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Where are we now

Target identification & assessment

Goal: we want to select one compound from a few 
(~102-100) for entry in human.



Key factors to consider in selecting compounds

● Potency, efficacy and
pharmacodynamics(PD)

● Pharmacokinetics (PK)
■ Absorption
■ Distribution
■ Metabolism
■ Excretion

● Toxicology
● Biomarkers



Key PK parameters: Vss, CLp, t1/2, tmax, Cmax, and F

Vss Volume of distribution at steady state. Cmax Maximum plasma concentration.

CLp Plasma clearance. tmax Time point in which the Cmax is measured.

t1/2 Half-life, time for a substance to reach the half 
concentration of the initial value (C0).

F% (or F) Bioavailability, the percentage of the administered 
compound reaching systemic circulation.



The Hill function as a a typical PD model
● The Hill function is one of 

the mostly useful 
non-linear functions to 
model biological systems.

● In its general form, Hmax 
indicates the maximal 
value to which the function 
is asymptotic, n is the 
shape parameter (known 
as the Hill’s coefficient), 
and k is the reflection 
point, often abbreviated as 
XC50 (X=I, E, C, …), the 
half-saturation constant.

● The Michaelis-Menten 
model is a special case of 
the Hill function with n=1.

General form of the Hill function

Modelling dose-dependent effect
White. J Clin Invest. 2004;113(8):1084-1092. 
https://doi.org/10.1172/JCI21682.

http://www.jci.org/113/8
https://doi.org/10.1172/JCI21682


Classical workflow of efficacy and toxicity 
assessment

Biochemical & 
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Biological and computational models of human diseases



Computational methods empower efficacy and 
toxicity assessment

Mechanistic, causal, 
and statistical models

High-throughput 
technologies (omics, 
microscopy, etc.)



In vitro→In vivo→Human is not the only way

Pet, Douglas B., Brendan Parent, Neel S. Singhal, and Claire D. Clelland. 2025. “Discovery Research in Physiologically Maintained Deceased.” Science 388 (6746): 
473–76. https://doi.org/10.1126/science.adt3527.

https://doi.org/10.1126/science.adt3527
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Three types of computational models

Mechanistic models Causal modelsStatistical and 
machine-learning models

y = f(x) + ϵ



Correlation is caused by causation, confounding, 
coincidence, or conspiracy

Statistical models alone cannot derive causality from correlation 11



We learn causality by (1) listing models explicitly and (2) 
manipulating a variable and observe the outcomes

Assume that the data is generated by either 
Model 1, or Model 2, or Model 3. And assume 
that we can manipulate the value of X by 
setting it to 1.0 (the dash line).
Question: which outcomes (red stars or 
blue crosses) would support which 
models? Why?

Model 1

Model 2

Model 3
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Causality is crucial for drug discovery

The descendant

?

?

?

?

We need both models (knowledge + assumptions) and data to infer causality.

Biomarker, tox study, pathology, 
omics data, real-world data, …
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Almost too good to be true?

Accurate predictions on 
small data with a tabular 

foundation model



Tabular Prior-data Fitted Network (TabPFN)

Source code at https://github.com/PriorLabs/tabpfn, released in 
a license analogous to Apache 2.0 (commercial use friendly).

https://github.com/PriorLabs/tabpfn


In-Context Learning (ICL)

The model isn’t explicitly trained on a particular task ahead of time. Instead, the prompt itself provides 
examples that enable the model to perform the task on the fly. It is one of the intriguing abilities of deep 
transformer models.

Left: chat history (ChatGPT o1 model, tested on 
18.03.2025). Right: The ground truth.



Tabular Prior-data Fitted Network (TabPFN) is trained 
with synthesized data and predicts missing value in user 
data

A metaphor: Imagine a lab where millions of billiard games are played simultaneously: in 
each game, different numbers of balls are placed randomly, and a white ball starts with a 
random velocity at a random position. By learning the trajectory of all balls of all games, 
one may learn to predict the trajectory of any real billiard game, as long as the positions of 
all balls and the initial velocity of the white ball is known.



Architecture of TabPFN uses both row-wise sample and 
column-wise feature information to predict a distribution



Generating synthesized data with causal models 

1. We sample 100-million structurally unique directed acyclic graphs (DAGs) as causal graphs that generate data.
2. Random data is assigned to the root node. Other nodes are propagated by rules specified by the edges, plus a 

Gaussian noise.
3. The values of sampled features (input to the model) and targets (output of the model) are extracted.
4. Data are post-processed (non-linear distortion, binning, random missing) to reflect real-world data processing.
5. Synthesized data from 10^8 causal experiments are used to train TabPFN.



TabPFN’s prediction on data generated by simple 
functions



Performance benchmark against popular methods

Left: Performance for 
classification (top) and 
regression (bottom) tasks.

Right: Comparing performance of 
TabPFN and CatBoost, the top 
contendant, for classification 
(top) and regression (bottom) 
tasks.

Hollmann, Noah, Samuel Müller, …, Frank Hutter. 
2025. “Accurate Predictions on Small Data with a 
Tabular Foundation Model.” Nature 637 (8045): 
319–26.

Lin: linear; MLP: multi-layer perceptrons; SVM: 
support vector machines; RF: random forest; 
LGBM: Light Gradient Boosting Machine; CB: 
CatBoost; XGB: XGBoost; ROC: receiver operating 
characteristic; RMSE: root mean square error.



Robustness against common caveats and problems



Benchmark against AutoML and CatBoost



Datasets that the authors tested for classification (left) 
and regression (right) tasks



We witness a paradigm shift in analysing 
tabular data: from causal model selection to 
causality-assisted predictionFrom now on: Sample a large number of 

causal models, synthesize data from them, 
and train ML models trained on synthesized 
data for prediction.

Until now: Which model(s) could have 
generated this piece of data? Use them for 
prediction.

The difficulty of asserting causality remains. However, thanks to causal 
models and transformers, we now have better tools for prediction.



End of lecture on 02.05.2025



Many modalities are now available: most of them target 
proteins. Why?

Monoclonal 
antibodies

Antisense 
oligonucleotides

Bispecific 
antibodies

Irreversible 
covalent 
enzyme 
inhibitors

Reversible
small-molecule
enzyme
inhibitors

PROteolysis 
TArgeting 
Chimera 
(PROTAC)

MacroCyclic
Peptides
(MCP)

Small-
molecule 
splicing 
modifier

Left: various publications. Right: Chen, et al., New Drug Modalities 2024, Boston Consulting Group.

Linear
peptides

https://www.bcg.com/publications/2024/new-drug-modalities-report


Protein turnover consists of synthesis and degradation

Illustration by David S. Goodsell. doi: 
10.2210/rcsb_pdb/goodsell-gallery-006

ribosome

proteasome

A diagram of 
gene expression.

Protein 
turnover



Covalent drugs have gained renewed interests

2023

Adapted from Nature Reviews Drug Discovery, 21, 881–898 (2022), courtesy of Wolfgang Haap and Bernd Kuhn
 

Ritlecitinib

Warhead

2024

Lazertinib

https://www.nature.com/articles/s41573-022-00542-z
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Ibrutinib, a first-in-class inhibitor of BTK (Bruton's Tyrosine 
Kinase)

Ibrutinib

Approval AbbVie (2013)

Binding type Irreversible covalent binding

Binding site C481, ATP-binding domain

Warhead Acrylamide

Half-life ~4-6 hours

Indication CLL, MCL, MZL, WM, GVHD, 
BN

Dosage 420 mg, qd (CLL/SLL, WM); 
560 mg, qd (MCL, MZL)

Administration Oral

The ATP-binding pocket:
▪ A highly conserved region within 

the kinase domain.
Cysteine residue (Cys481):
▪ Located adjacent to the 

ATP-binding pocket
▪ Cys481 is a relatively unique 

cysteine, enabling selective 
covalent inhibition.

Nature Reviews Drug Discovery 21, 881–898 (2022). Courtesy of Marcus Bantscheff



Importance of protein turnover

Turnover visualized, repurposing the lilac tracer 
demonstrating Troxler’s effect (Jeremy Hinton, CC-BY 3.0)

https://en.wikipedia.org/wiki/File:Lilac-Chaser.gif


■ Protein turnover affects efficacy, 
potency, ADME properties, and 
safety profiles of drug candidates.

■ Protein turnover is essential for 
target prioritization and modality 
selection, for instance covalent 
binders and/or targeted protein 
degraders.

■ Understanding protein turnover helps 
to translate pharmacokinetic and 
pharmacodynamic (PK/PD) 
relationships between systems.

Protein turnover is critical for drug discovery & development

Assumptions: zero-order synthesis (rate ksyn), 
first-order degradation (rate kdeg), and steady 
state (i.e. no expression changes).

This and following figures, as long as not otherwise indicated, come from Zhang et al. (2025, in revision). Source codes and figures are distributed with GPL-3 license.

https://github.com/Accio/2025-03-protein-turnover-review


Quantifying protein turnover and long-living proteins

L- and D-Asp racemization Radio isotope pulse-labelling Stable isotope with amino 
acids in cell culture (SILAC) 

and mass spectrometry (MS)

Western 
blotting 

following 
cycloheximide

(CHX) 
treatment

Source:  various publications. 



Protein half-life in vitro ranges between hours and days

Data from 
primary human B 
cells (Mathieson 
et al., 2018) Data from primary hippocampal neuronal cells from rat 

(Dörrbaum et al., 2020)

Data from a human non-small cell lung cancer cell line 
(Eden et al., 2011)



Protein half-life in vivo ranges between days and years

Data from Fornasiero et al., 2018, mouse 
brain 

Toyama, Brandon H., and Martin W. Hetzer. “Protein Homeostasis: Live Long, Won’t 
Prosper.” Nature Reviews Molecular Cell Biology, 2013

https://doi.org/10.1038/nrm3496
https://doi.org/10.1038/nrm3496


Half-life varies between proteins and contexts: 
influencing factors and an example

Condition Half-life of 
protein X

Source

Human 
neurons in vitro

38.6h Roche in-house 
data

Mouse neurons 
in vitro

34.1h 
(standard 
error:3.9h)

Fornasiero et al., 
Nature 
Communications, 
2018

Mouse cortex in 
vivo

619.2h, or 
25.8d

Kluever et al., 
Science 
Advances, 2022

https://www.nature.com/articles/s41467-018-06519-0
https://www.science.org/doi/10.1126/sciadv.abn4437


Nothing in Biology Makes Sense Except in the Light of 
Evolution: the purpose and ubiquity of turnover

Left: Gabrielsson, J., and S. Hjorth. 2023. “Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance.” Pharmacological 
Reviews 75 (3): 416–62. https://doi.org/10.1124/pharmrev.121.000524. Right: Reddien, Peter W. 2024. “The Purpose and Ubiquity of Turnover.” Cell 187 (11): 
2657–81. https://doi.org/10.1016/j.cell.2024.04.034. Quote: Theodosius Dobzhansky

https://doi.org/10.1124/pharmrev.121.000524
https://doi.org/10.1016/j.cell.2024.04.034


Open models integrate protein turnover into 
pharmacological modeling
According to open models (see 
the comprehensive review by 
Gabrielsson and Hjorth), target 
turnover impacts in vivo 
potency, efficacy, and 
clearance.

https://doi.org/10.1124/pharmrev.121.000524


Predictions by open models

A. Higher target synthesis rate increases 
efficacy while potency remains unchanged.

B. Higher degradation rate decreases both 
efficacy and potency.

C. Keeping the steady-state abundance fixed, 
increasing both synthesis & degradation 
rates increase both efficacy and potency.

D. Higher ligand-target complex elimination rate 
reduces efficacy while increases potency.

E. Potency of covalent inhibitors is dictated by 
kdeg/kon: slow turnover and fast on-rate are 
preferred.

With open-source code and data used for simulation

https://github.com/Accio/2025-03-protein-turnover-review


Roche’s Protein Turnover Database integrates external 
and internal data

The table shows the protein 
half-life datasets that David curated 
for the turnover database. The 
curation contains following steps:

1. The data were curated from 
individual studies.

2. Features (uniprot IDs, protein 
groups, etc.) were 
harmonized and mapped to 
genes of the respective 
genome as well as to human 
orthologues.

3. Units of measurements were 
harmonized to hours.

4. Sample annotations are 
harmonized.



We observe in general longer half-life in vivo than in 
vitro, with variations between cell/tissue types

Right: density plot of protein 
half-life, stratified by assay 
type (in vitro versus in vivo) 
and by cell type or tissue.

Most in vivo studies tend to 
report longer half-life than 
at least some in vitro 
studies, though 
considerable variability is 
observed in both 
categories.



We curated 31 covalent 
binders which are either 
in clinical development 
or approved, targeting a 
total of 26 human and 7 
viral or bacterial 
proteins.
The table summarizes 
half-life data for 24 
human proteins. 
Turnover data of KRAS 
is visualized with 
boxplots.

A survey of half-life of covalent binder targets



Targets of covalent binders have comparable half-life 
with targets of non-covalent binders, yet short-living 
proteins are less targeted by the covalent approach

The violin plot compares the half-life 
of targets of covalent binders (N=24) 
with the half-life of targets of 
non-covalent molecules for which a 
high potency or functional inhibition 
(pACT>=8, N=788). 
Targets of covalent binders and 
those of non-covalent drugs have in 
general comparable half-lifes. 
However, covalent drug targets are 
devoid of shortest-living proteins.



Protein half-life can be integrated into PK/PD models
Example: target degradation PK/PD model of covalent binding by Andrés Olivares

Modelling and simulation suggests 
that the PD effect of target 
degradation by a covalent binder is 
sensitive to target’s turnover. 
Long-living proteins are more likely to 
become successful targets for 
covalent inhibitors.

Bayer colleagues also reported that 
half-life is a key parameter affecting 
the predictions of mechanistic PD 
models for targeted protein 
degraders.

https://rsconnect-pred.roche.com/covalent-sim/
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.3273


Further points for consideration

1. Open Models and the importance of protein turnover does not only affect covalent 
binders: they are applicable to reversible and irreversible drug-target interactions, as 
well as to all protein targeting modalities including small molecules, large molecules 
(for instance antibodies), and PROTACs.

a. By taking consideration of the dynamics of RNAs, the Open Models can be 
extended to RNA-targeting modalities as well as gene therapies.

2. Protein turnover does not only affect drug’s potency and duration of response  in vivo: 
turnover of enzymes and transporters also affects metabolism and transport.

3. Looking forward, we believe open models, together with experimental data and/or 
predictions based on modeling and simulation and machine learning/generative 
models, can help us rationally select modalities. Many experiments are on-going or 
being planned. We look forward to collaborations.



Conclusions
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● We predict efficacy and safety profiles of drugs by 
studying the mechanism and mode of action (MoA).

● The study of MoA involves building mechanistic, 
statistical, and causal models to predict what drug does 
to the body (pharmacodynamics) and what body does to 
the drug (pharmacokinetics).

● Both biological assays and experiments, and in silico 
methods are essential tools for understanding MoA.
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Supplementary Information



Embryonic origins of 
tissues



An intern project: Cell type annotation
From unsupervised clustering and cluster based annotation
 

56

Luis Wyss
RAAN intern 2019

Advantages: (1) automation, (2) annotation independent from 
clustering, and (3) we can estimate the confidence of prediction

To supervised annotation at single-cell level:



Abundance of immune cells in tumor 
microenvironments affect outcome

TLS: tertiary lymphoid structures; Treg: regulatory T cells; M: macrophages; M1/M2: subtypes of macrophages



An example of Inflammatory Bowel Disease 
(IBD)

We observed Inconsistent cell type nomenclature across studies. 
Machine learning allows us compare and integrate multiple studies. 58



We are living ecosystems



Gut microbiome can metabolize drugs differently



The Tabula Sapiens and other community projects 
offer reference expression data in healthy donors

Left: the Tabula Sapiens. Right: Myeloid 
(Mɸ=macrophages, Mo/monocytes, 
LAM=lipid-associated macrophages, 
DC=dendritic cells) gene expression
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Mass-spectrometry based proteomics



Comparing modalities with regard to safety assessment

Small molecules Single Stranded Oligos Biologics

Molecular weight <1000 D 5000-7000 D > 30000 D

Manufacture Chemical synthesis Chemical synthesis Biologically-derived

Structure Single entity, high purity Single entity with 10-15% 
product-related impurities Complex, heterogeneous

Chemical-driven toxicity Yes Yes No

Metabolism Species-specific
Species-independent 

catabolism by proteolytic 
degradation

Species-independent 
catabolism by proteolytic 

degradation

PK Generally short t1/2 Long (tissue) t1/2 Long t1/2

Some general aspects
High throughput 

screening/early safety testing 
of up to 500 small molecules

Biodistribution with 
consistent patterns

Fewer, yet complex due to 
biology/immunology

Adapted from Schubert et al, Nucl Acid Therap 2012, with input from Yann Tessier and Susanne Mohr



Proteomics plays an important role in in vitro/in 
vivo translation

in vitro in vivo Clinical trial

in silico



● SDS-PAGE: Sodium Dodecyl 
Sulphate-Polyacrylamide Gel 
Electrophoresis

● ESI: Electrospray ionization

● q1/q2: selection/collision/separation 
cells

● MS: Mass spectrometry

● MS/MS: tandem mass spectrometry

Mass-spectrometry based proteomics
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Proteomics approaches for drug discovery
Affinity purification

Proximity labelling

Organelle proteome profiling

Chemoaffinity enrichment

Thermal proteome profiling

Post-translational modification 
(PTM) profiling



Case 1: Differentiate two compounds that inhibit 
Hepatitis B Virus with similar mode of action

67SBA_R01

X-ray data of HAP_R01 
binding to its target,  
HBV capsid



Chemical probes: drug-like molecules to 
probe its mode of action

RO-A
EC50: 0.040 μM
IC50: 0.47 μM

A diazirine group 
as the 
photoreactive 
group



Case 1 solved: Proteomics confirmed target binding 
and mapped the small molecule binding pocket

+Cp150, UV, MS 

Proteolytic digestion/LC-MS/MS identified 
labelling site Y118 (Y=Tyrosine) of HBV capsid 
protein. More photoaffinity probes identified 
labelling sites at R127 (R=Arginine) and Y38.

RO-B
EC50: >1 μM
IC50: >100 μM

RO-A
EC50: 0.040 μM
IC50: 0.47 μM

69
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Case 2: Confirmation of selective degradation of 
protein target in vivo

Crystal 
structure of 
dBET1 binding 
to its target 
BRD4

Docking of 
dBET1-BRD4 to 
DDB1-CRBN 
structure

dBET1



Protein post-translational modifications 
(PTMs) offer an additional layer of regulation

ProteinRNADNA

DNA replication

Transcription

Reverse
transcription

Translation

Splicing &



decryptM (Nature 2023): Following the dose-dependent treatment of cancer cells 
with drugs, quantitative mass spectrometry records dose-response of thousands of 
posttranslationally modified peptides. EC50: half-maximal effective concentration; Ac, 
acetylation; GG, ubiquitinylation; P, phosphorylation.

Case 3: Millions of PTM profiles induced by 
drugs in cancer cell lines



Bortezomib (BTZ) and carfilzomib (CFZ) both treat multiple myeloma by inhibiting the 
proteasome by reversible covalent (BTZ) or irreversible (CFZ) binding to the protease 
PSMB5. Time-series data show both the dynamics and the converging signaling.

PTM and proteomics characterize MoA of drugs



Dose prediction based on pharmacology and 
toxicology before entry into human

in vitro in vivo Clinical trial

in silico



● IND: 
Investigational 
New Drug 
application

● NDA: New Drug 
Application

● GLP: Good Lab 
Practice

● Red boxes: 
Focus areas of 
this and coming 
lectures

Current practices of non-clinical studies in drug development

Biomarker studies

PK/PD studies<



Histopathology

Current practices of profiling and understanding 
toxicology: an example with liver

Omics
Liver structure and anatomy (YouTube Video)

https://www.youtube.com/watch?v=P5_BxsbmXcA


Spatially resolved omics complement histopathology

tissue section  spatial mapping  visualization 

Spatial Omics
Histopathology
• Morphology

Molecular 
Biomarkers
• Genetics, 

Transcriptomics

• Proteomics 

Data insights
• Data analysis    

& integration



An example: 10x VISIUM Technology



Spatial and single-cell expression of liver cells



Spatial and single-cell expression of liver cells



Spatial mRNA and protein expression data empowers 
digital pathology and biological understanding



Cells: basic 
building blocks, 
variable 
morphologies 
and functions

Complexity Increases Through a System

Tissues: groups 
of specialized 
cells that 
communicate 
and collaborate

Organ: group 
of tissues to 
perform 
specific 
functions

Organ 
systems: 
group of 
organs and 
tissues



Four 
major 
tissue 
types





What's in a drop of blood? Ask a doctor or a 
biologist!

~55%

<1%



What's in a drop of blood? Count the genes!

Low
Expression 

High
Expression 

G
en

es

Cells

Sequencing Data
analysis



Cell/nuclei 
suspension

Solid 
tissue

Dissociated 
cells/nuclei

Tissue dissociation

Flow 
cytometry

96-384 cells

Droplet 
microfluidics

1000s of cells
Throughput

Single cell capture and 
transcriptome sequencing

Single
cells

or
nuclei

Next-
Generation 
Sequencing

cDNA Pooled 
cDNA 

libraries

Single-cell sequencing (scSeq) workflow

87



From short reads to gene-cell matrix

QC, filtering & normalization, 
dimensionality reduction, and 
clustering

Downstream analysis

A linearized workflow of scSeq data analysis

88
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Overview of the computational workflow

Andrews et al. Nature Protocols 2021

https://doi.org/10.1038/s41596-020-00409-w


Single-cell biology benefits both disease 
understanding and drug discovery

N
r. 

of
 tr

an
sc

rip
ts
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Data loading Preprocessing Clustering Visualization Analysis

From FAIR format Quality Control
Filtering, 

Normalization

Dimensionality 
reduction

Cell type 
characterisation

An automatized standard workflow

Clustering

UMAP

BESCA: An open-source Python package for 
single-cell gene expression analysis

91



How to represent voxels with pixels?

The elephant bull Tusker (1992-2023) at Zolli Basel plays with a tree trunk on a post (2022)

http://www.youtube.com/watch?v=b-c3DNswVog


Uniform Manifold Approximation and 
Projection (UMAP) for dimension reduction

93UMAP by Leland McInnes on SciPy 2018 (YouTube)
Understanding UMAP by A. Coenen and A. Pearce 

https://www.youtube.com/watch?v=nq6iPZVUxZU
https://pair-code.github.io/understanding-umap/


The Leiden Algorithm for Community Detection

94



Biological knowledge and visual inspection
 is used to annotate cell types

Heatmap 
of gene X



96

Cell type annotation with machine learning



B cells (Bc)

T cells (Tc)

Myeloids

NK

97

A PBMC example of cell type annotation

● Missing and highly similar cell types cause challenges with increased 
granularity. Essential: reference data quality and knowledge of cell types.

● Broad level cell types, including B cells (Bc), Myeloid (My), NK cells (NK) 
and T cells (Tc), are successfully predicted.



Reference mapping at population scale

● The data platform Chan 
Zuckerberg CELL by 
GENE Discover (CZ 
CELLxGENE) provides 
data of 85 million cells as 
of April 2024 to be 
explored online.

● Much research and 
development now devotes 
to mapping data from 
different labs to reference 
datasets in order to 
annotate cells and 
samples in a 
(semi-)automated fashion

https://cellxgene.cziscience.com/
https://cellxgene.cziscience.com/


Computational methods empower efficacy and 
toxicity assessment

Mechanistic, causal, 
and statistical models

High-throughput 
technologies (omics, 
microscopy, etc.)



How predictive is animal safety testing for humans?
It depends on modality and therapeutic classes.

Regul Toxicol Pharmacol. 2000;32:56-67

http://www.ncbi.nlm.nih.gov/pubmed/11029269?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum


Stem cells and organoids empower efficacy and 
toxicity assessment

Induced pluripotent stem-cells
Small-intestinal organoids



Computational methods and novel biological 
models empower efficacy and toxicity assessment
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Disease understanding: 
disease-specific cell types 
and states

Single-cell biology is important in drug discovery

Target identification: 
expression pattern in 
health and disease across 
cell types

MoA and safety 
modelling: perturbation 
effect at single-cell level

Biomarker and patient 
stratification: which 
genes should we measure 
in which cell type(s)?



Does it make sense to develop 
covalent drugs for any target?
If not, which targets should be 

covalently targeted?



10
5

Proteomics enables the elucidation of protein 
relations in the protein communities


