

What efficacy and safety profiles can we expect

Mathematical and Computational Biology in Drug Discovery (MCBDD) Module IV

Dr. Jitao David Zhang May 2025

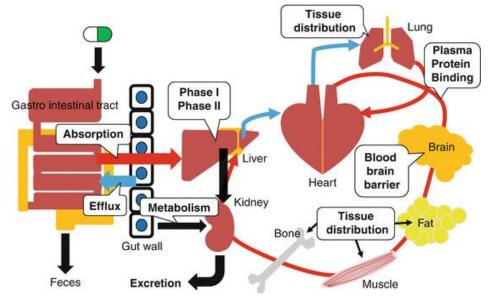
Where are we now

Target identification & assessment

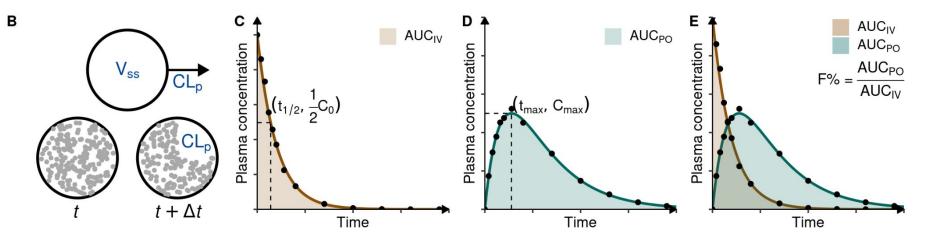
Goal: we want to select **one compound** from a few $(\sim 10^2 - 10^0)$ for entry in human.

Key factors to consider in selecting compounds

- Potency, efficacy and pharmacodynamics(PD)
- Pharmacokinetics (PK)
 - Absorption
 - Distribution
 - Metabolism
 - Excretion
- Toxicology
- Biomarkers



Key PK parameters: V_{ss} , CL_{p} , $t_{1/2}$, t_{max} , C_{max} , and F



Vss	Volume of distribution at steady state.	C _{max}	Maximum plasma concentration.
CLp	Plasma clearance.	Time point in which the Cmax is measured.	
t _{1/2}	Half-life, time for a substance to reach the half concentration of the initial value (C_0) .	F% (or F)	Bioavailability, the percentage of the administered compound reaching systemic circulation.

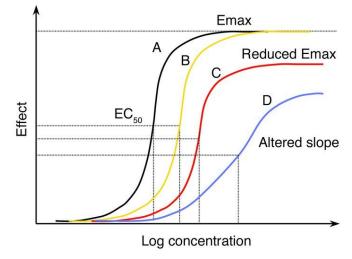
The Hill function as a a typical PD model

- The Hill function is one of the mostly useful non-linear functions to model biological systems.
- In its general form, H_{max} indicates the maximal value to which the function is asymptotic, n is the shape parameter (known as the Hill's coefficient), and k is the reflection point, often abbreviated as XC₅₀ (X=I, E, C, ...), the half-saturation constant.
- The Michaelis-Menten model is a special case of the Hill function with *n*=1.

$$H=H_{max}rac{x^n}{k^n+x^n}$$

General form of the Hill function

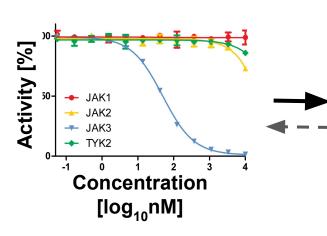
$$E = E_{max}rac{[L]^n}{EC_{50}^n + [L]^n}
onumber \ = E_{max}rac{1}{1+(rac{EC_{50}}{[L]})^n}$$



White. *J Clin Invest*. 2004;113(8):1084-1092. https://doi.org/10.1172/JCI21682.

Modelling dose-dependent effect

Vehicle

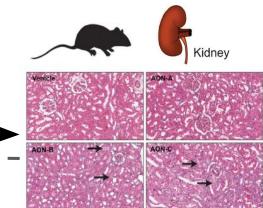


AON-B AON-C

AON-A

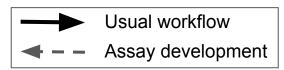
Biochemical & biophysical assays

Cellular assays (*in vitro*)

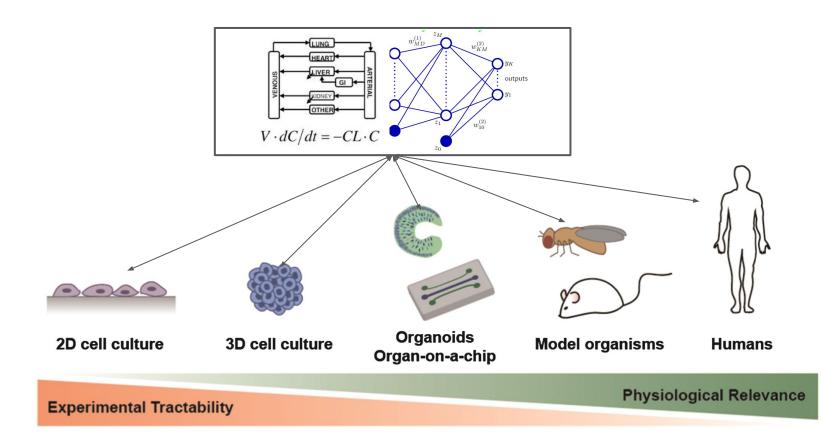


UNI BASEL

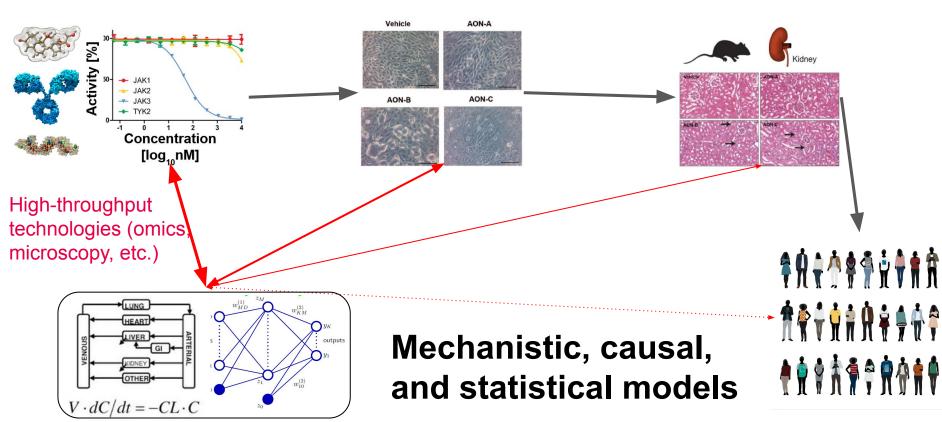
Animal experiments (*in vivo*)



Biological and computational models of human diseases



Computational methods empower efficacy and toxicity assessment



In vitro→*In vivo*→Human is not the only way

POLICY FORUM

BIOMEDICAL RESEARCH

Discovery research in physiologically maintained deceased

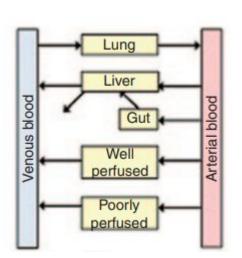
Expanded research opportunities in deceased humans require ongoing ethical inquiry

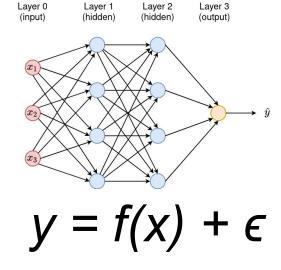
...this approach may...mitigate risks traditionally borne by human subjects during phase 1 clinical trials...

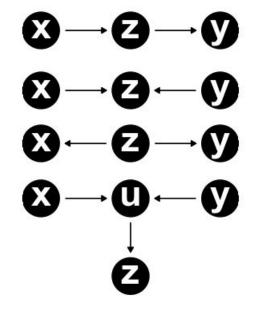
Douglas B. Pet^{1,2}, Brendan Parent³, Neel S. Singhal^{1,2}, Claire D. Clelland^{1,4}

Pet, Douglas B., Brendan Parent, Neel S. Singhal, and Claire D. Clelland. 2025. "Discovery Research in Physiologically Maintained Deceased." Science 388 (6746): 473–76. <u>https://doi.org/10.1126/science.adt3527</u>.

Three types of computational models



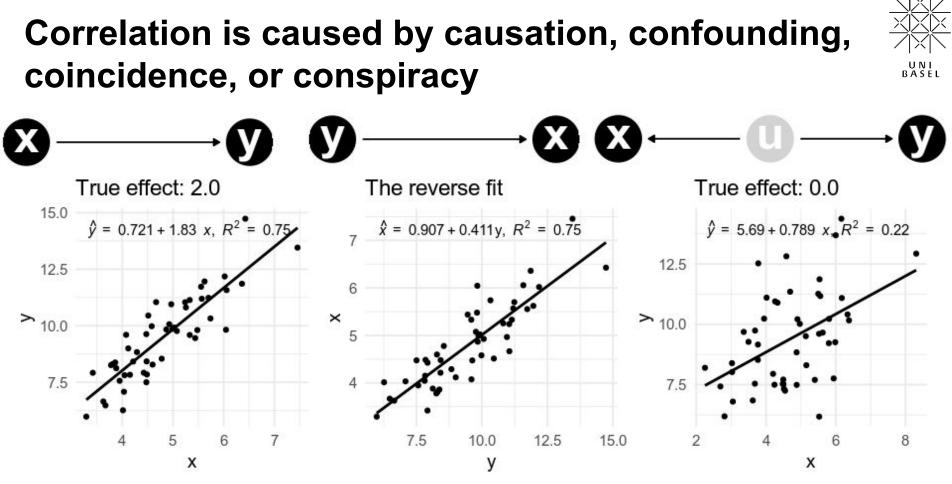




Mechanistic models

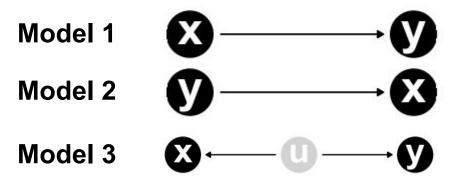
Statistical and machine-learning models

Causal models



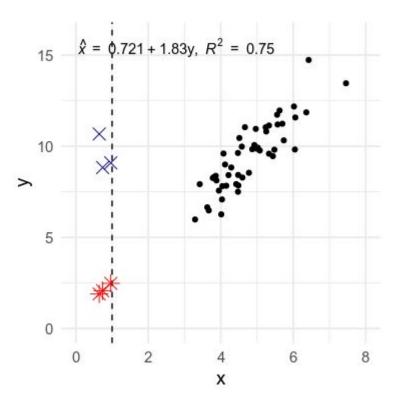
Statistical models alone cannot derive causality from correlation 11

We learn causality by (1) listing models explicitly and (2) manipulating a variable and observe the outcomes



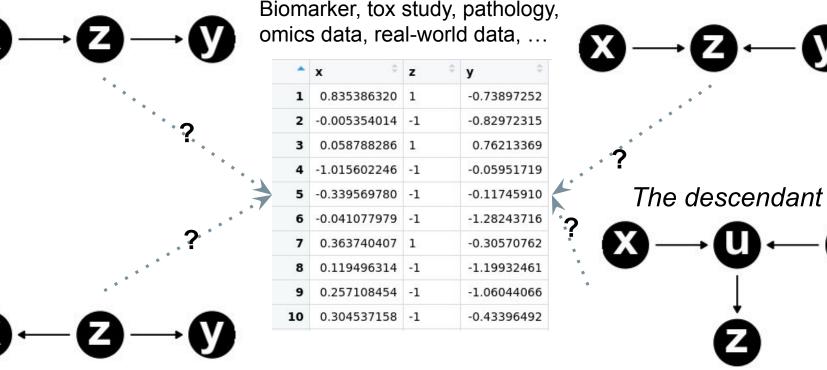
Assume that the data is generated by either Model 1, or Model 2, or Model 3. And assume that we can manipulate the value of X by setting it to 1.0 (the dash line).

Question: which outcomes (red stars or blue crosses) would support which models? Why?



UNI BASEL

Causality is crucial for drug discovery



We need both models (knowledge + assumptions) and data to infer causality.

Accurate predictions on small data with a tabular foundation model

Almost too good to be true?

"I knew the indoor pool was too good to be true."

Tabular Prior-data Fitted Network (TabPFN)

Article

Accurate predictions on small data with a tabular foundation model

https://doi.org/10.1038/s41586-024-08328-6
Received: 17 May 2024
Accepted: 31 October 2024
Published online: 8 January 2025
Open access
Check for updates

Noah Hollmann^{12,37}, Samuel Müller¹⁷, Lennart Purucker¹, Arjun Krishnakumar¹, Max Körfer¹, Shi Bin Hoo¹, Robin Tibor Schirrmeister^{4,8} & Frank Hutter¹³⁸

Tabular data, spreadsheets organized in rows and columns, are ubiquitous across scientific fields, from biomedicine to particle physics to economics and climate science^{1,2}. The fundamental prediction task of filling in missing values of a label column based on the rest of the columns is essential for various applications as diverse as biomedical risk models, drug discovery and materials science. Although deep learning has revolutionized learning from raw data and led to numerous high-profile success stories3-5, gradient-boosted decision trees6-9 have dominated tabular data for the past 20 years. Here we present the Tabular Prior-data Fitted Network (TabPFN), a tabular foundation model that outperforms all previous methods on datasets with up to 10,000 samples by a wide margin, using substantially less training time. In 2.8 s, TabPFN outperforms an ensemble of the strongest baselines tuned for 4 h in a classification setting. As a generative transformer-based foundation model, this model also allows fine-tuning, data generation, density estimation and learning reusable embeddings. TabPFN is a learning algorithm that is itself learned across millions of synthetic datasets, demonstrating the power of this approach for algorithm development. By improving modelling abilities across diverse fields, TabPFN has the potential to accelerate scientific discovery and enhance important decision-making in various domains.

		⊙ Watch 34 → 🦞 Fork 249 → 🌟 Starred 3k
1 main → 1 29 Branches ⓒ 1 Tag	Q Go to file t Add file -	<> Code - About
🌸 noahho Merge pull request #244 from Li	ke31/fix-readme-formatting 940a0a0 · yesterday	 [♦] TabPFN: Foundation Model for Tabular Data [♦]
🖿 .github		last week 🕜 priorlabs.ai
examples		
scripts		
src/tabpfn		لت Readme last week علية View license
tests		
🗋 .gitignore		3 weeks ago
.pre-commit-config.yaml		2 months ago 💿 34 watching
		last month % 249 forks
README.md		Report repository yesterday
pyproject.toml		last week Releases
		©1 tags

Source code at <u>https://github.com/PriorLabs/tabpfn</u>, released in a license analogous to Apache 2.0 (commercial use friendly).

In-Context Learning (ICL)

The model isn't explicitly trained on a particular task ahead of time. Instead, the prompt itself provides examples that enable the model to perform the task on the fly. It is one of the intriguing abilities of deep transformer models.

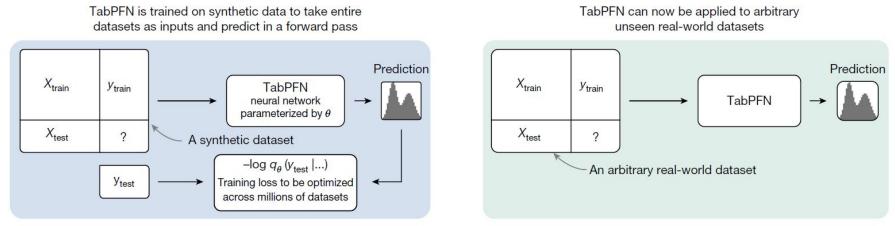
Who won the final game of World Cup 2014?

Reasoned for a few seconds

Germany won the final of the 2014 FIFA World Cup, defeating Argentina 1-0 in extra time.

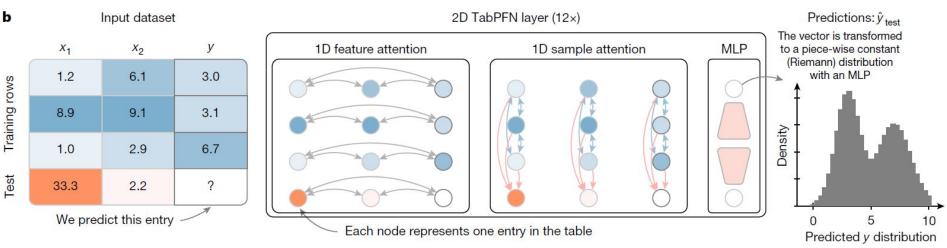
Left: chat history (ChatGPT o1 model, tested on 18.03.2025). Right: The ground truth.

Tabular Prior-data Fitted Network (TabPFN) is trained with synthesized data and predicts missing value in user data

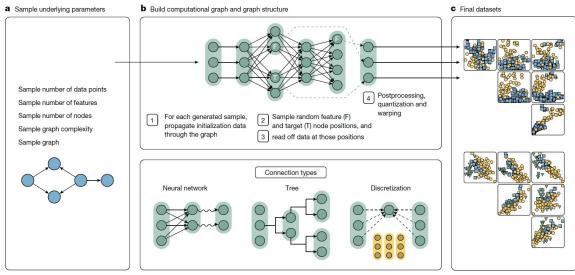


A metaphor: Imagine a lab where millions of billiard games are played simultaneously: in each game, different numbers of balls are placed randomly, and a white ball starts with a random velocity at a random position. By learning the trajectory of all balls of all games, one may learn to predict the trajectory of any real billiard game, as long as the positions of all balls and the initial velocity of the white ball is known.

Architecture of TabPFN uses both row-wise sample and column-wise feature information to predict a distribution

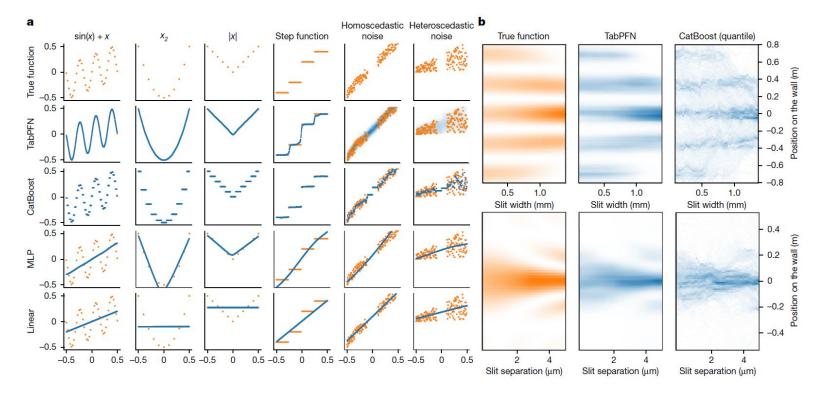


Generating synthesized data with causal models

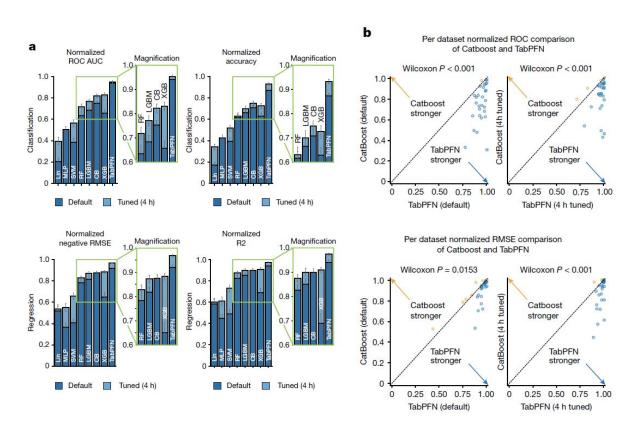


- 1. We sample 100-million structurally unique directed acyclic graphs (DAGs) as causal graphs that generate data.
- 2. Random data is assigned to the root node. Other nodes are propagated by rules specified by the edges, plus a Gaussian noise.
- 3. The values of sampled features (input to the model) and targets (output of the model) are extracted.
- 4. Data are post-processed (non-linear distortion, binning, random missing) to reflect real-world data processing.
- 5. Synthesized data from 10⁸ causal experiments are used to train *TabPFN*.

TabPFN's prediction on data generated by simple functions



Performance benchmark against popular methods



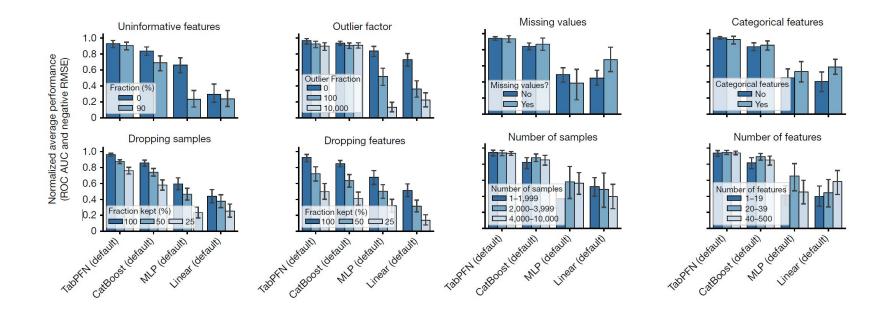
Left: Performance for classification (top) and regression (bottom) tasks.

Right: Comparing performance of TabPFN and CatBoost, the top contendant, for classification (top) and regression (bottom) tasks.

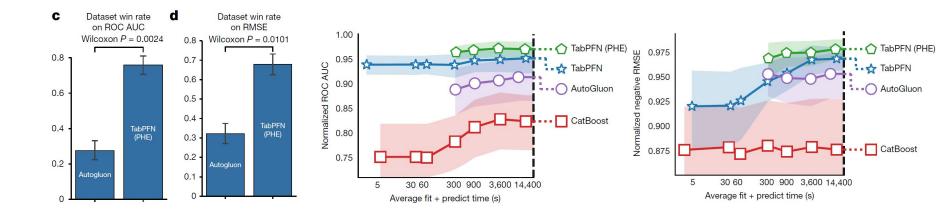
Hollmann, Noah, Samuel Müller, ..., Frank Hutter. 2025. "Accurate Predictions on Small Data with a Tabular Foundation Model." Nature 637 (8045): 319–26.

Lin: linear; MLP: multi-layer perceptrons; SVM: support vector machines; RF: random forest; LGBM: Light Gradient Boosting Machine; CB: CatBoost; XGB: XGBoost; ROC: receiver operating characteristic; RMSE: root mean square error.

Robustness against common caveats and problems



Benchmark against AutoML and CatBoost



Datasets that the authors tested for classification (left) and regression (right) tasks

Article

Name	OpenML ID	Domain	Features	Samples	Targets	Categorical Feats.
ada	41156	Census	48	4147	2	0
Australian	40981	Finance	14	690	2	8
blood-transfusion-service-center	1464	Healthcare	4	748	2	0
car	40975	Automotive	6	1728	4	6
churn	40701	Telecommunication	20	5000	2	4
cmc	23	Public Health	9	1473	3	7
credit-g	31	Finance	20	1000	2	13
dna	40670	Biology	180	3186	3	180
eucalyptus	188	Agriculture	19	736	5	5
first-order-theorem-proving	1475	Computational Logic	51	6118	6	0
GesturePhase Segmentation Pro- cessed	4538	Human-Computer Interac- tion	32	9873	5	0
jasmine	41143	Natural Language Processing	144	2984	2	136
kc1	1067	Software Engineering	21	2109	2	0
kr-vs-kp	3	Game Strategy	36	3196	2	36
madeline	41144	Artificial	259	3140	2	0
mfeat-factors	12	Handwriting Recognition	216	2000	10	0
ozone-level-8hr	1487	Environmental	72	2534	2	0
pc4	1049	Software Engineering	37	1458	2	0
philippine	41145	Bioinformatics	308	5832	2	0
phoneme	1489	Audio	5	5404	2	0
qsar-biodeg	1494	Environmental	41	1055	2	0
Satellite	40900	Environmental Science	36	5100	2	0
segment	40984	Computer Vision	16	2310	7	0
steel-plates-fault	40982	Industrial	27	1941	7	0
sylvine	41146	Environmental Science	20	5124	2	0
vehicle	54	Image Classification	18	846	4	0
wilt	40983	Environmental	5	4839	2	0
wine-quality-white	40498	Food and Beverage	11	4898	7	0
veast	181	Biology	8	1484	10	0

Finder and Date Table 2011 in a factor data and factor of the main second state of the side state and second

Extended Data Table 4 | List of test datasets used for primary evaluation of regression tasks

Name	OpenML ID	Domain	Features	Samples	Categorical Fea- tures
abalone	42726	Marine Biology	8	4177	1
airfoil_self_noise	44957	Aerospace Engineering	5	1503	0
auction_verification	44958	Economics	7	2043	2
boston	531	Real Estate	13	506	2
cars	44994	Automotive Engineering	17	804	0
colleges	42727	Education	44	7063	12
concrete_compressive_ strength	44959	Materials Science	8	1030	0
cpu_activity	44978	Computer Engineering	21	8192	0
energy_efficiency	44960	Architectural Engineering	8	768	0
geographical_origin _of_music	44965	Music Information Retrieval	116	1059	0
grid_stability	44973	Power Systems Engineering	12	10000	0
house_prices_nominal	42563	Real Estate	79	1460	43
kin8nm	44980	Robotics	8	8192	0
Mercedes_Benz_ Greener_ Manu- facturing	42570	Manufacturing	376	4209	8
MIP-2016-regression	43071	Operations Research	144	1090	1
Moneyball	41021	Sports Analytics	14	1232	6
pumadyn32nh	44981	Robotics	32	8192	0
QSAR_fish_toxicity	44970	Toxicology	6	908	0
quake	550	Geophysics	3	2178	0
SAT11-HAND-runtime- regression	41980	Computational Logic	116	4440	1
sensory	546	Food Science	11	576	11
socmob	541	Sociology	5	1156	4
space_ga	507	Political Science	6	3107	0
student_performance	44967	Education	30	649	17
tecator	505	Food Science	124	240	0
topo_2_1	422	Cheminformatics	266	8885	0
us_crime	42730	Criminology	126	1994	0
yprop_4_1	416	Cheminformatics	251	8885	0

All classification tasks from the AutoML Benchmark³⁶ with fewer 10,000 samples and 500 features. The benchmark comprises diverse real-world tabular datasets, curated for complexity, relevance, and domain diversity.

All regression tasks from the AutoML²⁶ and OpenML-CTR23²⁷ Benchmarks with fewer 10,000 samples and 500 features. The benchmark comprises diverse real-world tabular datasets, curated for complexity, relevance, and domain diversity.

We witness a paradigm shift in analysing tabular data: from *causal model selection* to

Unclapes a lity assisted prediction generated this piece of data? Use them for prediction. From now on: Sample a large number of causal models, synthesize data from them, and train ML models trained on synthesized

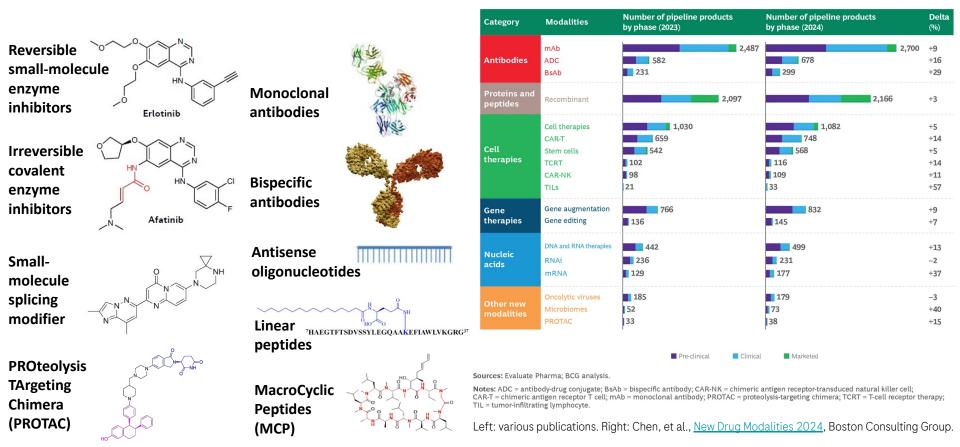
0.8353863
 -0.0053540
 0.0587882
 -1.0156022
 -0.3395697
 -0.0410779
 7.03637404
 0.1194963
 0.2571084
 0.3045371

6320 1	-0.73897252				\mathbf{X} —			4	3	2	1	^ ,	x °	z	• y •
4014 -1	-0.82972315	\mathbf{w}^{-}	- 9		$\mathbf{\omega}$	9		5	4	3	2	1	0.835386320	1	-0.73897252
8286 1	0.76213369	-	-	-	-	-	-	6	5	4	3	2 -	-0.005354014	-1	-0.82972315
2246 -1	-0.05951719							7	6	5	4	3	0.058788286	1	0.76213369
9780 -1	-0.11745910 ┥	— € •	_ 7 _	\rightarrow	- 🖸 -	- 64	→₩─→	8	7	6	5	4 -	-1.015602246	-1	-0.05951719
7979 -1	-1.28243716	•	U		•	U		9	8	7	6	5	-0.339569780	-1	-0.11745910
0407 1	-0.30570762							10	9	8	7	6	-0.041077979	-1	-1.28243716
6314 -1	-1.19932461	- X -	→Თ⊦	$-\mathbf{O}$	\mathbf{X} –	→Œ←			10	9	8	7	0.363740407	1	-0.30570762
8454 -1	-1.06044066	•			•					10	9	8	0.119496314	-1	-1.19932461
7158 -1	-0.43396492		1								10	9	0.257108454	-1	-1.06044066
			¥			¥						10	0.304537158	-1	-0.43396492

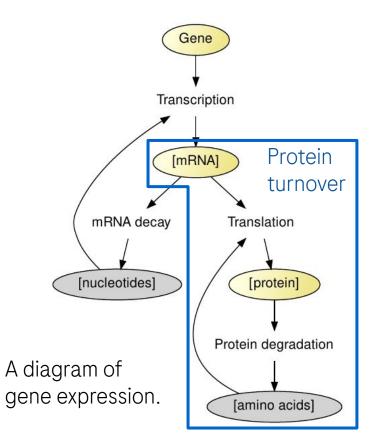
The difficulty of asserting causality remains. However, thanks to causal models and transformers, we now have better tools for prediction.

End of lecture on 02.05.2025

Many modalities are now available: most of them target proteins. Why?



Protein turnover consists of synthesis and degradation



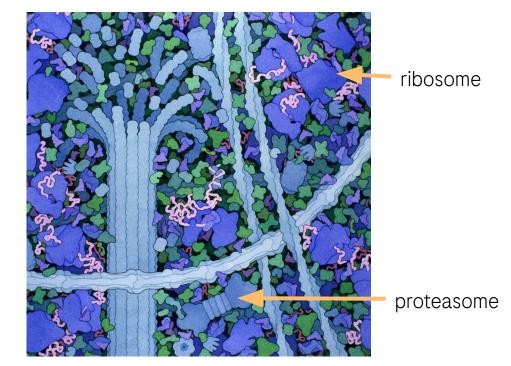
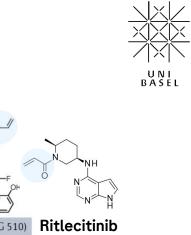


Illustration by David S. Goodsell. doi: 10.2210/rcsb_pdb/goodsell-gallery-006

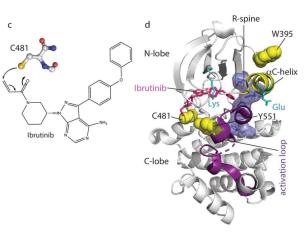


Covalent drugs have gained renewed interests Osimertinib Boceprevir Aspirin first Fluorouracil Clopidogrel Ibrutinib Sotorasib (AMG 510) marketed 2023 2024 1899 1928 1962 1988 1996 1997 2003 2011 2012 2013 2015 2019 2021 Lazertinib Penicillin Bortezomib Afatinib Nirmatrelvir Fosfomycin discovered Omeprazole Carfilzomib Voxelotor Warhead NSAID Antibiotic Oncology Gastroenterology Heart disease and stroke prevention Sickle-cell anaemia Antiviral

Adapted from Nature Reviews Drug Discovery. 21, 881-898 (2022), courtesy of Wolfgang Haap and Bernd Kuhn

Ibrutinib, a first-in-class inhibitor of BTK (Bruton's Tyrosine Kinase)

lbrutinib	
Approval	AbbVie (2013)
Binding type	Irreversible covalent binding
Binding site	C481, ATP-binding domain
Warhead	Acrylamide
Half-life	~4-6 hours
Indication	CLL, MCL, MZL, WM, GVHD, BN
Dosage	420 mg, qd (CLL/SLL, WM); 560 mg, qd (MCL, MZL)
Administration	Oral

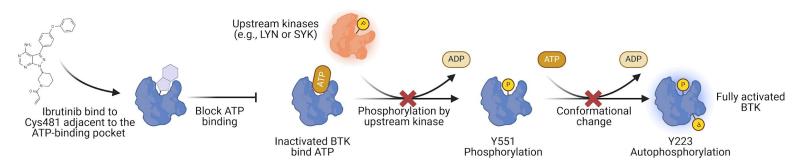


The ATP-binding pocket:

 A highly conserved region within the kinase domain.

Cysteine residue (Cys481):

- Located adjacent to the ATP-binding pocket
- Cys481 is a relatively unique cysteine, enabling selective covalent inhibition.



Nature Reviews Drug Discovery 21, 881-898 (2022). Courtesy of Marcus Bantscheff

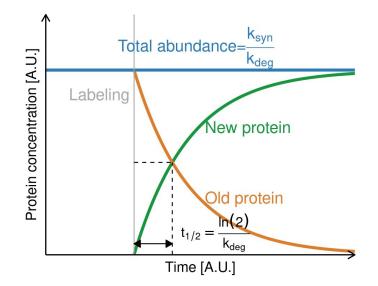
UNI BASEL

Importance of protein turnover

Turnover visualized, repurposing the *lilac tracer* demonstrating Troxler's effect (Jeremy Hinton, <u>CC-BY 3.0</u>)

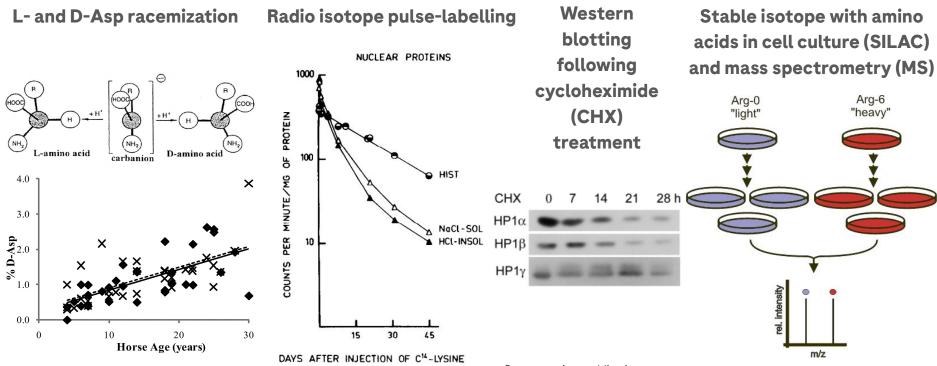
Protein turnover is critical for drug discovery & development

- Protein turnover affects efficacy, potency, ADME properties, and safety profiles of drug candidates.
- Protein turnover is essential for target prioritization and modality selection, for instance covalent binders and/or targeted protein degraders.
- Understanding protein turnover helps to translate pharmacokinetic and pharmacodynamic (PK/PD) relationships between systems.



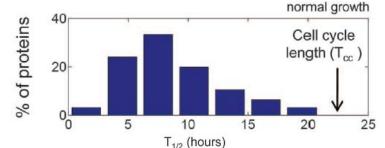
Assumptions: zero-order synthesis (rate k_{syn}), first-order degradation (rate k_{deg}), and steady state (i.e. no expression changes).

Quantifying protein turnover and long-living proteins

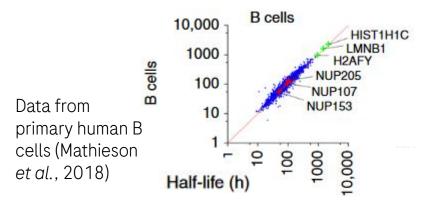


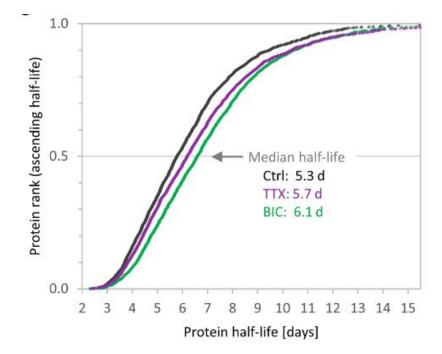
Source: various publications.

Protein half-life in vitro ranges between hours and days



Data from a human non-small cell lung cancer cell line (Eden *et al.,* 2011)





Data from primary hippocampal neuronal cells from rat (Dörrbaum *et al.*, 2020)

Protein half-life in vivo ranges between days and years

3 0.

10.7 days (median) All categorized proteins (N = 1266) Nucleic acid-binding proteins (N = 62) - -----Histones (N = 10)DNA remodelling and transcriptional regulators (N = 11) +++ Nuclear importins and exportins (N = 10)· HI RNA processing and translation regulators (N = 14) t-RNA synthetases (N = 16) Protein synthesis (N = 7)Endoplasmic reticulum components (N = 57) (AEH Chaperones and heat shock proteins (N = 23) Ca2+ binding proteins (N = 6) Ca2+ channels (N = 5) H Ca2+/calmodulin-dependent protein kinase (N = 5) HH. Cell adhesion molecules (N = 11) Cytoskeletal proteins (N = 117) - a-baratla-ada matta ada an Kinases (N = 56)Phosphatases and respective regulators (N = 107) GTPases and respective regulators (N = 41)And the second s 1. 1. Small GTPases and related proteins (N = 35) at the start Carrier vesicles (VPS and sorting nexins, N = 15) · see Herein Membrane trafficking proteins (N = 21) ALC: NHOUSE Molecular motors (N = 26) SNAREs (N = 10)Endocytic proteins (N = 16) ++++ Clathrin endocytosis apparatus (N = 17) Exocyst (N = 10) Lipid binding proteins (N = 13) Ribosome (N = 62) Protein modification and degradation pathway (N = 25) Ubiquitin pathway (N = 21)Proteasome (N = 30) Scaffolding and adaptor proteins (N = 29)-----Transporters and channels (N = 27)Extracellular matrix components (N = 3) Myelin (N = 16) . . . 1 Synapse (N = 104). 1 11 March Carlos Mitochondrial proteins (N = 228) 0 Lifetime (d)

Data from Fornasiero et al., 2018, mouse brain

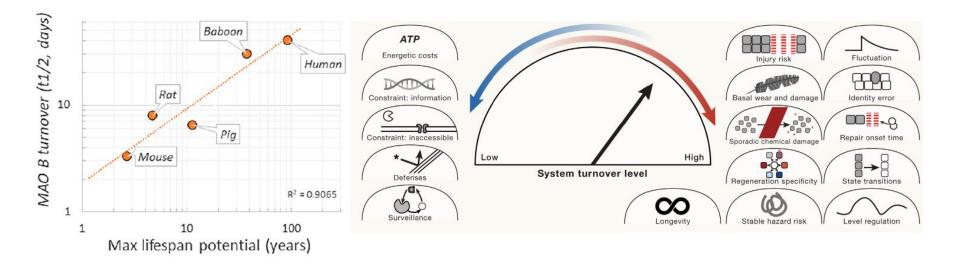
Table 1 Known long-live	ed proteins and mole	ecules		
Protein or molecule*	Age [‡]	Measure	Organism	
Eye lens crystallin	>70 years	Lifetime	Human	
Collagen	117 years	Half-life	Human	
Elastin	>78 years	Lifetime	Human	
Enamel and dentine	>70 years	Lifetime	Human	
Histones	223 days	Half-life	Mouse	
	117 days	Half-life	Mouse	
	218 days	Half-life	Rat	
Nuclear pore proteins	>1 month	Lifetime	Worm	
	>1 year	Lifetime	Rat	
Myelin	95 days	Half-life	Rat	
	>100 days	Half-life	Mouse	
Myelin proteolipid protein	>100 days	Half-life	Mouse	
REC8	Weeks	Lifetime	Mouse	
mRNA	Possibly indefinite	Lifetime	Plant seed	
	>2 years	Half-life	Frog oocyte	
Cholesterol	>18 months	Lifetime	Rabbit	
Phospholipids	>192 days	Lifetime	Rabbit	

Toyama, Brandon H., and Martin W. Hetzer. "Protein Homeostasis: Live Long, Won't Prosper." Nature Reviews Molecular Cell Biology, 2013

Half-life varies between proteins and contexts: influencing factors and an example

Protein intrinsic factors			
Folding Sequence Aggregation Subcellular	Condition	Half-life of protein X	Source
Structure Post-translational modifications (PTMs) Interaction partners Technology	Human neurons <i>in vitro</i>	38.6h	Roche in-house data
Protein turnover Physiological context	Mouse neurons in vitro	34.1h (standard error:3.9h)	Fornasiero et al., Nature Communications,
Cells in vitro, cells in vivo,			2018
or extracellular? Sex Environment Species	Mouse cortex <i>in</i> <i>vivo</i>	619.2h, or 25.8d	<u>Kluever <i>et al.</i>,</u> Science
Cell type, tissue, or organ Disease Metabolic status			Advances, 2022

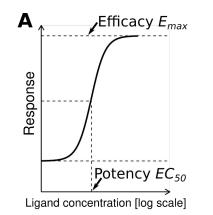
Nothing in Biology Makes Sense Except in the Light of Evolution: the purpose and ubiquity of turnover

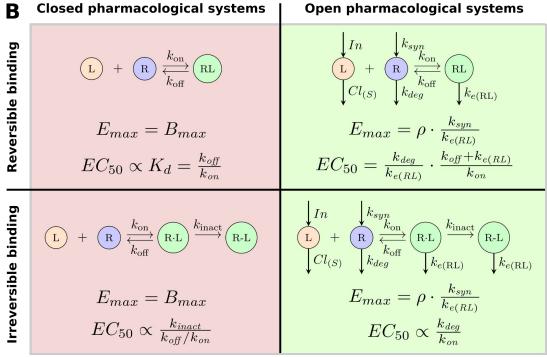


Left: Gabrielsson, J., and S. Hjorth. 2023. "Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance." Pharmacological Reviews 75 (3): 416–62. <u>https://doi.org/10.1124/pharmrev.121.000524</u>. Right: Reddien, Peter W. 2024. "The Purpose and Ubiquity of Turnover." Cell 187 (11): 2657–81. <u>https://doi.org/10.1016/j.cell.2024.04.034</u>. Quote: Theodosius Dobzhansky

Open models integrate protein turnover into pharmacological modeling

According to open models (see **B** the comprehensive review by **Gabrielsson and Hjorth**), target turnover impacts *in vivo* potency, efficacy, and clearance.

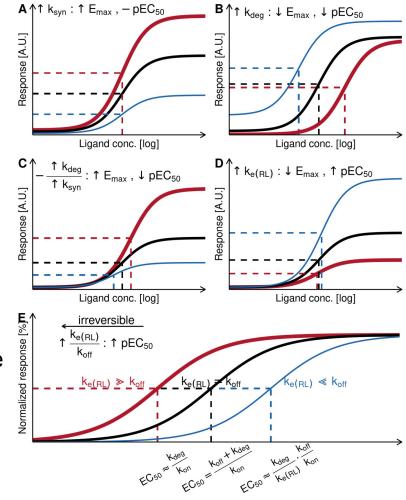




Predictions by open models

With open-source code and data used for simulation

- A. Higher target synthesis rate increases efficacy while potency remains unchanged.
- B. Higher degradation rate decreases both efficacy and potency.
- C. Keeping the steady-state abundance fixed, increasing both synthesis & degradation rates increase both efficacy and potency.
- D. Higher ligand-target complex elimination rate reduces efficacy while increases potency.
- E. Potency of covalent inhibitors is dictated by k_{deg}/k_{on} : slow turnover and fast on-rate are preferred.



Roche's Protein Turnover Database integrates external and internal data

The table shows the protein half-life datasets that David curated for the turnover database. The curation contains following steps:

- 1. The data were curated from individual studies.
- 2. Features (uniprot IDs, protein groups, etc.) were harmonized and mapped to genes of the respective genome as well as to human orthologues.
- 3. Units of measurements were harmonized to hours.
- 4. Sample annotations are harmonized.

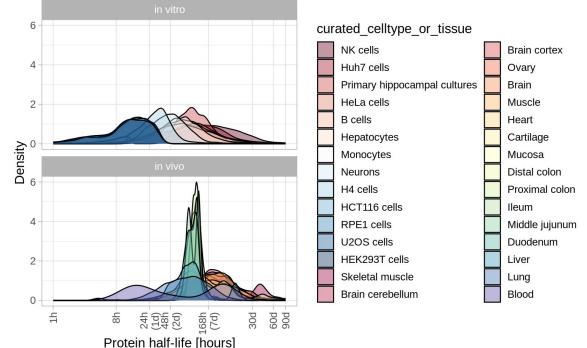
	organism	assay_type	celltype_or_tissue
Doerrbaum-2018	rat	in vitro	Primary hippocampal cultures
Fornasiero-2018	mouse	in vivo	Brain cortex, Brain cerebellum, Heart, Muscle
Mathieson-2018-human	human	in vitro	NK cells, Hepatocytes, Monocytes, B cells
Mathieson-2018-mouse	mouse	in vitro	Neurons
Arike-2020	mouse	in vivo	Duodenum, Middle jujunum, lleum, Proximal colon, Distal colon
Li-2021	human	in vitro	U2OS cells, HEK293T cells, HCT116 cells, RPE1 cells
Morgenstern-2021	human	in vitro	HeLa cells, Huh7 cells
Rolfs-2021	mouse	in vivo	Cartilage, Skeletal muscle, Mucosa, Liver, Blood
Kluever-2022	mouse	in vivo	Brain cortex, Brain cerebellum
Chen-2023	mouse	in vivo	Lung, Heart, Brain
Harasimov-2024	mouse	in vivo	Ovary
Lothar-H4	human	in vitro	H4 cells

Dataset overview (v202407)

We observe in general longer half-life *in vivo* than *in vitro*, with variations between cell/tissue types

Right: density plot of protein half-life, stratified by assay type (*in vitro* versus *in vivo*) and by cell type or tissue.

Most *in vivo* studies tend to report longer half-life than at least some *in vitro* studies, though considerable variability is observed in both categories.



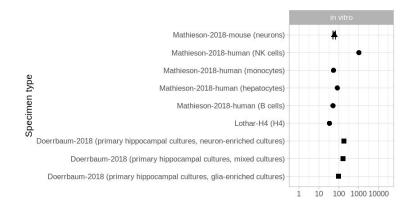
A survey of half-life of covalent binder targets

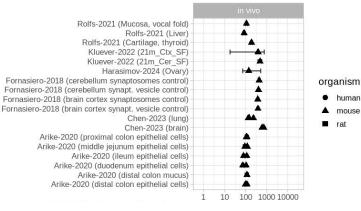
NA PERIOD AND A CONTRACT PROVIDENT

We curated 31 covalent binders which are either in clinical development or approved, targeting a total of 26 human and 7 viral or bacterial proteins.

The table summarizes half-life data for 24 human proteins. Turnover data of KRAS is visualized with boxplots.

	unique_drugs	in vitro	in vivo
EGFR	8	35.0	64.9
ERBB2	4	17.8	NA
втк	3	79.2	NA
KRAS	3	84.3	124.
PSMB5	3	109.7	212.0
ERBB4	2	19.3	70.3
MAOB	2	111.8	272.
P2RY12	2	194.8	167.
PSMB1	2	129.9	163.9
ABAT	1	185.0	433.0
ATP4A	1	NA	136.8
FGFR4	1	7.7	NA
HBA1	1	119.2	NA
HMGCR	1	10.6	5648.
JAK1	1	12.5	89.
JAK2	1	57.0	N
JAK3	1	10.4	N
PSMB10	1	160.7	46.
PSMB2	1	133.3	197.
PSMB8	1	119.8	128.
PSMB9	1	203.2	266.
PTGS1	1	667.6	145.
PTGS2	1	8.2	N
ТҮК2	1	20.5	N

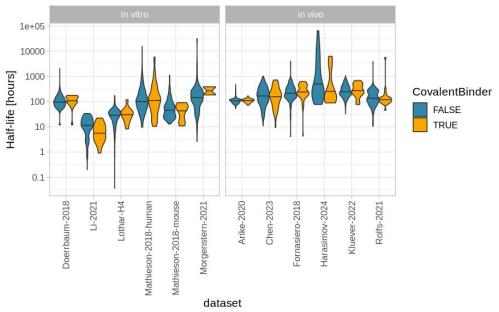




Targets of covalent binders have comparable half-life with targets of non-covalent binders, yet short-living proteins are less targeted by the covalent approach

The violin plot compares the half-life of targets of covalent binders (N=24) with the half-life of targets of non-covalent molecules for which a high potency or functional inhibition (pACT>=8, N=788).

Targets of covalent binders and those of non-covalent drugs have in general comparable half-lifes. However, covalent drug targets are devoid of shortest-living proteins.



UNI BASEL

Protein half-life can be integrated into PK/PD models

Example: <u>target degradation PK/PD model of covalent binding</u> by Andrés Olivares

Modelling and simulation suggests that the PD effect of target degradation by a covalent binder is sensitive to target's turnover. Long-living proteins are more likely to become successful targets for covalent inhibitors.

Bayer colleagues also reported that half-life is a key parameter affecting the predictions of mechanistic PD models for targeted protein degraders.



Further points for consideration

- 1. Open Models and the importance of protein turnover does not only affect covalent binders: they are applicable to reversible and irreversible drug-target interactions, as well as to all protein targeting modalities including small molecules, large molecules (for instance antibodies), and PROTACs.
 - a. By taking consideration of the dynamics of RNAs, the Open Models can be extended to RNA-targeting modalities as well as gene therapies.
- 2. Protein turnover does not only affect drug's potency and duration of response *in vivo*: turnover of enzymes and transporters also affects metabolism and transport.
- 3. Looking forward, we believe open models, together with experimental data and/or predictions based on modeling and simulation and machine learning/generative models, can help us rationally select modalities. Many experiments are on-going or being planned. We look forward to collaborations.

Conclusions

- We predict efficacy and safety profiles of drugs by studying the mechanism and mode of action (MoA).
- The study of MoA involves building mechanistic, statistical, and causal models to predict what drug does to the body (pharmacodynamics) and what body does to the drug (pharmacokinetics).
- Both biological assays and experiments, and *in silico* methods are essential tools for understanding MoA.

References

47

- 1.
 Figures: Lumen Learning, Exploring Nature, National Geographics, Platelet cells (Graham Beards, CC-BY-SA 4.0), Lymphocytes
 UNI BASEL

 (NicolasGrandjean, CC-BY-SA 3.0), Adipocytes (Public Domain), Hepatocytes (CC-BY-NC 2.0), Neurons and Glia (Public Domain), Blood (CC 3.0),
 Blood Cells (By A. Rad and M. Häggström. CC-BY-SA 3.0 license), A selective JAK3 inhibitor (London Lab/Weizmann institute)
 UNI BASEL
- 2. Sender, Ron, Shai Fuchs, and Ron Milo. 2016. "Revised Estimates for the Number of Human and Bacteria Cells in the Body." PLoS Biology 14 (8). https://doi.org/10.1371/journal.pbio.1002533.
- 3. <u>www.evocell-itn.eu;</u>
- 4. Macaulay, Iain C., and Thierry Voet. 2014. "Single Cell Genomics: Advances and Future Perspectives." PLOS Genetics 10 (1): e1004126. https://doi.org/10.1371/journal.pgen.1004126.
- Pryor, Rosina, Povilas Norvaisas, Georgios Marinos, Lena Best, Louise B. Thingholm, Leonor M. Quintaneiro, Wouter De Haes, et al. 2019. "Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy." Cell 178 (6): 1299-1312.e29. <u>https://doi.org/10.1016/j.cell.2019.08.003</u>.
- Cully, Megan. 2019. "Microbiome Therapeutics Go Small Molecule." *Nature Reviews Drug Discovery* 18 (July): 569. <u>https://doi.org/10.1038/d41573-019-00122-8</u>.
- Duscha, Alexander, Barbara Gisevius, Sarah Hirschberg, Nissan Yissachar, Gabriele I. Stangl, Eva Eilers, Verian Bader, et al. 2020. "Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism." *Cell* 180 (6): 1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035.
- Pryor, Rosina, Povilas Norvaisas, Georgios Marinos, Lena Best, Louise B. Thingholm, Leonor M. Quintaneiro, Wouter De Haes, et al. 2019. "Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy." *Cell* 178 (6): 1299-1312.e29. <u>https://doi.org/10.1016/j.cell.2019.08.003</u>.
- 9. Zimmermann, Michael, Maria Zimmermann-Kogadeeva, Rebekka Wegmann, and Andrew L. Goodman. 2019. "Mapping Human Microbiome Drug Metabolism by Gut Bacteria and Their Genes." *Nature* 570 (7762): 462. <u>https://doi.org/10.1038/s41586-019-1291-3</u>.
- 10. Shin, Hyun Kil, Young-Mook Kang, and Kyoung Tai No. 2016. "Predicting ADME Properties of Chemicals." In Handbook of Computational Chemistry, edited by Jerzy Leszczynski, 1–37. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6169-8_59-1.

- Mädler, Sophia Clara, Alice Julien-Laferriere, Luis Wyss, Miroslav Phan, Albert S. W. Kang, Eric Ulrich, Roland Schmucki, et al. 2020. "Besca, a Single-Cell Transcriptomics Analysis Toolkit to Accelerate Translational Research." BioRxiv, September, 2020.08.11.245795. https://doi.org/10.1101/2020.08.11.245795.
- 12. Andrews, Tallulah S., Vladimir Yu Kiselev, Davis McCarthy, and Martin Hemberg. 2021. "Tutorial: Guidelines for the Computational Analysis of Single-Cell RNA Sequencing Data." Nature Protocols 16 (1): 1–9. <u>https://doi.org/10.1038/s41596-020-00409-w</u>.
- Sturm, Gregor, Francesca Finotello, Florent Petitprez, Jitao David Zhang, Jan Baumbach, Wolf H. Fridman, Markus List, and Tatsiana Aneichyk.
 2019. "Comprehensive Evaluation of Transcriptome-Based Cell-Type Quantification Methods for Immuno-Oncology." Bioinformatics 35 (14): i436–45. <u>https://doi.org/10.1093/bioinformatics/btz363</u>.
- Villani, Alexandra-Chloé, Rahul Satija, Gary Reynolds, Siranush Sarkizova, Karthik Shekhar, James Fletcher, Morgane Griesbeck, et al. 2017.
 "Single-Cell RNA-Seq Reveals New Types of Human Blood Dendritic Cells, Monocytes, and Progenitors." Science 356 (6335): eaah4573. https://doi.org/10.1126/science.aah4573.
- 15. Finotello, Francesca, Clemens Mayer, Christina Plattner, Gerhard Laschober, Dietmar Rieder, Hubert Hackl, Anne Krogsdam, et al. 2019.
 "Molecular and Pharmacological Modulators of the Tumor Immune Contexture Revealed by Deconvolution of RNA-Seq Data." *Genome Medicine* 11 (1): 34. <u>https://doi.org/10.1186/s13073-019-0638-6</u>.
- 16. Fridman, Wolf H., Laurence Zitvogel, Catherine Sautès–Fridman, and Guido Kroemer. 2017. "The Immune Contexture in Cancer Prognosis and Treatment." *Nature Reviews Clinical Oncology* 14 (12): 717–34. <u>https://doi.org/10.1038/nrclinonc.2017.101</u>.
- Moisan, Annie, Marcel Gubler, Jitao David Zhang, Yann Tessier, Kamille Dumong Erichsen, Sabine Sewing, Régine Gérard, et al. 2017. "Inhibition of EGF Uptake by Nephrotoxic Antisense Drugs In Vitro and Implications for Preclinical Safety Profiling." Molecular Therapy Nucleic Acids 6 (March): 89–105. <u>https://doi.org/10.1016/j.omtn.2016.11.006</u>.
- Chang, Chia-Yu, Hsiao-Chien Ting, Ching-Ann Liu, Hong-Lin Su, Tzyy-Wen Chiou, Horng-Jyh Harn, and Shinn-Zong Lin. 2018. "Induced Pluripotent Stem Cells: A Powerful Neurodegenerative Disease Modeling Tool for Mechanism Study and Drug Discovery." Cell Transplantation 27 (June): 096368971877540. <u>https://doi.org/10.1177/0963689718775406</u>.

- Takahashi, Toshio. 2019. "Organoids for Drug Discovery and Personalized Medicine." Annual Review of Pharmacology and Toxicology 59 (1):
 447–62. https://doi.org/10.1146/annurev-pharmtox-010818-021108.
- 20. Budayeva, Hanna G., and Donald S. Kirkpatrick. 2020. "Monitoring Protein Communities and Their Responses to Therapeutics." Nature Reviews Drug Discovery 19 (6): 414–26. <u>https://doi.org/10.1038/s41573-020-0063-y</u>.
- 21. Lukonin, Ilya, Denise Serra, Ludivine Challet Meylan, Katrin Volkmann, Janine Baaten, Rui Zhao, Shelly Meeusen, et al. 2020. "Phenotypic Landscape of Intestinal Organoid Regeneration." Nature 586 (7828): 275–80. <u>https://doi.org/10.1038/s41586-020-2776-9</u>.
- 22. Drawnel, Faye M., Stefano Boccardo, Michael Prummer, Frédéric Delobel, Alexandra Graff, Michael Weber, Régine Gérard, et al. 2014. "Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy Using Human Induced Pluripotent Stem Cells." Cell Reports 9 (3): 810–20. https://doi.org/10.1016/j.celrep.2014.09.055.
- 23. Traag, Vincent, Ludo Waltman, and Nees Jan van Eck. 2019. "From Louvain to Leiden: Guaranteeing Well-Connected Communities." Scientific Reports 9 (1): 5233. <u>https://doi.org/10.1038/s41598-019-41695-z.</u>
- 24. Understanding UMAP, Andy Coenen and Adam Pearce, https://pair-code.github.io/understanding-umap/
- 25. How exactly UMAP works, Nikolay Oskolkov, <u>https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668</u>
- 26. McInnes, Leland, and John Healy. 2018. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." ArXiv:1802.03426 [Cs, Stat], February. <u>http://arxiv.org/abs/1802.03426</u>.
- 27. Zappia, Luke, Belinda Phipson, and Alicia Oshlack. 2018. "Exploring the Single-Cell RNA-Seq Analysis Landscape with the ScRNA-Tools Database." PLOS Computational Biology 14 (6): e1006245. <u>https://doi.org/10.1371/journal.pcbi.1006245</u>.
- Abdelaal, Tamim, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J. T. Reinders, and Ahmed Mahfouz. 2019. "A Comparison of Automatic Cell Identification Methods for Single-Cell RNA Sequencing Data." Genome Biology 20 (1): 194. https://doi.org/10.1186/s13059-019-1795-z.
- Janas, Maja M., Mark K. Schlegel, Carole E. Harbison, Vedat O. Yilmaz, Yongfeng Jiang, Rubina Parmar, Ivan Zlatev, et al. 2018. "Selection of GalNAc-Conjugated SiRNAs with Limited off-Target-Driven Rat Hepatotoxicity." Nature Communications 9 (1): 723. <u>https://doi.org/10.1038/s41467-018-02989-4</u>.

- 30. Jackson, Aimee L., and Peter S. Linsley. 2010. "Recognizing and Avoiding SiRNA Off-Target Effects for Target Identification and Therapeutic Application." Nature Reviews Drug Discovery 9 (1): 57–67. <u>https://doi.org/10.1038/nrd3010</u>.
- Romond, Edward H., Edith A. Perez, John Bryant, Vera J. Suman, Charles E. Geyer, Nancy E. Davidson, Elizabeth Tan-Chiu, et al. 2005.
 "Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer." New England Journal of Medicine 353 (16): 1673–84. https://doi.org/10.1056/NEJMoa052122.
- 32. Gao, Jinxu, Adelphe Mfuh, Yuka Amako, and Christina M. Woo. 2018. "Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs." Journal of the American Chemical Society 140 (12): 4259–68. <u>https://doi.org/10.1021/jacs.7b11639</u>.
- 33. Bollag, Gideon, James Tsai, Jiazhong Zhang, Chao Zhang, Prabha Ibrahim, Keith Nolop, and Peter Hirth. 2012. "Vemurafenib: The First Drug Approved for BRAF -Mutant Cancer." Nature Reviews Drug Discovery 11 (11): 873–86. <u>https://doi.org/10.1038/nrd3847</u>.
- Luebker, Stephen A., and Scott A. Koepsell. 2019. "Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical Studies." Frontiers in Oncology 9. <u>https://doi.org/10.3389/fonc.2019.00268</u>.
- 35. Kimball's Biology Page, http://www.biology-pages.info/
- 36. Molina, Daniel Martinez, Rozbeh Jafari, Marina Ignatushchenko, Takahiro Seki, E. Andreas Larsson, Chen Dan, Lekshmy Sreekumar, Yihai Cao, and Pär Nordlund. 2013. "Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay." Science 341 (6141): 84–87. <u>https://doi.org/10.1126/science.1233606</u>.
- 37. Zhou, Zheng, Taishan Hu, Xue Zhou, Steffen Wildum, Fernando Garcia-Alcalde, Zhiheng Xu, Daitze Wu, et al. 2017. "Heteroaryldihydropyrimidine (HAP) and Sulfamoylbenzamide (SBA) Inhibit Hepatitis B Virus Replication by Different Molecular Mechanisms." Scientific Reports 7 (1): 42374. <u>https://doi.org/10.1038/srep42374</u>.
- 38. Dai, Jiang, Yi-Jiao Huang, Xinhua He, Ming Zhao, Xinzheng Wang, Zhao-Shan Liu, Wen Xue, et al. 2019. "Acetylation Blocks CGAS Activity and Inhibits Self-DNA-Induced Autoimmunity." Cell 176 (6): 1447--1460.E14. <u>https://doi.org/10.1016/j.cell.2019.01.016</u>.

- 39. Hart, Charles P. 2005. "Finding the Target after Screening the Phenotype." *Drug Discovery Today* 10 (7): 513–19. https://doi.org/10.1016/S1359-6446(05)03415-X.
- 40. Ziegler, Slava, Sonja Sievers, and Herbert Waldmann. 2021. "Morphological Profiling of Small Molecules." Cell Chemical Biology 28 (3): 300–319. https://doi.org/10.1016/j.chembiol.2021.02.012.
- Winter, Georg E., Dennis L. Buckley, Joshiawa Paulk, Justin M. Roberts, Amanda Souza, Sirano Dhe-Paganon, and James E. Bradner. 2015.
 "Phthalimide Conjugation as a Strategy for in Vivo Target Protein Degradation." Science 348 (6241): 1376–81.
 https://doi.org/10.1126/science.aab1433.
- 42. Aebersold, Ruedi, and Matthias Mann. 2016. "Mass-Spectrometric Exploration of Proteome Structure and Function." Nature 537 (7620): 347–55. https://doi.org/10.1038/nature19949.
- Zhou, Jing C., Bob Feller, Bill Hinsberg, Geeta Sethi, Paul Feldstein, Joshua Hihath, Erkin Seker, Maria Marco, Andre Knoesen, and Robert Miller.
 2015. "Immobilization-Mediated Reduction in Melting Temperatures of DNA–DNA and DNA–RNA Hybrids: Immobilized DNA Probe Hybridization Studied by SPR." Colloids and Surfaces A: Physicochemical and Engineering Aspects 481 (September): 72–79. https://doi.org/10.1016/j.colsurfa.2015.04.046.
- 44. Hagedorn, Peter H., Malene Pontoppidan, Tina S. Bisgaard, Marco Berrera, Andreas Dieckmann, Martin Ebeling, Marianne R. Møller, et al. 2018. "Identifying and Avoiding Off-Target Effects of RNase H-Dependent Antisense Oligonucleotides in Mice." Nucleic Acids Research 46 (11): 5366–80. <u>https://doi.org/10.1093/nar/gky397</u>.
- 45. Rehmsmeier, Marc, Peter Steffen, Matthias Hochsmann, and Robert Giegerich. 2004. "Fast and Effective Prediction of MicroRNA/Target Duplexes." RNA (New York, N.Y.) 10 (10): 1507–17. <u>https://doi.org/10.1261/rna.5248604</u>.
- 46. Tyanova, Stefka, Tikira Temu, and Juergen Cox. 2016. "The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics." Nature Protocols 11 (12): 2301–19. <u>https://doi.org/10.1038/nprot.2016.136</u>.
- 47. xkcd: <u>https://xkcd.com/1217/</u>

- 48. Murin, Charles D. "Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity." *Frontiers in Immunology* 11 (2020). <u>https://www.frontiersin.org/article/10.3389/fimmu.2020.01635</u>.
- 49. Marx, Vivien. "Method of the Year: Spatially Resolved Transcriptomics." Nature Methods 18, no. 1 (January 2021): 9–14. https://doi.org/10.1038/s41592-020-01033-y.
- 50. Andrade, E. L., A. F. Bento, J. Cavalli, S. K. Oliveira, R. C. Schwanke, J. M. Siqueira, C. S. Freitas, R. Marcon, and J. B. Calixto. "Non-Clinical Studies in the Process of New Drug Development Part II: Good Laboratory Practice, Metabolism, Pharmacokinetics, Safety and Dose Translation to Clinical Studies." Brazilian Journal of Medical and Biological Research 49 (December 12, 2016). https://doi.org/10.1590/1414-431X20165646.
- 51. Olson, H., G. Betton, D. Robinson, K. Thomas, A. Monro, G. Kolaja, P. Lilly, et al. "Concordance of the Toxicity of Pharmaceuticals in Humans and in Animals." Regulatory Toxicology and Pharmacology: RTP 32, no. 1 (August 2000): 56–67. https://doi.org/10.1006/rtph.2000.1399.
- 52. Tamaki, Chihiro, Takashi Nagayama, Masamichi Hashiba, Masato Fujiyoshi, Masanori Hizue, Hiroshi Kodaira, Minoru Nishida, et al. "Potentials and Limitations of Nonclinical Safety Assessment for Predicting Clinical Adverse Drug Reactions: Correlation Analysis of 142 Approved Drugs in Japan." The Journal of Toxicological Sciences 38, no. 4 (2013): 581–98. https://doi.org/10.2131/jts.38.581.
- 53. Burton, Nikolas R., Phillip Kim, and Keriann M. Backus. "Photoaffinity Labelling Strategies for Mapping the Small Molecule–Protein Interactome." Organic & Biomolecular Chemistry 19, no. 36 (September 22, 2021): 7792–7809. https://doi.org/10.1039/D1OB01353J.
- 54. Zecha, Jana, Florian P. Bayer, Svenja Wiechmann, Julia Woortman, Nicola Berner, Julian Müller, Annika Schneider, et al.
 "Decrypting Drug Actions and Protein Modifications by Dose- and Time-Resolved Proteomics." Science 380, no. 6640 (April 7, 2023): 93–101. https://doi.org/10.1126/science.ade3925.
- 55. Audagnotto, Martina, and Matteo Dal Peraro. "Protein Post-Translational Modifications: In Silico Prediction Tools and Molecular ⁵² Modeling," Computational and Structural Biotechnology Journal 15 (January 1, 2017): 307–19

56. Perkel, J. M. 85 million cells — and counting — at your fingertips. Nature 629, 248–249 (2024).

57. Lotfollahi, M., Hao, Y., Theis, F. J. & Satija, R. The future of rapid and automated single-cell data analysis using reference mapping. Cell 187, 2343–2358 (2024).

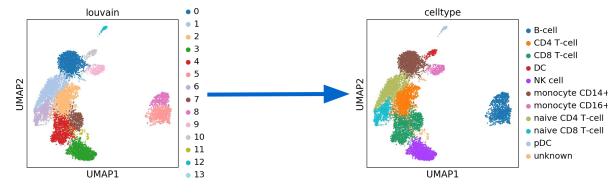
Supplementary Information

Embryonic origins of tissues

Germ Layer		Gives rise to:		
Ectoderm	Epidermis, glands on skin, some system, the mouth between chee			
	Skin cells	Neurons	Pigment cell	BĂŚĖL
Mesoderm	Connective tissues proper, bone synovial membranes, serous me			
	Cardiac Skeletal muscle muscle	Tubule cell F of kidney	Red blood Smooth cells muscle	
Endoderm	Lining of airways and digestive s (rectum and anal canal); glands			
	Lung cell	Thyroid cell	Pancreatic cell	

An intern project: Cell type annotation

From unsupervised clustering and cluster based annotation



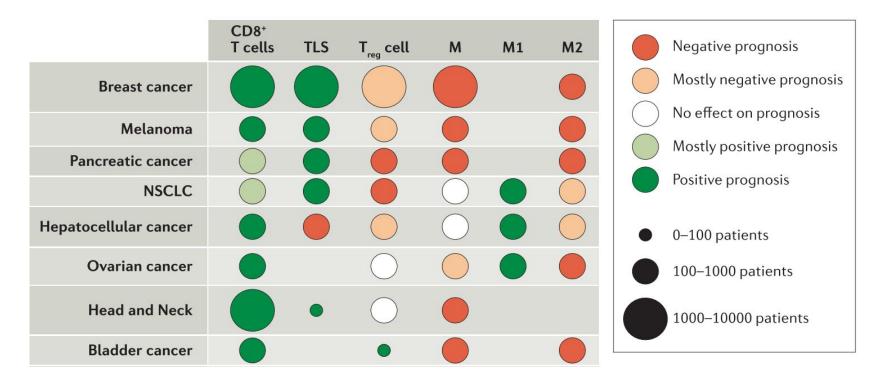
Luis Wyss RAAN intern 2019

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Label
Training Cell 1	10	50	0	12	4	Celltype A
Training Cell 2	8	45	78	3	23	Celltype B
Training Cell 3	14	55	78	65	55	Celltype B
Training Cell 4	78	12	13	9	58	Celltype A
Training Cell 5	45	23	65	98	11	Celltype C

To supervised annotation at single-cell level:

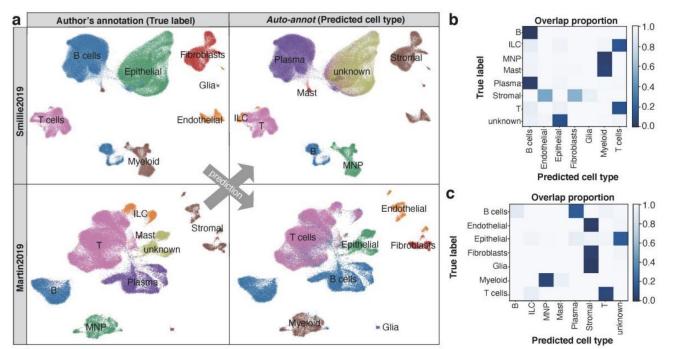
Advantages: (1) automation, (2) annotation independent from clustering, and (3) we can estimate the confidence of prediction

Abundance of immune cells in tumor microenvironments affect outcome



TLS: tertiary lymphoid structures; T_{reg}: regulatory T cells; M: macrophages; M1/M2: subtypes of macrophages

An example of Inflammatory Bowel Disease (IBD)



We observed Inconsistent cell type nomenclature across studies. Machine learning allows us compare and integrate multiple studies. UNI BASEL

We are living ecosystems

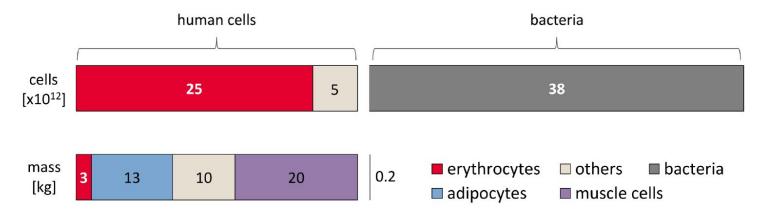
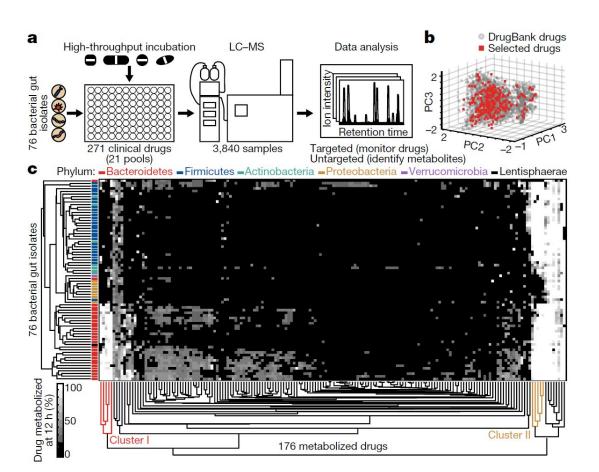
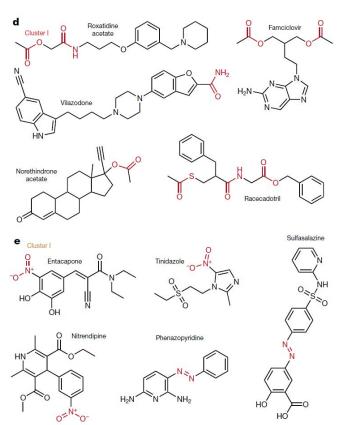


Table 3. B/H ratio for different population. See Table B in <u>S1 Appendix</u> for full references.

population segment	body weight [kg]	age [y]	blood volume [L]	RBC count [10 ¹² /L]	colon content [g]	bac. conc. [10 ¹¹ / g wet] ⁽¹⁾	total human cells [10 ¹²] ⁽²⁾	total bacteria [10 ¹²]	B:H
ref. man	70	20-30	4.9	5.0	420	0.92	30	38	1.3
ref. woman	63		3.9	4.5	480	0.92	21	44	2.2
young infant	4.4	4 weeks	0.4	3.8	48	0.92	1.9	4.4	2.3
infant	9.6	1	0.8	4.5	80	0.92	4	7	1.7
elder	70	66	3.8 ⁽³⁾	4.8	420	0.92	22	38	1.8
obese	140		6.7	5.0 ⁽⁴⁾	610 ⁽⁵⁾	0.92	40	56	1.4

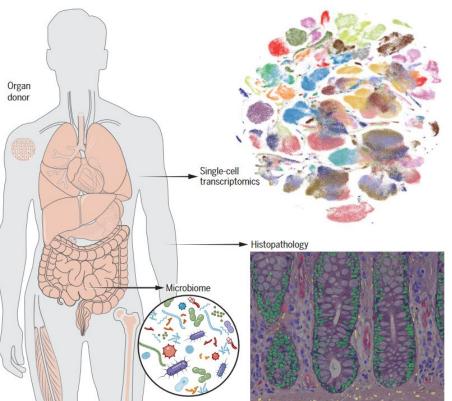
Gut microbiome can metabolize drugs differently

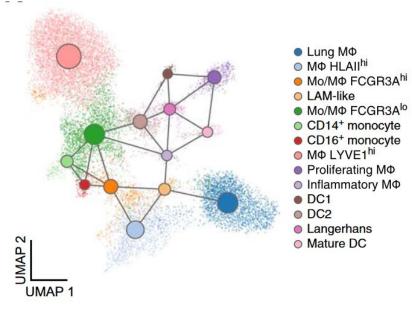




UNI BASEL

The *Tabula Sapiens* and other community projects offer reference expression data in healthy donors

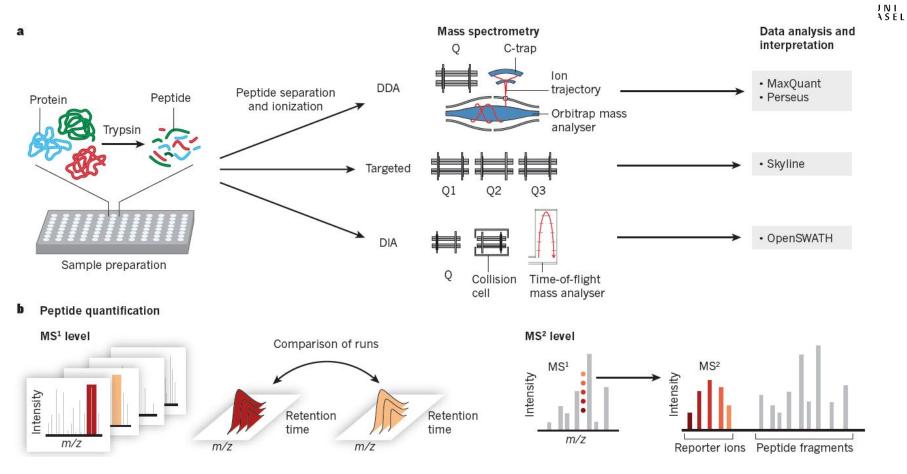




Left: the *Tabula Sapiens*. Right: Myeloid (M¢=macrophages, Mo/monocytes, LAM=lipid-associated macrophages, DC=dendritic cells) gene expression

U N I B A S E L

Mass-spectrometry based proteomics



Comparing modalities with regard to safety assessment

UNI BASEL

of up to 500 small molecules

	~ *		
	Small molecules	Single Stranded Oligos	Biologics
Molecular weight	<1000 D	5000-7000 D	> 30000 D
Manufacture	Chemical synthesis	Chemical synthesis	Biologically-derived
Structure	Single entity, high purity	Single entity with 10-15% product-related impurities	Complex, heterogeneous
Chemical-driven toxicity	Yes	Yes	No
Metabolism	Species-specific	Species-independent catabolism by proteolytic degradation	Species-independent catabolism by proteolytic degradation
РК	Generally short $t_{1/2}$	Long (tissue) $t_{1/2}$	Long t _{1/2}
Some general aspects	High throughput screening/early safety testing	Biodistribution with consistent patterns	Fewer, yet complex due to biology/immunology

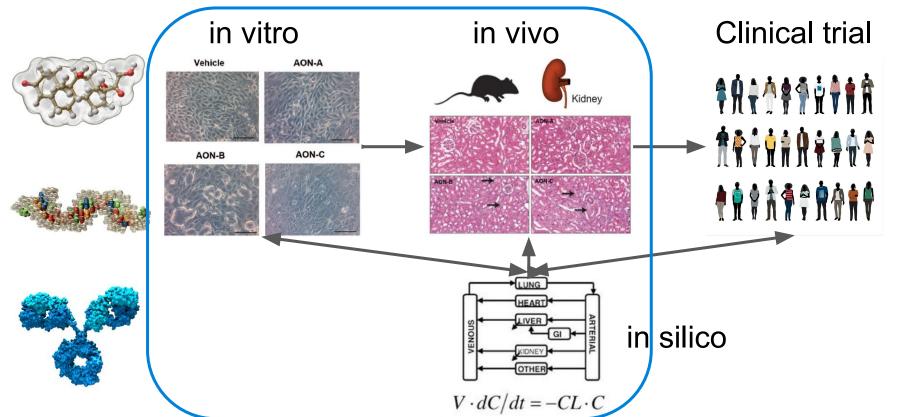
Adapted from Schubert et al, Nucl Acid Therap 2012, with input from Yann Tessier and Susanne Mohr

consistent patterns

biology/immunology

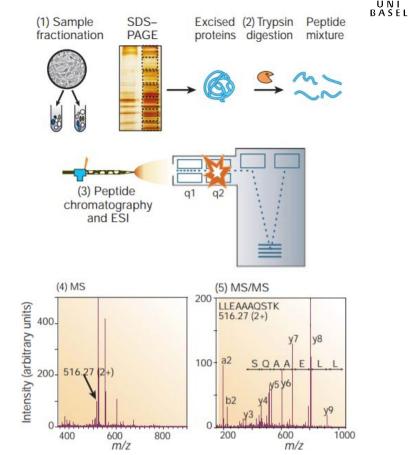
Proteomics plays an important role in *in vitro/in vivo* translation

UNI BASEL



Mass-spectrometry based proteomics

- **SDS-PAGE**: Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis
- ESI: Electrospray ionization
- q1/q2: selection/collision/separation cells
- **MS**: Mass spectrometry
- **MS/MS**: tandem mass spectrometry



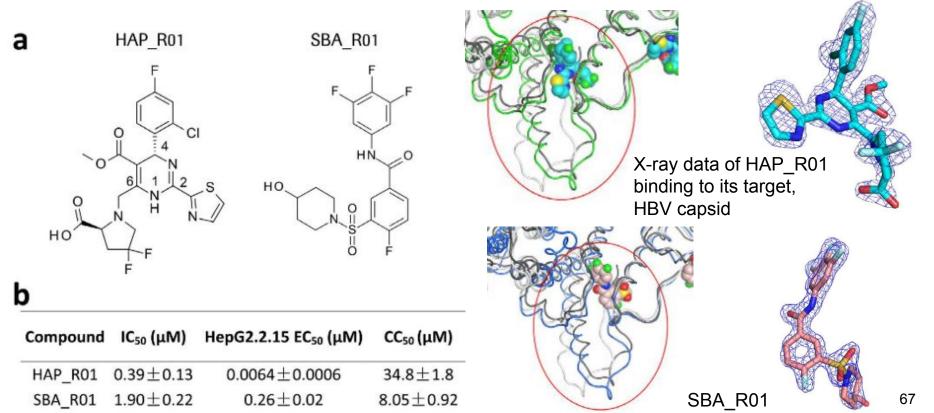
Proteomics approaches for drug discovery

Peptide

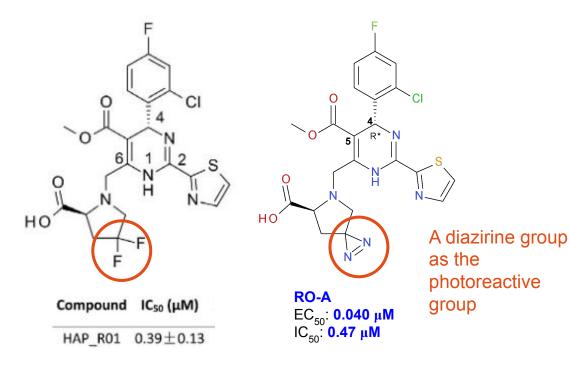
UNI BASEL

Immunoaffinity resin Cancer cell Protein mixtures mixtures Affinity purification Lysis Label Affinity resin **Proximity labelling** Lysis Fractionation Fractions Digestion Organelle proteome profiling Post-translational modification PTM affinity resin Lysis Digestion (PTM) profiling Drug Inhibitor resin **Chemoaffinity enrichment** Soluble fractions Digestion Thermal proteome profiling

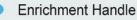
Case 1: Differentiate two compounds that inhibit Hepatitis B Virus with similar mode of action



Chemical probes: drug-like molecules to probe its mode of action

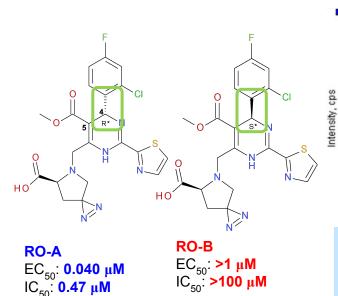


Photoreactive Group

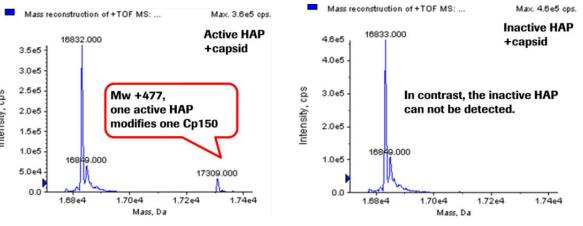


Pharmacophore

Case 1 solved: Proteomics confirmed target binding

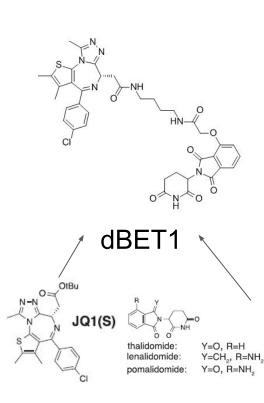


+Cp150, UV, MS



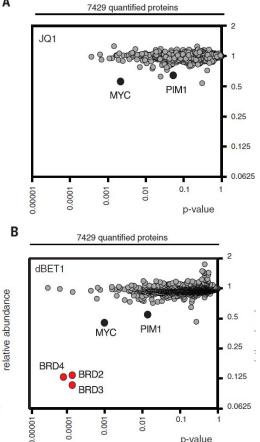
Proteolytic digestion/LC-MS/MS identified labelling site Y118 (Y=Tyrosine) of HBV capsid protein. More photoaffinity probes identified labelling sites at R127 (R=Arginine) and Y38.

Case 2: Confirmation of selective degradation of protein target *in vivo*

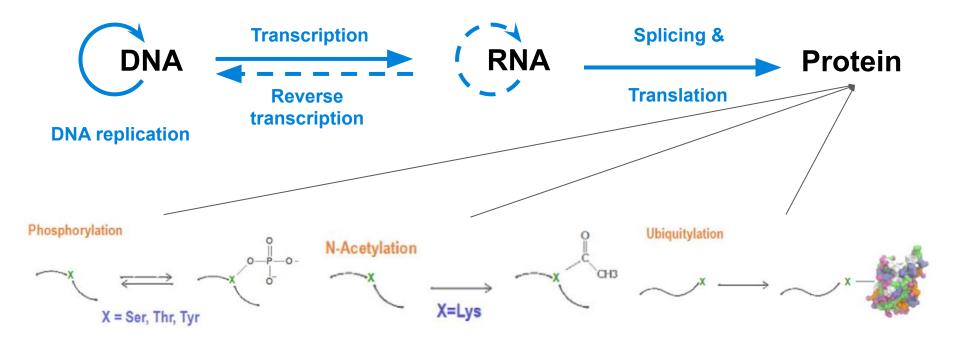


Crystal structure of dBET1 binding to its target BRD4

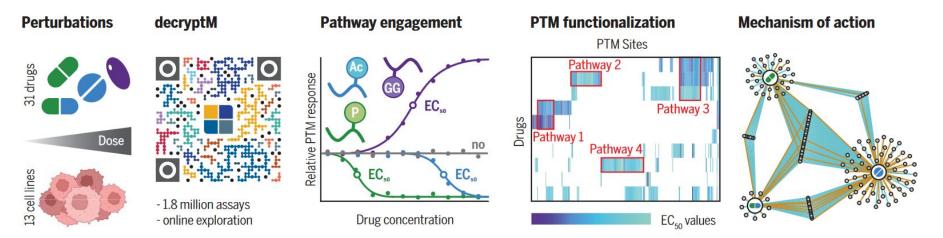
Docking of dBET1-BRD4 to DDB1-CRBN structure



Protein post-translational modifications (PTMs) offer an additional layer of regulation



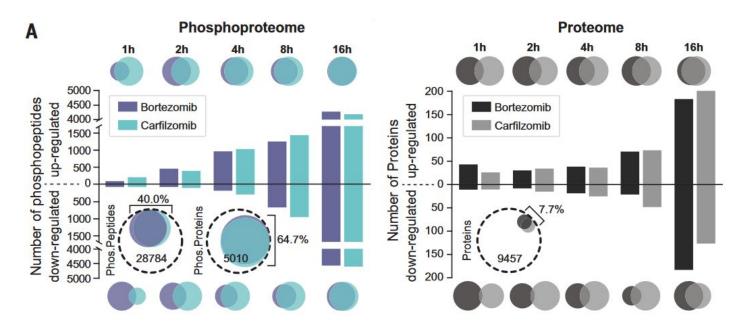
Case 3: Millions of PTM profiles induced by drugs in cancer cell lines



decryptM (Nature 2023): Following the dose-dependent treatment of cancer cells with drugs, quantitative mass spectrometry records dose-response of thousands of posttranslationally modified peptides. EC50: half-maximal effective concentration; Ac, acetylation; GG, ubiquitinylation; P, phosphorylation.

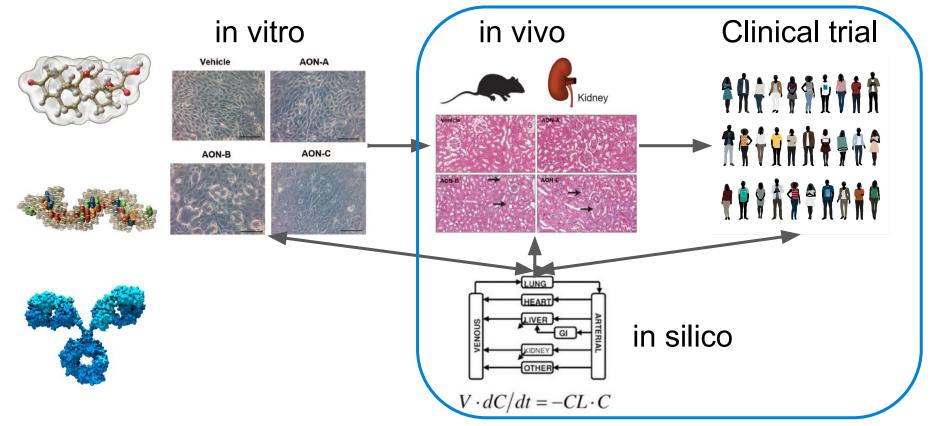
UNI BASEL

PTM and proteomics characterize MoA of drugs



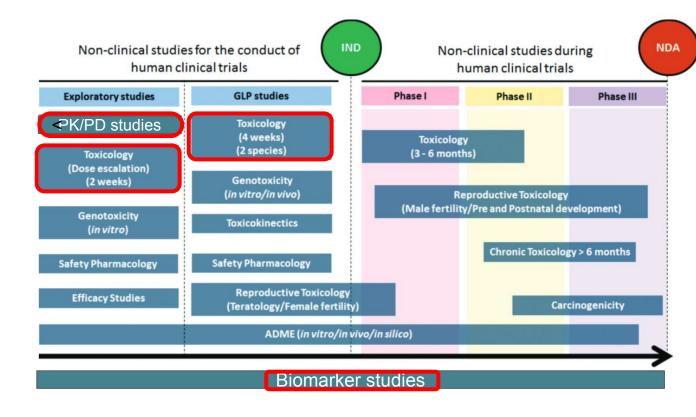
Bortezomib (BTZ) and carfilzomib (CFZ) both treat multiple myeloma by inhibiting the proteasome by reversible covalent (BTZ) or irreversible (CFZ) binding to the protease PSMB5. Time-series data show both the dynamics and the converging signaling.

Dose prediction based on pharmacology and toxicology before entry into human



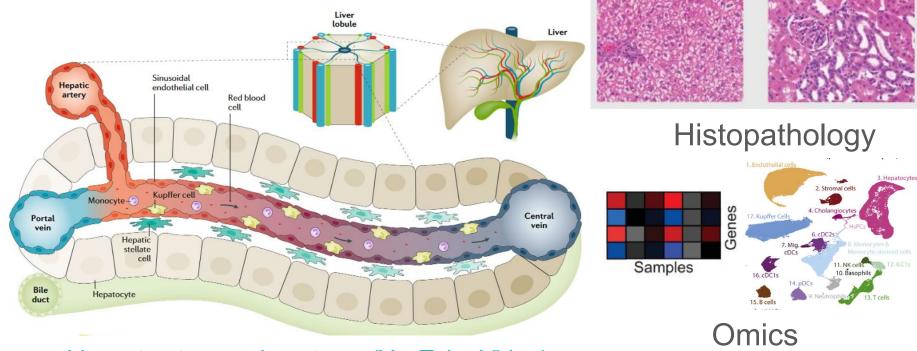
UNI BASEL

Current practices of non-clinical studies in drug development BASEL



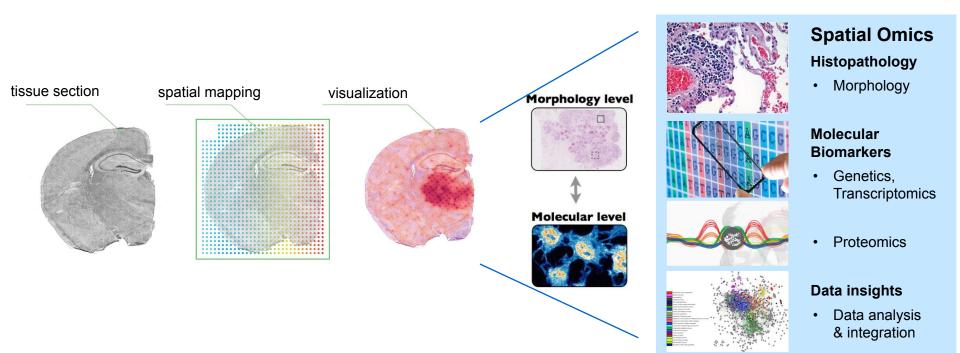
- IND: Investigational New Drug application
- NDA: New Drug
 Application
- GLP: Good Lab Practice
- Red boxes: Focus areas of this and coming lectures

Current practices of profiling and understanding toxicology: an example with liver

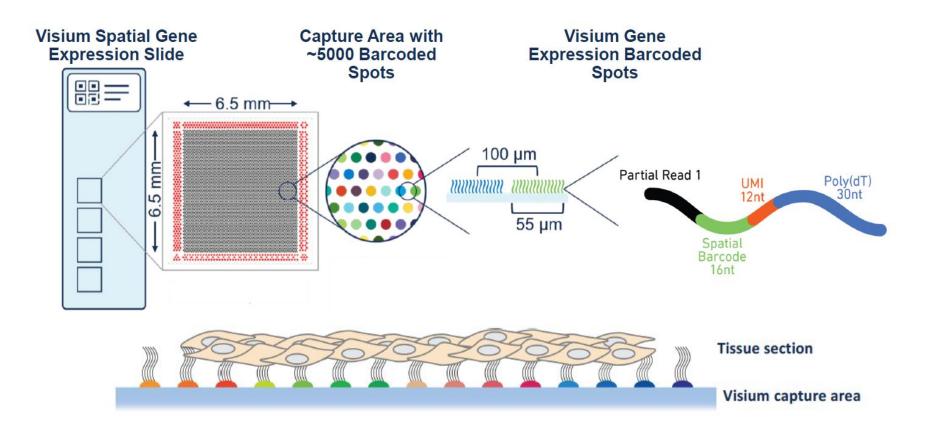


Liver structure and anatomy (YouTube Video)

Spatially resolved omics complement histopathology

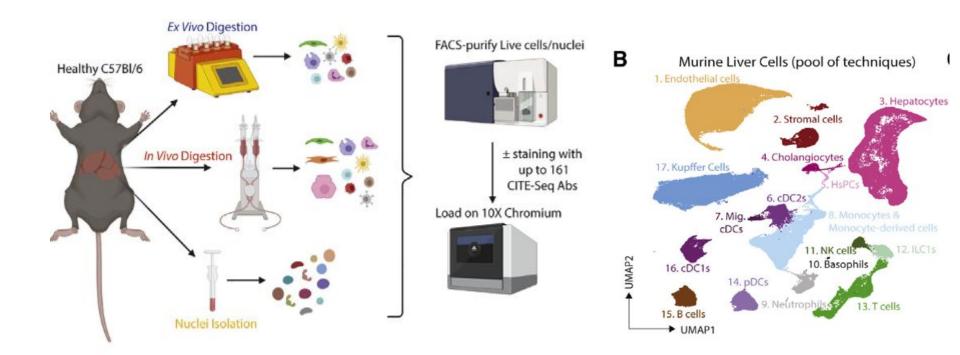


An example: 10x VISIUM Technology



UNI BASEL

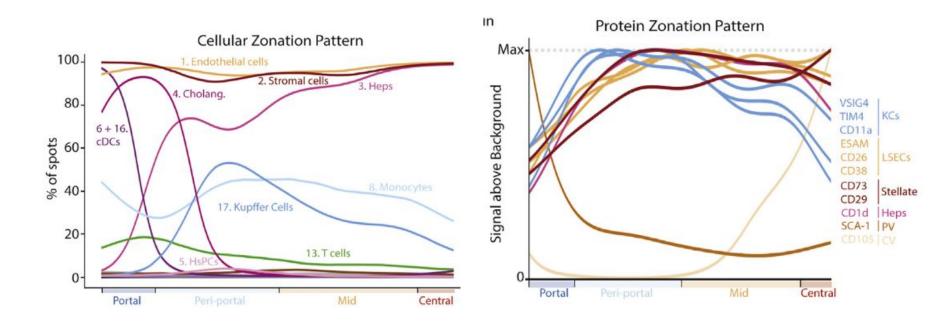
Spatial and single-cell expression of liver cells



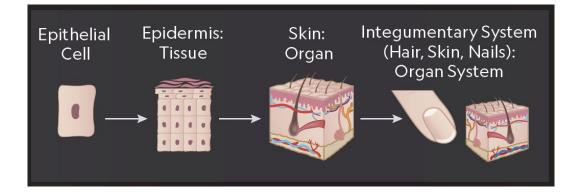
Spatial and single-cell expression of liver cells



Spatial mRNA and protein expression data empowers digital pathology and biological understanding

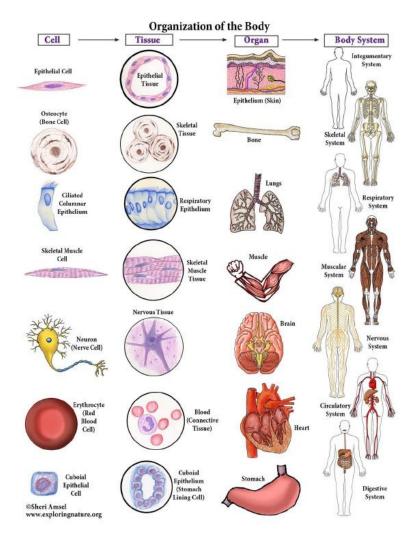


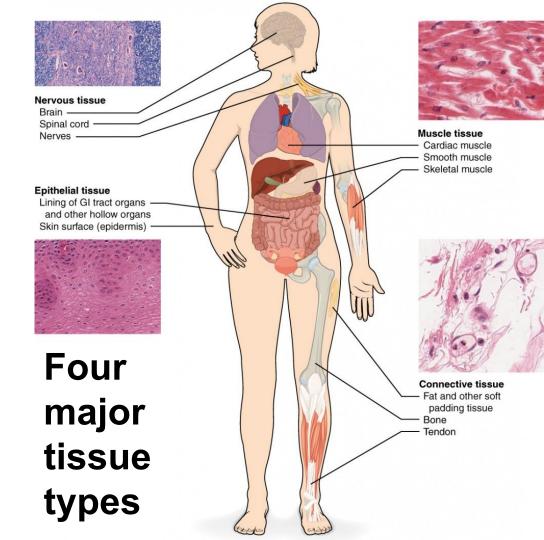
Complexity Increases Through a System

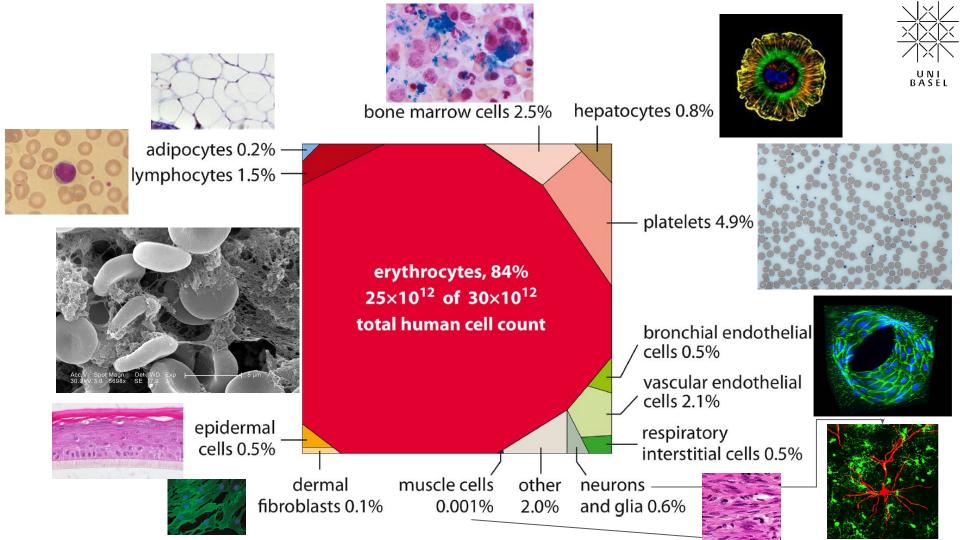


UNI BASEL

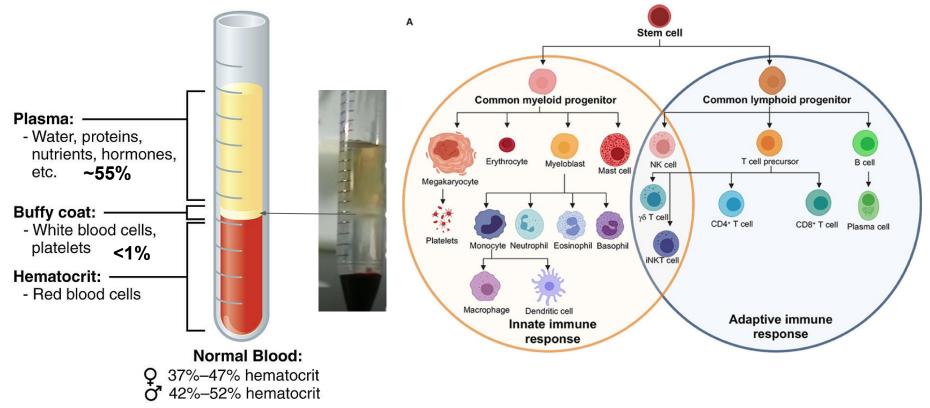
Cells: basic **Tissues:** groups **Organ:** group Organ building blocks, of specialized of tissues to systems: cells that variable perform group of communicate specific morphologies organs and and functions functions and collaborate tissues



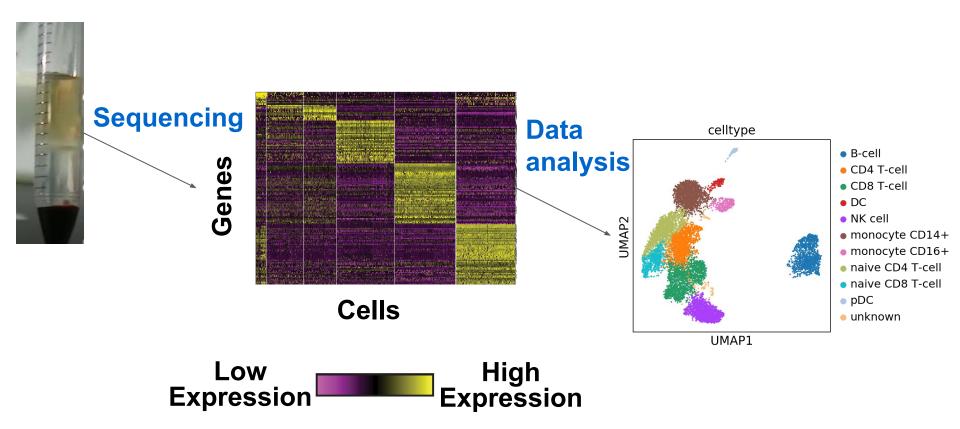




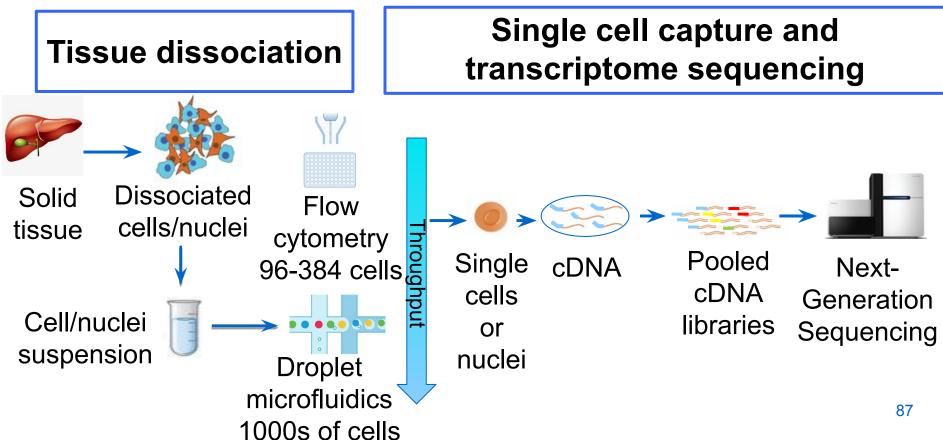
What's in a drop of blood? Ask a doctor or a biologist!



What's in a drop of blood? Count the genes!



Single-cell sequencing (scSeq) workflow

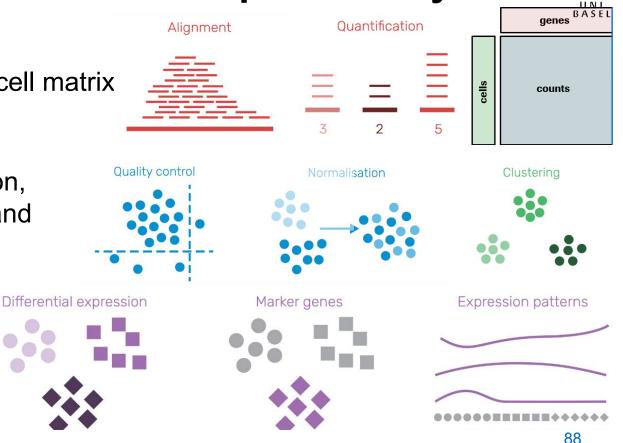


A linearized workflow of scSeq data analysis

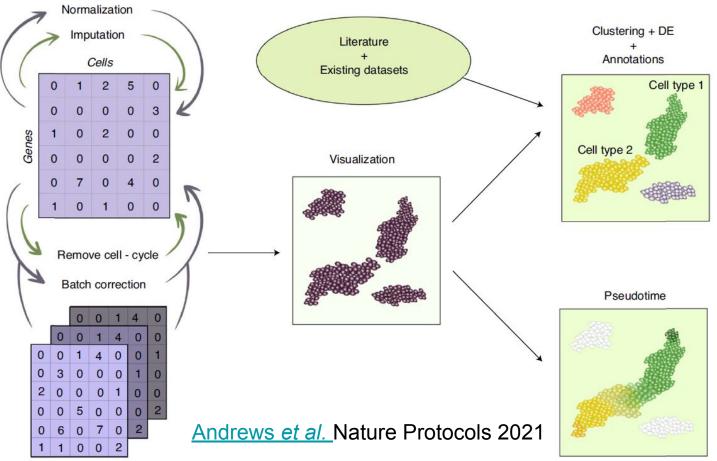
From short reads to gene-cell matrix

QC, filtering & normalization, dimensionality reduction, and clustering

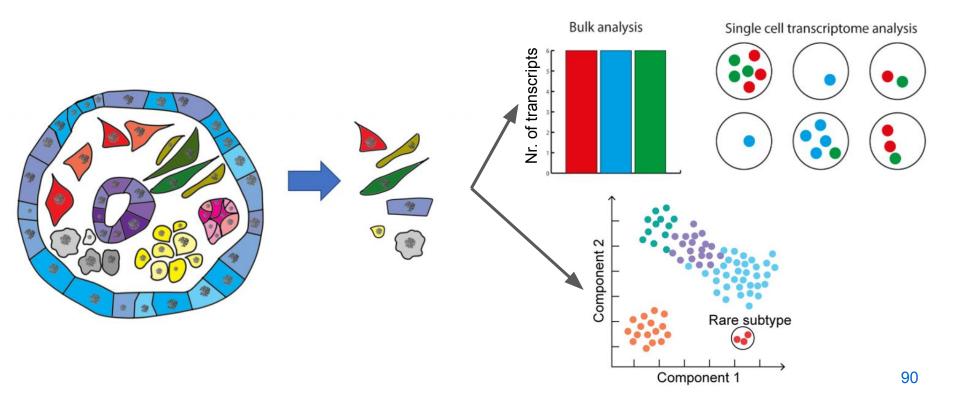
Downstream analysis



Overview of the computational workflow

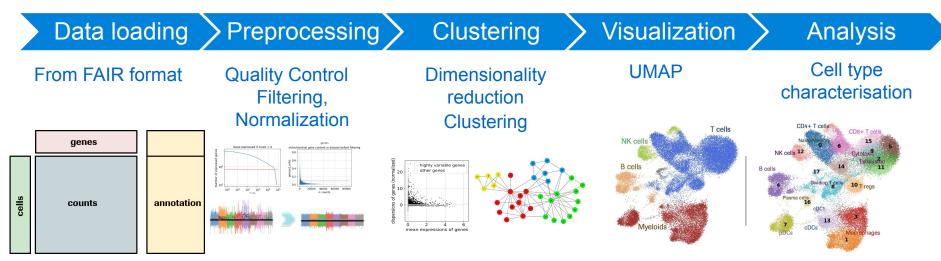


Single-cell biology benefits both disease understanding and drug discovery



BESCA: An open-source Python package for single-cell gene expression analysis

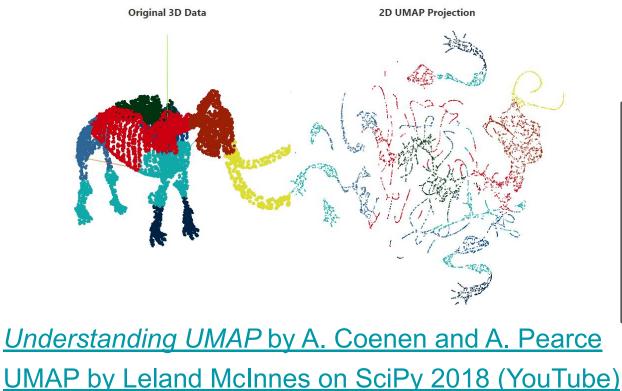
An automatized standard workflow

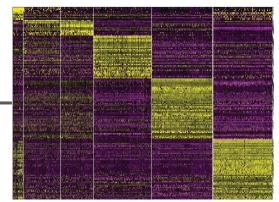


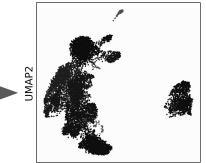
How to represent voxels with pixels?

The elephant bull *Tusker (1992-2023)* at Zolli Basel plays with a tree trunk on a post (2022)

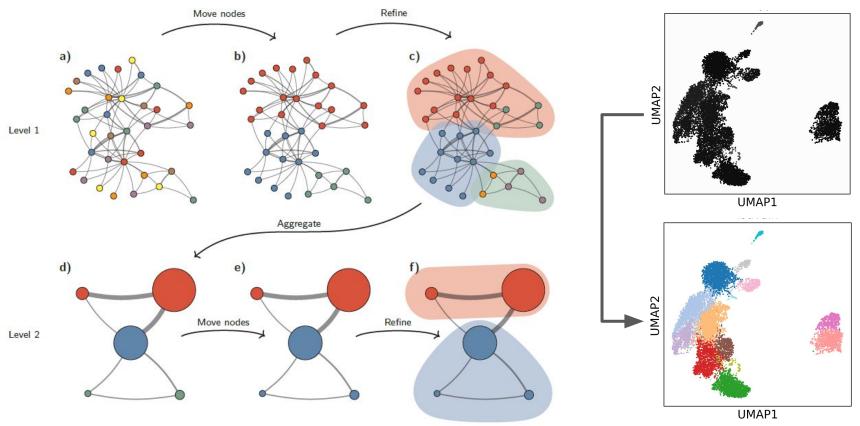
Uniform Manifold Approximation and Projection (UMAP) for dimension reduction



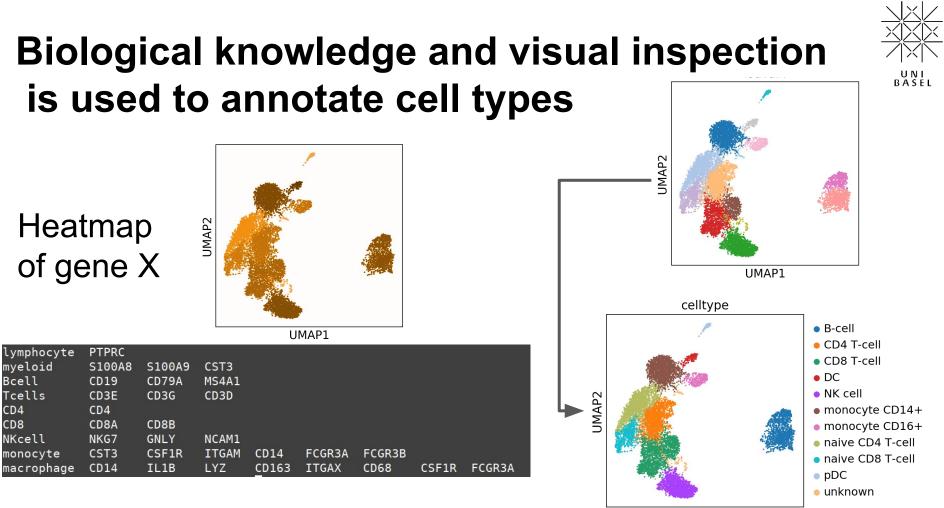




The Leiden Algorithm for Community Detection

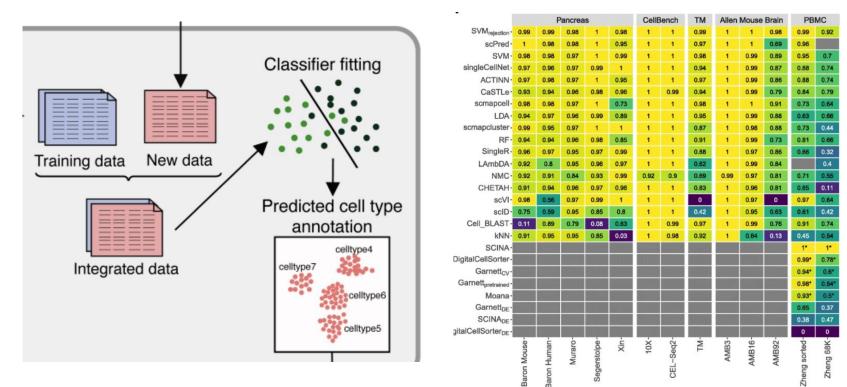


U N I B A S E L



UMAP1

Cell type annotation with machine learning



96

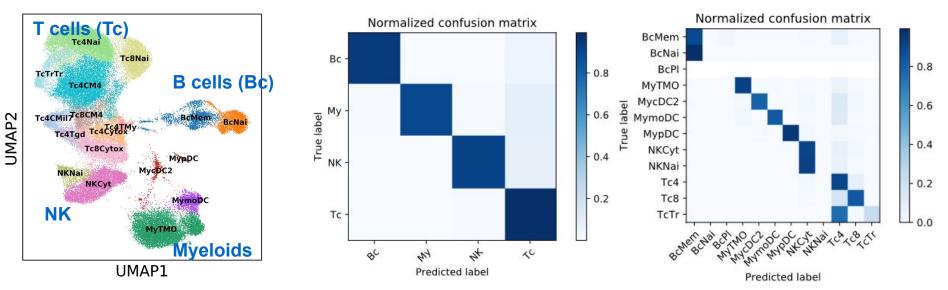
Median F1-score

0.5

0.75

0.25

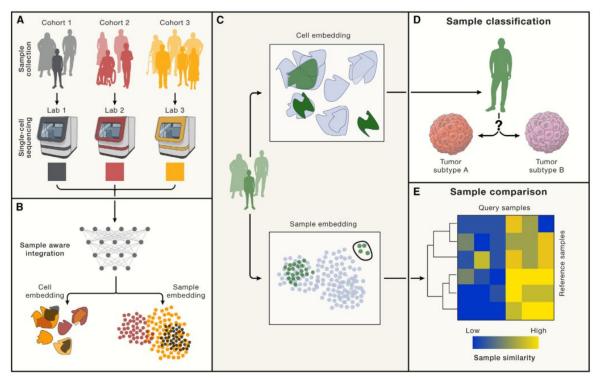
A PBMC example of cell type annotation



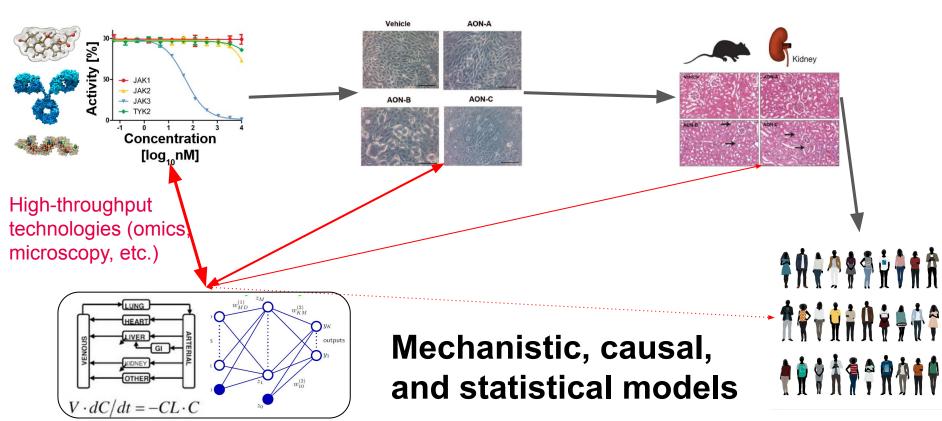
- Broad level cell types, including B cells (Bc), Myeloid (My), NK cells (NK) and T cells (Tc), are successfully predicted.
- Missing and highly similar cell types cause challenges with increased granularity. Essential: reference data quality and knowledge of cell types. 97

Reference mapping at population scale

- The data platform Chan Zuckerberg CELL by GENE Discover (<u>CZ</u> <u>CELLxGENE</u>) provides data of 85 million cells as of April 2024 to be explored online.
- Much research and development now devotes to mapping data from different labs to reference datasets in order to annotate cells and samples in a (semi-)automated fashion



Computational methods empower efficacy and toxicity assessment

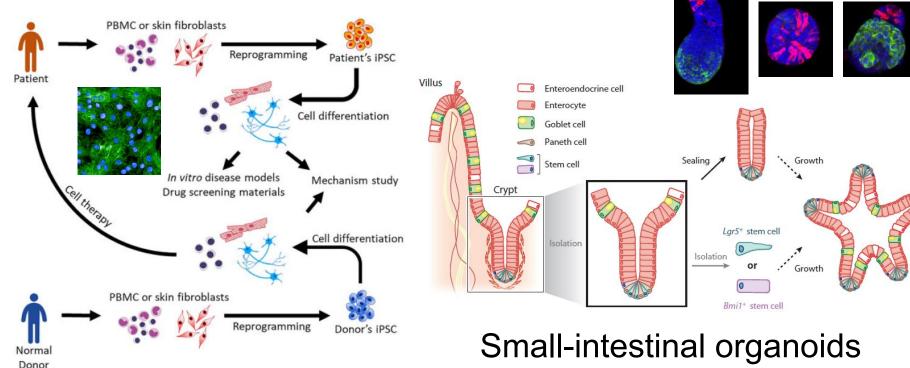


How predictive is animal safety testing for humans? It depends on modality and therapeutic classes.

	Target organ of ADRs	Small molecule drugs		Large molecule drugs	
		% of ADRs	% of correlation	% of ADRs	% of correlation
Non-rodent only 27% 27% Addent only 7% Non-rodent AND rodent 36% Regul Toxicol Pharmacol. 2000;32:56-67	Gastrointestinal	21	80	14	19
	Neurological	20	34	11	4
	Hepatobiliary	11	73	8	21
	Hematological	8	75	8	80
	Cutaneous	5	56	9	22
	Systemic	5	45	8	20
	Cardiovascular	4	61	6	0
	Ocular	5	64	5	83
	Musculoskeletal	3	16	5	0
	Metabolic	4	50	3	43
	Faucal/oral	4	41	3	38
	Urinary	3	61	3	14
	Respiratory	1	45	5	32
	Infection	0.4	100	6	68
	Nasal	1	27	2	33
	Application site reaction	1	100	3	81
The Journal of Toxicological Sciences (J. Toxicol. Sci.)	Others	3	45	1	80

The Journal of Toxicological Sciences (J. Toxicol. Sci.) Vol.38, No.4, 581-598, 2013

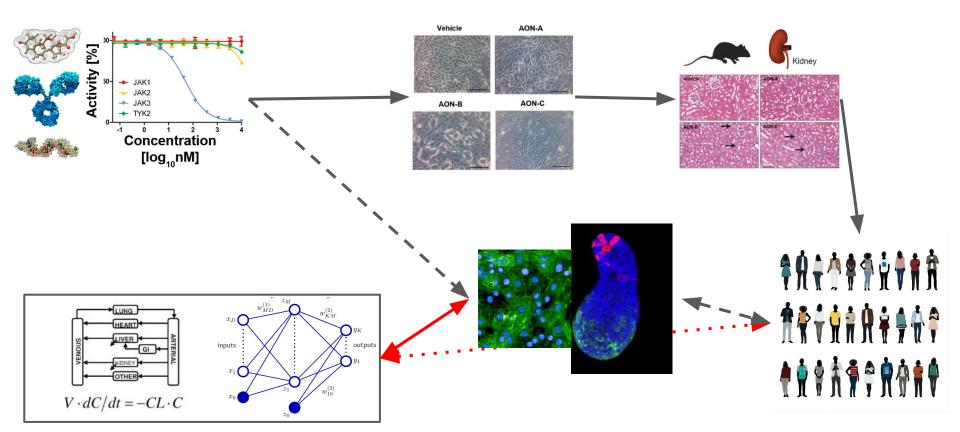
Stem cells and organoids empower efficacy and toxicity assessment



Induced pluripotent stem-cells

Computational methods and novel biological models empower efficacy and toxicity assessment

UNI BASEL



Single-cell biology is important in drug discovery

Disease understanding: disease-specific cell types < and states

Target identification: expression pattern in health and disease across cell types

Biomarker and patient stratification: which genes should we measure in which cell type(s)? MoA and safety modelling: perturbation effect at single-cell level 103

Does it make sense to develop covalent drugs for any target? If not, which targets should be covalently targeted?

Proteomics enables the elucidation of protein relations in the protein communities

