Genome-Edited HPSC-Endothelial Cells." Proceedings of the National Academy of Sciences, August. <u>https://doi.org/10.1073/pnas.1911532117</u>.
- 18. Zoffmann, Sannah, Maarten Vercruysse, Fethallah Benmansour, Andreas Maunz, Luise Wolf, Rita Blum Marti, Tobias Heckel, et al. 2019. "Machine Learning-Powered Antibiotics Phenotypic Drug Discovery." *Scientific Reports* 9 (1): 1–14. <u>https://doi.org/10.1038/s41598-019-39387-9</u>.
- 19. Nichols, Robert J., Saunak Sen, Yoe Jin Choo, Pedro Beltrao, Matylda Zietek, Rachna Chaba, Sueyoung Lee, et al. 2011. "Phenotypic Landscape of a Bacterial Cell." Cell 144 (1): 143–56. <u>https://doi.org/10.1016/j.cell.2010.11.052</u>.
- 20. Smith, Kevin, Filippo Piccinini, Tamas Balassa, Krisztian Koos, Tivadar Danka, Hossein Azizpour, and Peter Horvath. 2018. "Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays." Cell Systems 6 (6): 636–53. https://doi.org/10.1016/j.cels.2018.06.001.

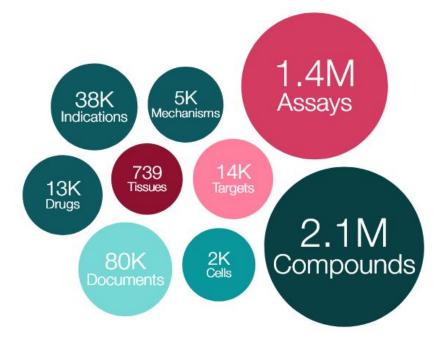
UNI

- 21. Scheeder, Christian, Florian Heigwer, and Michael Boutros. 2018. "Machine Learning and Image-Based Profiling in Drug Discovery." Current Opinion in Systems BASEL Biology, Pharmacology and drug discovery, 10 (August): 43–52. https://doi.org/10.1016/j.coisb.2018.05.004.
- 22. Schirle, Markus, and Jeremy L. Jenkins. 2016. "Identifying Compound Efficacy Targets in Phenotypic Drug Discovery." Drug Discovery Today 21 (1): 82–89. https://doi.org/10.1016/j.drudis.2015.08.001.
- 23. Wilkinson, Isabel V. L., Georg C. Terstappen, and Angela J. Russell. 2020. "Combining Experimental Strategies for Successful Target Deconvolution." Drug Discovery Today 25 (11): 1998–2005. https://doi.org/10.1016/j.drudis.2020.09.016.
- 24. Comess, Kenneth M., Shaun M. McLoughlin, Jon A. Oyer, Paul L. Richardson, Henning Stöckmann, Anil Vasudevan, and Scott E. Warder. 2018. "Emerging Approaches for the Identification of Protein Targets of Small Molecules A Practitioners' Perspective." Journal of Medicinal Chemistry 61 (19): 8504–35. https://doi.org/10.1021/acs.jmedchem.7b01921.
- 25. Sidders, Ben, Anna Karlsson, Linda Kitching, Rubben Torella, Paul Karila, and Anne Phelan. 2018. "Network-Based Drug Discovery: Coupling Network Pharmacology with Phenotypic Screening for Neuronal Excitability." Journal of Molecular Biology, Theory and Application of Network Biology Toward Precision Medicine, 430 (18, Part A): 3005–15. https://doi.org/10.1016/j.jmb.2018.07.016.
- 26. Aulner, Nathalie, Anne Danckaert, JongEun Ihm, David Shum, and Spencer L. Shorte. 2019. "Next-Generation Phenotypic Screening in Early Drug Discovery for Infectious Diseases." Trends in Parasitology 35 (7): 559–70. <u>https://doi.org/10.1016/j.pt.2019.05.004</u>.
- 27. Boess, Franziska, Barbara Lenz, Juergen Funk, Urs Niederhauser, Simon Bassett, Jitao David Zhang, Thomas Singer, and Adrian B. Roth. 2017. "Use of Early Phenotypic in Vivo Markers to Assess Human Relevance of an Unusual Rodent Non-Genotoxic Carcinogen in Vitro." Toxicology 379 (March): 48–61. https://doi.org/10.1016/j.tox.2017.01.018.
- 28. Feng, Yan, Timothy J. Mitchison, Andreas Bender, Daniel W. Young, and John A. Tallarico. 2009. "Multi-Parameter Phenotypic Profiling: Using Cellular Effects to Characterize Small-Molecule Compounds." Nature Reviews Drug Discovery 8 (7): 567–78. <u>https://doi.org/10.1038/nrd2876</u>.
- 29. Jones, Lyn H., and Mark E. Bunnage. 2017. "Applications of Chemogenomic Library Screening in Drug Discovery." Nature Reviews Drug Discovery 16 (January): 285--296. <u>https://doi.org/10.1038/nrd.2016.244.</u>
- Kulesa, Anthony, Jared Kehe, Juan E. Hurtado, Prianca Tawde, and Paul C. Blainey. 2018. "Combinatorial Drug Discovery in Nanoliter Droplets." Proceedings of the National Academy of Sciences 115 (26): 6685–90. <u>https://doi.org/10.1073/pnas.1802233115</u>.

- Vlachogiannis, Georgios, Somaieh Hedayat, Alexandra Vatsiou, Yann Jamin, Javier Fernández-Mateos, Khurum Khan, Andrea Lampis, et al. 2018.
 "Patient-Derived Organoids Model Treatment Response of Metastatic Gastrointestinal Cancers." Science 359 (6378): 920–26.
 https://doi.org/10.1126/science.aao2774.
- 32. Wawer, Mathias J., Kejie Li, Sigrun M. Gustafsdottir, Vebjorn Ljosa, Nicole E. Bodycombe, Melissa A. Marton, Katherine L. Sokolnicki, et al. 2014. "Toward Performance-Diverse Small-Molecule Libraries for Cell-Based Phenotypic Screening Using Multiplexed High-Dimensional Profiling." Proceedings of the National Academy of Sciences 111 (30): 10911–16. <u>https://doi.org/10.1073/pnas.1410933111</u>.
- 33. Zhang, Jitao David, Erich Küng, Franziska Boess, Ulrich Certa, and Martin Ebeling. 2015. "Pathway Reporter Genes Define Molecular Phenotypes of Human Cells." BMC Genomics 16: 342. <u>https://doi.org/10.1186/s12864-015-1532-2</u>.
- 34. Antolin, Albert A., Joseph E. Tym, Angeliki Komianou, Ian Collins, Paul Workman, and Bissan Al-Lazikani. 200017. "Objective, Quantitative, Data-Driven Assessment of Chemical Probes." Cell Chemical Biology 0 (0). <u>https://doi.org/10.1016/j.chembiol.2017.11.4.</u>
- 35. Finotello, Francesca, and Barbara Di Camillo. 2015. "Measuring Differential Gene Expression with RNA-Seq: Challenges and Strategies for Data Analysis." Briefings in Functional Genomics 14 (2): 130–42. <u>https://doi.org/10.1093/bfgp/elu035</u>.
- Anders, Simon, and Wolfgang Huber. 2010. "Differential Expression Analysis for Sequence Count Data." Genome Biology 11 (10): R106. <u>https://doi.org/10.1186/gb-2010-11-10-r106</u>.
- 37. Robinson, Mark D., and Gordon K. Smyth. 2007. "Moderated Statistical Tests for Assessing Differences in Tag Abundance." Bioinformatics 23 (21): 2881–87. https://doi.org/10.1093/bioinformatics/btm453.
- Jesse Lipp, Why sequencing data is modeled as negative binomial, https://bioramble.wordpress.com/2016/01/30/why-sequencing-data-is-modeled-as-negative-binomial/
- 39. Stanton, Benjamin Z., Emma J. Chory, and Gerald R. Crabtree. 2018. "Chemically Induced Proximity in Biology and Medicine." Science 359 (6380): <u>eaao5902</u>. https://doi.org/10.1126/science.aao5902.
- 40. Tom Gregory, https://www.quora.com/Is-Gini-coefficient-outdated

- 41. <u>EBI online tutorial of Reactome</u>, DOI: 10.6019/TOL.Reactome_exbp-t.2017.00001.1
- 42. Frey, Brendan J., and Delbert Dueck. 2007. "Clustering by Passing Messages Between Data Points." Science 315 (5814): 972–76. https://doi.org/10.1126/science.1136800.
- 43. RNA-seq: <u>https://en.wikipedia.org/wiki/RNA-Seq</u>, in particular the <u>figure</u> by Thomas Shafee (CC BY 4.0)
- 44. Affinity Propagation algorithm visualized
- 45. Bray, Mark-Anthony, Shantanu Singh, Han Han, Chadwick T. Davis, Blake Borgeson, Cathy Hartland, Maria Kost-Alimova, Sigrun M. Gustafsdottir, Christopher C. Gibson, and Anne E. Carpenter. 2016. "Cell Painting, a High-Content Image-Based Assay for Morphological Profiling Using Multiplexed Fluorescent Dyes." Nature Protocols 11 (9): 1757–74. <u>https://doi.org/10.1038/nprot.2016.105</u>.
- 46. Nonejuie, Poochit, Michael Burkart, Kit Pogliano, and Joe Pogliano. 2013. "Bacterial Cytological Profiling Rapidly Identifies the Cellular Pathways Targeted by Antibacterial Molecules." Proceedings of the National Academy of Sciences 110 (40): 16169–74. <u>https://doi.org/10.1073/pnas.1311066110</u>.
- 47. Ljosa, Vebjorn, Peter D. Caie, Rob ter Horst, Katherine L. Sokolnicki, Emma L. Jenkins, Sandeep Daya, Mark E. Roberts, et al. 2013. "Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment." Journal of Biomolecular Screening 18 (10): 1321–29. https://doi.org/10.1177/1087057113503553.
- 48. Young, Daniel W., Andreas Bender, Jonathan Hoyt, Elizabeth McWhinnie, Gung-Wei Chirn, Charles Y. Tao, John A. Tallarico, et al. 2008. "Integrating High-Content Screening and Ligand-Target Prediction to Identify Mechanism of Action." Nature Chemical Biology 4 (1): 59–68. https://doi.org/10.1038/nchembio.2007.53.
- 49. Cox, Michael J., Steffen Jaensch, Jelle Van de Waeter, Laure Cougnaud, Daan Seynaeve, Soulaiman Benalla, Seong Joo Koo, et al. 2020. "Tales of 1,008 Small Molecules: Phenomic Profiling through Live-Cell Imaging in a Panel of Reporter Cell Lines." Scientific Reports 10 (1): 13262. https://doi.org/10.1038/s41598-020-69354-8.
- 50. Stark, Rory, Marta Grzelak, and James Hadfield. 2019. "RNA Sequencing: The Teenage Years." Nature Reviews Genetics, July, 1–26. https://doi.org/10.1038/s41576-019-0150-2.
- 51. Heydenreich, F. M. et al. Molecular determinants of ligand efficacy and potency in GPCR signaling. Science 382, eadh1859 (2023).

The evolution of ChEMBL database



Visualization of ChEMBL (2021)

