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Outline of Module V

● Lecture 11
○ Biomarker for dose prediction
○ Biomarker for patient-stratification and biology understanding: Merck/Genentech
○ Challenges and caveats

● Lecture 12
○ Integrating statistical and mechanistic modelling: Griffiths et al.
○ Mechanistic modelling of biological systems: from Boolean network to Agent-based modelling
○ Causal inference
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From drug discovery to drug development

Target identification & assessment

No change to the drug without
repeating previous studies

Investigational New 
Drug (IND) application
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A refresher of PK/PD Modelling
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An example of two-compartment model

• VC (20) Central volume (volume)
• Q (2) Inter-compartmental  

clearance (volume/time)
• VP (10) Peripheral volume of  

distribution (volume)
• KA (Ka, 0.5) Absorption rate  

constant (1/time)
• VMAX (1)  : Maximum velocity of  

elimination (mass/time)
• KM (3) Michaelis constant for  

elimination (mass/volume)
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Simulating two dosing regimens

Dosing regimen 1: dosing 8 units 
per 12 hours, for 24 doses

Dosing regimen 2: dosing 10 
units per 24 hours, for 20 doses.
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Translational PK/PD Modelling
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Samples from blood and 
tissues or organs organ 
can be analysed for 
pharmacokinetics, 
pharmacodynamics, and 
dose-exposure-response 
relationships.

Time

Acute efficacy model

Single 
dose

Time

Chronic PK/PD model

Control

Multiple 
doses

Sampling



Physiologically-based pharmacokinetic modelling 
(PBPK) is a natural extension of PK modelling
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Phases of clinical trials
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● Aim: Getting PK/PD 
data to verify the 
drug behaves as 
expected.

● Dose: Microdosing,  
e.g. 1% of predicted 
dose.

● Subjects: <15 
healthy subjects

● Time: A few weeks

● Finding safe dose 
ranges and optimal 
dosing regimens with 
further PK/PD data.

● Sub-therapeutic 
single and multiple 
ascending doses

● 20-100 healthy 
subjects (patients)

● A few months

● Comparing efficacy, 
effectiveness, and 
safety profiles with 
the standard-of-care 
treatment option.

● Therapeutic dose
● Usually 300-3000 

patients
● Usually several years

● Assessing efficacy 
and safety profiles 
of the drug, and 
determining the 
dosing regimen.

● Therapeutic dose
● Usually 100-300 

patients with a 
specific disease

● A year or longer

Phase 0* Phase I Phase IIIPhase II

Investigational New Drug 
(IND) application New Drug Application (NDA)

~70% ~50% ~60%



Empirical, stratified, and individualized medicine

10

Empirical 
medicine

Individualized 
medicine

Stratified 
Medicine

● Vaccines
● Non-steroid 

anti-inflammatory 
drugs (NSAIDs)

● CAR-T therapy● Vemurafenib 
(Zelboraf)

● Trastuzumab 
(Herceptin)



Why stratified medicines are becoming popular?
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Commercial reasonsMedical reasons

1% likely responder



Empirical, stratified, and individualized 
medicine in the clinical context
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Biomarkers

A objectively measured and 
evaluated characteristic as 
an indicator of (1) normal 
biological process, (2) 
pathogenic processes, or 
(3) pharmacological 
responses to a therapeutic 
intervention.
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Applications of biomarkers

1. Compound optimization and 
differentiation from competitors in 
preclinical study

2. Human-dose prediction in 
translational PK/PD modelling

3. Patient stratification in clinical 
studies
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Target Occupancy as Biomarkers

Target occupancy, percentage of 
the protein target occupied by 
drugs, affects target engagement, 
which describes the process a 
drug interacts with its intended 
protein target in a living system to 
induce downstream effects 
(Mechanism of Action).
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Target occupancy of 83% and 50%, 
respectively



Target 
occupancy and 
engagement 
profiling in vivo

ABPP: Activity-based 
protein profiling; PET: 
positron-emission 
tomography. 

Both ABPP reagent and 
radiotracer binds to the 
same protein target.
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Target occupancy as a biomarker links 
pharmacokinetics and pharmacodynamics
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PK
modelling

Biomarker
modelling

PD
modelling

PK/PD
modelling
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Target 
occupancy 
and 
engagement 
profiling in 
human



A mental model of biomarker for human-dose 
prediction
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Exposure

Translational biomarker 
(e.g. Target occupancy in PBMC and in tumour)

ResponseDose
PK PDAnimal model

Required
Response

Predicted 
dose

Required 
Exposure

Human



Phase 1b study of Selnoflast in UC

Klughammer, B. et al. A randomized, double-blind phase 1b study evaluating the safety, tolerability, pharmacokinetics and pharmacodynamics of the NLRP3 inhibitor 
selnoflast in patients with moderate to severe active ulcerative colitis. Clinical and Translational Medicine 13, e1471 (2023). IC90 was calculated from in vitro studies 
(2.0 ug/mL or 1.94 ug/g).
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Biological assay and omics readout as biomarkers
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Selnoflast is a specific antagonist of NLRP3, a protein component of the 
inflammasome. Activation of inflammasome induces interleukin 1 beta (IL-1b), 
which in turn induces expression of downstream genes (IL-1b gene signatures).



Single-cell RNA-seq revealed that selnoflast failed 
to induce the changes that we had hoped for
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Selnoflast was safe and well-tolerated. Selnoflast 450 mg once a 
day achieved plasma and tissue exposure predicted to maintain 
IL-1β IC90 over the dosing interval. However, PD biomarker results 
showed no robust differences between treatment arms, suggesting 
no major therapeutic effects are to be expected in UC. 



Future dimensions

● To overcome the curse of dimensionality of biomarkers
● To integrate mechanistic modelling, statistical modelling, 

and causal models for PK/PD and disease modelling
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Conclusions
● Biomarkers (1) guide compound optimization and differentiation 

in preclinical studies, (2) support human dose prediction in 
translational PK/PD studies, and (3) allow patient stratification 
in clinical trials;

● Mathematical and computational biology is indispensable for 
biomarker identification;

● Caveats in biomarker identification calls for integrated 
mechanistic and statistical modelling to establish causal 
relations.
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Outline of lecture 12

● An example of integrating statistical and mechanistic modelling: Griffiths et al.
● Mechanistic modelling of biological systems: from Boolean network to 

Agent-based modelling
● Causal inference
● Where can we go from here
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Drug discovery relies on in vitro, in vivo, and 
computational models across scales

26
Examples of molecular, omics and cellular, 
organ and system, and population modelling

Input

Output



Most statistical models predict output without 
knowing underlying mechanisms
● Non-causal statistical 

models are useful for 
hypothesis generation 
and exploratory 
analysis.

● Caution is required for 
high-dimensional data, 
for extrapolation, and 
for designing 
interventions.
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Simulating the curse of 
dimensionality
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Mechanistic and computational models explain
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Compartment models

Kinetics of ligand-target 
interaction

Particle models

Transport models Finite state models



Integration of knowledge, assumptions and data 
across scales is key for drug discovery
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An example of integrated modelling

● Griffiths et al. (PNAS 2020) profiled 
peripheral immune cell abundance in time 
series following treatment of Gastrointestinal 
(GI) tumours with immunotherapy in a small 
clinical trial.

● The authors used compartment models to 
characterize cell-cell interactions and 
analysed single-cell omics data to reveal 
immune cell abundance, pathway activity 
patterns, and differentiation status.
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How this study enriches our knowledge
• Facts

– Clinical response to immune checkpoint inhibitors varies substantially.
– Possible contributing factors correlate only weakly with patient response, 

including (1) tumor cell mutational load and antigen production, (2) 
immune-cell infiltration and signalling status, (3) Cross-talk between 
tumour and immune cells.

– It is challenging to obtain tumour tissue samples.

• Questions: Can circulating immune cells serve as a surrogate 
measurement of a tumour’s interaction with the host immune cells 
and reflect response to therapy early in the course of treatment?

• Conclusions: It is possible to predict patient response with the 
evolution of peripheral immune cell abundance and signalling over 
time, as well as how immune cell interact with the tumor.



Design of the clinical trial
● mFOLFOX6 (modified 

FOLFOX6): a 
chemotherapy regiment.

● Patient response was 
assessed by RECIST 
(Response Evaluation 
Criteria in Solid Tumors) 
1.1 guidelines, using 
computer tomography 
(CT).
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Mathematical modelling of tumour-immune cell 
interactions
Model inputs (all in time series):

● Tumour burden, inferred by 
combining antigen values and 
RECIST evaluation with a 
Gaussian process latent variable 
model.

● Abundance of PBMCs

Model output: estimated ability of 
immune cells to kill tumour cells
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Modelling time-series data with Gaussian Process

Challenge: tumor growth 
assessment (RECIST) 
involves much labour and 
costly.

Solution: assuming that 
the data is generated by a 
Gaussian process, and that 
cancer-specific antigens is 
correlated with the tumor 
growth, we can ‘impute’ the 
missing data with other 
biomarker data with 
Gaussian Process.
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Intuitions about Gaussian Process

1. Observe y values as if they are generated from a multivariate Gaussian 
distribution with indefinite dimensions, and time-dependent correlations.

2. We can infer the autorrelation (i.e. kernel function) by data: the more data, 
the better we can infer.
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The Lotka-Volterra model of predator-prey 
relationships



The Lotka-Volterra equations, visualized

Hares Foxes



Modelling of interactions between tumour 
and immune cells

Modelling assumptions:

• Tumor cells are attacked by 
immune cells

• Tumor cells recruit immune cells

• Chemotherapy kills both tumour 
and immune cells

• Anti-PD1 inhibitor immunotherapy 
impacts immune proliferation, 
recruitment, and cytotoxic tumor 
activity.



Model prediction and performance

• The strength of 
immune-tumor interaction 
is estimated by statistically 
fitting the growth rate of 
immune cells and tumor 
size to model predictions.

• Changes in tumor burden 
and immune cell 
abundance are described 
by data fitting, using a 
Bayesian hierarchical 
model.



Profiles of relative growth rates differ 
between responders and non-responders

• Neither tumor nor PBMC responds to chemotherapy in non-responders.
• Responders have lower PBMC abundance in general at baseline.



Immune cell population identified by scRNAseq

PBMCs were analysed 
at three time points: 
1. Cycle 1 (C1): 

baseline before 
treatment;

2. Cycle 3 (C3): 
chemotherapy 
alone;

3. Cycle 5 (C5): 
chemotherapy + 
anti-PD-1.

A total number of 70781 cells from 13 patients (7 responders and 6 non-responders) 
were profiled.



Pathway analysis
Single-sample gene-set enrichment analysis was performed to identify 
pathway differences before therapy, during chemotherapy, and during 
the early combo of chemotherapy and immunotherapy using a random 
effects linear model.



Responders show changes in T-cell 
signalling during treatment



Responders show changes in monocyte 
signalling during treatment



Associations between omics data and 
inferred model parameter



Impact and limitation of the study
• On the biological side, the results suggest that peripheral blood phenotypes 

can be used as biomarker of patient responsiveness to therapy. The idea 
seems to be confirmed the findings by Wu et al., Peripheral T cell expansion 
predicts tumour infiltration and clinical response, Nature 2020.

• On the modelling side, the study integrates machine learning, omics data 
analysis, mathematical modelling techniques to link macroscopic findings, for 
instance antigen and RECIST scores, with cellular findings, including 
scRNAseq and flow cytometry. This study exemplifies what we call multiscale 
modelling of drug mechanism and safety.

• We do not know why some patients respond to anti-PD-1 or anti-PDL1 
therapies better than other patients based on findings reported in both 
papers. Nevertheless, both studies suggest that immune cells in peripheral 
blood may be used as biomarkers in certain settings.

https://www.nature.com/articles/s41586-020-2056-8
https://www.nature.com/articles/s41586-020-2056-8


Conclusions

● Understanding how drugs work and how to develop 
better drugs requires causal reasoning, for which there 
are no scientific consensus yet.

● Integrated mechanistic, computational, and statistical 
modelling across scales is a viable approach towards 
causal reasoning.

● Mathematical and computational biology is 
indispensable to address this grand challenge.
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Ways to learn more about mathematical & 
computational biology in drug discovery
● People around you, both with the same and different backgrounds;

● Reading, including Journal Nature Reviews Drug Discovery, blogs In 
the Pipeline, CureFFI, and newsletter This Week in Mathematical 
Oncology;

● Online courses: Statistical Rethinking by Richard McElreath, with 
freely available lecture videos on YouTube, and Information Theory, 
Inference, and Learning Algorithms by David MacKay, with freely 
available lecture videos.
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https://www.nature.com/nrd/
https://blogs.sciencemag.org/pipeline/
https://blogs.sciencemag.org/pipeline/
https://www.cureffi.org/
https://thisweekmathonco.substack.com/
https://thisweekmathonco.substack.com/
https://www.youtube.com/watch?v=4WVelCswXo4&list=PLDcUM9US4XdNM4Edgs7weiyIguLSToZRI
https://www.youtube.com/watch?v=4WVelCswXo4&list=PLDcUM9US4XdNM4Edgs7weiyIguLSToZRI
https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6
https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6


FDA’s opinions on Artificial Intelligence and 
Machine Learning in Drug Development

1. Human-led governance, accountability, and 
transparency

2. Quality, reliability, and representativeness of data
3. Model development, performance, monitoring, and 

validation
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That was it, MCBDD 2024

THANK YOU!
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A real-word example with a bispecific antibody

56
TGI: tumour growth inhibition; TO: target occupancy; 
PBMC, peripheral blood mononuclear cells



Exposure-response in animal model and 
translatable biomarkers are essential for dose 
prediction
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Molecular basis of cancer immunotherapy
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Tumour mutation burden and immune phenotype 
may affect the effect of immunotherapy

59
MHC: Major Histocompatibility Complex;  TMB:Tumour Mutation Burden.



Cristescu et al. established TMB and 
T-cell-inflamed Gene Expression Profile (GEP) as 
biomarkers

Patients with high 
tumor mutation 
burden AND a 
T-cell-inflamed 
gene expression 
profile (TME) are 
more likely to 
respond to cancer 
immunotherapy.
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Univariate analysis establishes correlation between 
TMB/GEP and responsiveness

GEP: weighted sum of 
normalized expression of 18 
genes related with immune 
response (CCL5, CD27, 
CD274 (PD-L1), CD276 
(B7-H3), CD8A, CMKLR1, 
CXCL9, CXCR6, HLA-DQA1, 
HLA-DRB1, HLA-E, IDO1, 
LAG3, NKG7, PDCD1LG2 
(PDL2), PSMB10, STAT1, 
and TIGIT).

HNSCC: head and neck 
cancer 61



Both TMB and GEP can partially predict 
responsiveness
Receiver 
Operating 
Characteristic 
(ROC) curves of 
using either TMB 
or GEP for binary 
classification. 
Metrics: Area 
Under ROC 
(AUROC)
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High TMB and high GEP are associated with higher 
responsiveness to anti-PD1 antibody treatment
● From left to right: 

three patient cohorts 
(pan-cancer; 
head-and-neck 
cancer; melanoma)

● Open red circles: non 
responders; Black 
dots: responders.
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Data mining in public cancer database TCGA 
suggests potential indications
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Meta-analysis (Litchfield et al. 2021) confirms TMB 
and T-cell infiltration as predictors of responsiveness 

CXCL9 is a chemokine that enhances 
recruitment of cytotoxic CD8+ T cells into the 
tumor.
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The multivariate classifier improves performance, 
but to predict responsiveness is an open question
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Wu et al. characterized T cells in tumour, normal
adjacent tissue (NAT), and blood using single-cell 
RNA and TCR sequencing

● Expanded clonotypes (T 
cells) found in the tumour 
and normal adjacent tissue 
can also typically be 
detected in peripheral 
blood.

● Intra-tumoural T cells, 
especially in responsive 
patients, are replenished 
with fresh, non-exhausted 
replacement cells from 
sites outside the tumour.
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Bonus: Mathematical modelling of epidemiology



Agent-based modelling of cancer immunotherapy 
for colorectal cancer without high TMB
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Agent-based modelling of cancer immunotherapy 
for colorectal cancer without high TMB
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Counterfactual and statistical analysis allow us 
learn from the models confirm the learnings
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Bradford Hill Criteria for causation

1. Strength (effect size)
2. Consistency (reproducibility)
3. Specificity
4. Temporality
5. Biological gradient (dose-response relationship)
6. Plausibility
7. Coherence
8. Experiment
9. Analogy (similarity)

10. Reversibility (proposed by others)
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Statistical causal inference with Directed Acyclic 
Graphs (DAGs)
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Reading: chapter 1-6 of Statistical Rethinking (2nd Edition)


