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For which patients shall
the drug work, and how?

Mathematical and Computational Biology in Drug Discovery (MCBDD)
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From drug discovery to drug development 3

Target identification & assessment
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Outline of Module V K

e Lecture 11
o Biomarker for dose prediction
o Biomarker for patient-stratification and biology understanding: Merck/Genentech
o Challenges and caveats

e Lecture 12
o Integrating statistical and mechanistic modelling: Griffiths et al.

o Mechanistic modelling of biological systems: from Boolean network to Agent-based modelling
o Causal inference



Phases of clinical trials

Phase 0

e Aim: Getting PK/PD

data to verify the
drug behaves as
expected.

Dose: Microdosing,
e.g. 1% of predicted
dose.

Subjects: <15
healthy subjects

e Time: A few weeks

Investigational New Drug
V¥V (IND) application

Phase |

Finding safe dose
ranges and optimal

dosing regimens with

further PK/PD data.
Sub-therapeutic
single and multiple
ascending doses
20-100 healthy
subjects (patients)
A few months

~70%

Phase Il

e Assessing efficacy

and safety profiles
of the drug, and
determining the
dosing regimen.
Therapeutic dose
Usually 100-300
patients with a
specific disease

A year or longer

New Drug Application (NDA) v

~50%

Phase lll ~60%

Comparing efficacy,
effectiveness, and
safety profiles with
the standard-of-care
treatment option.
Therapeutic dose
Usually 300-3000
patients

Usually several years



The chain of translation 2

* Efficacy: potential of a

\ Y 4 drug, tested under ideal
. i t .
Pharmacodynamics s
A8 v J Effectiveness:dclinigal
benefits, tested under
Efficacy and effectiveness® real-world settings.



A refresher of PK/PD Modelling
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An example of a two-compartment PK model 4

Ka Vmax/Km
Gut Central

VC
Q Q

Peripheral

VP

Ordinary Differential Equation (ODE) based
model of in vivo PK, assuming two
compartments (central and peripheral), and
the Michaelis-Menten model of drug
elimination.

e VC (20) Central volume (volume)

* Q (2) Inter-compartmental
clearance (volume/time)

* VP (10) Peripheral volume of
distribution (volume)

* Ka (Ka, 0.5) Absorption rate
constant (1/time)

* Vmax (1) Maximum velocity of
elimination (mass/time)

* Km (3) Michaelis constant for
elimination (mass/volume)

Values of the parameters derive from in vitro
assays (for instance Vmax and Km), previous
in vivo studies, or predictions (for instance with
machine learning).
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Concentration in plasma (CP) and peripheral (CT) versus time
Two-compartment PK model
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Translational PK/PD Modelling Y Single Multiple s,

dose doses

AControl @ Sampling

Acute efficacy model

' Time

Samples from blood and
tissues or organs organ
can be analysed for . 2
pharmacokinetics, A [
pharmacodynamics, and Chronic PK/PD model

dosg-expgsure-response VVVVVVY 1
relationships. I i A@A NN AIA L >
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Physiologically-based pharmacokinetic modelling -
(PBPK) is a natural extension of PK modelllng
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Empirical, stratified, and individualized medicine e

-

Empirical Stratified Individualized
medicine Medicine medicine

e Vaccines e \emurafenib o CAR-T therapy
e Non-steroid (Zelboraf)

anti-inflammatory e Trastuzumab
drugs (NSAIDs) (Herceptin)

11
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Why stratified medicines are becoming popular? i
100,000 <
Blockbusters
| 0 Lipitor
10,000 — (14,810; 871)
g $1 billion e prex
§ sales per year (a0 2100) Niche busters
j g 1,000 —
1% likely responder 2
2 Gleevec
*g 100 —
5 Orphans
g Cerezyme
g 10 — (4.5; 207)
P
! T \ I T ad
10 100 1,000 10,000 100,000 1,000,000

Price per year per patient (USS)

Medical reasons Commercial reasons



Lecture on 16.05.2025 ends here



The chain of translation 2

* Efficacy: potential of a

\ Y 4 drug, tested under ideal
. i t .
Pharmacodynamics s
A8 v J Effectiveness:dclinigal
benefits, tested under
Efficacy and effectiveness® real-world settings.
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Empirical, stratified, and individualized 2

medicine in the clinical context

Stratified
medicine

Patient presentation

1
1 Clinical history an

Differential diagnosis

A

Confirmed diagnosis

Targeted therapy

________________________

d exam

—_—

l Testing for treatment response

Empirical Stratified Individualized
medicine Medicine medicine
e Vaccines e Vemurafenib e CAR-T therapy
o Non-steroid (Zelboraf)

anti-inflammatory e Trastuzumab

drugs (NSAIDs) (Herceptin)

| Diagnostic testing and procedures

Empirical medicines

Therapeutic customization and production
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Biomarkers Electro- Imaging .,
physiological
A objectively measured and s <\
evaluated characteristicas ;|
an indicator of (1) normal .
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Applications of biomarkers

1.

Compound optimization and
differentiation from competitors in
preclinical study

Human-dose prediction in
translational PK/PD modelling

Patient stratification in clinical
studies

Find the 1% responders




Target Occupancy and Engagement g

Target occupancy is the percentage of the <><<>> <><<>>
protein target occupied by drugs. @( o @(
Target occupancy affects target engagement, O ® Q<<>>

which describes the process a drug interacts

with its intended protein target in a living system
to induce downstream effects. An occupied
target is not necessarily engaged: the mode of
binding and the physiological context matters.

The mode of binding and the downstream effects
are known as the Mechanism of Action (MoA) of
the drug.

Target occupancy of 83% and 50%,
respectively



Target
occupancy and
engagement
profiling in vivo

ABPP: Activity-based
protein profiling; PET:
positron-emission
tomography.

Both ABPP reagent and
radiotracer binds to the
same protein target.

b

Probe or
vehicle control

Probe or
vehicle control

Probe or
vehicle control

In vivo application of PET radiotracer

PET radiotracer

@@_}

Ex vivo application of ABPP reagent

Harvest tissue
and homogenize

—>/

@
Covalent ABPP
reagent w

! No target engagement

Target engaged

In vivo application of ABPP reagent

Clickable ABPP
reagent

=

»

Harvest tissue
and homogenize

No target engagement

Target engaged

) ﬁ ’ No target engagemen

e
e

Target engaged



Target occupancy as a biomarker links
pharmacokinetics and pharmacodynamics 4

PD
modelling

PK
modelling

Plasma concentration

1004
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¥ Expt. 100 mg/kg =====- 100 mg/kg Predicted by Eq. 3
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0 24 48 72
Time (h)



Target
occupancy
and
engagement
profiling in
human

b

Probe or
vehicle control

Probe or
vehicle control

In vivo application of PET radiotracer

PET radiotracer

Ex vivo application of ABPP reagent

-/ /)

Plasma, PBMCs
or tissue biopsies

Covalent ABPP
reagent

No target engagement

e
‘@o

Target engaged

No target engagement

Target engaged



Use of translational biomarker R
Animal mod?I PK ( | PD (
.~ Dose | - Exposure | . Response ]
Translational biomarker
(e.g. Target occupancy in PBMC and in tumour)
. ﬁ==::::::::: _____ Tl
{ Predicted J Required Required
dose Exposure Response

22
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Once in human, what does the drug do?

23



Complexity Increases Through a System

Cells: basic

Epithelial ~ Epidermis: Skin: Integumentary System
Tissue Organ (Hair, Skin, Nails):

Organ System

Tissues: groups Organ: group

building blocks, of specialized of tissues to

variable
morphologies
and functions

cells that perform
communicate specific
and collaborate functions

Organ
systems:
group of
organs and
tissues



Organization of the Body
— —

Integumentary
System

Epithelial Cell

Nervous tissue

Osteocyte Brain
s Spinal cord !
Nerves Muscle tissue

Cardiac muscle
Smooth muscle
Skeletal muscle

Epithelial tissue
Lining of Gl tract organs
and other hollow organs
Skin surface (epidermis)

"I“ | Respiratory

/ lyy System

Nervous Tissue

Four

Connective tissue

- Fat and other soft
sm(l::m padding tissue
major
Cell) Tendon

Stomach

(Stomach

tissue
Ol F types
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bronchial endothelial
cells 0.5%

vascular endothelial
cells 2.1%

respiratory
interstitial cells 0.5%




What's in a drop of blood? Ask a doctor or a

biologist!

Plasma:
- Water, proteins,
nutrients, hormones,

etc. ~BKY,

Buffy coat: —I: l
- White blood cells,

platelets  «qoz

Hematocrit:
- Red blood cells

Normal Blood:
Q@ 37%—47% hematocrit
Q" 42%—52% hematocrit

Stem cell

e

Common myéi&d progemtor

. l .

/r ; .;;H '
' (
o 09 Erythrocyte Myeloblast

Common lymphoid progenitor

-

Megakaryocyte

Monocyte Neutrophil Eosinophil Basophnl

H—x

Macrophage  Dendritic cell
Innate immune
response

¢

Platelets

.

Adaptive immune
response
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What's in a drop of blood? Count the genes!

X

Sequencing

| Data celltype
analysis :E-[;:jl'll'-ce”

e CD8 T-cell

e DC

o NK cell

e monocyte CD14+

e monocyte CD16+
naive CD4 T-cell

® naive CD8 T-cell
pDC
unknown

Genes

UMAP2

Cells

UMAP1

Low High
B __SEF

Expressmn



Single-cell sequencing (scSeq) workflow

Tissue dissociation

Single cell capture and
transcriptome sequencing

ot R

Solid Dissociated gy
tissue cells/nuclei cytometryc::)r'
| 96-384 celis g
Cell/nuclei F ‘j‘ — orﬂ -JL/ -,CE;,_
suspension - Droplet

microfluidics v~
1000s of cells

- @>CED >=== —’J__

Single cDNA Pooled Next-

cells CDNA  Generation
or libraries Sequencing
nuclei

29



@ Preprocessing and visualization b Identifying cellular structure

‘ | x|~
Souritmetix Clustering Reference mapping \/l\/|\/
m m, genes NN
Overview of the 5 e ZXN
S 150 0 cell UNI
BASEL

computationa 1PN

Quality control

600 S 154 Cluster annotation Trajectory inference
10 €
400 2107 — Ambient RNA correction £
g |1 ) vy
200 E 5 Ambient Sp #5¢
3 d> 5
o .| MRNA —“m, o2l
g oL . sls
Total counts S s2 3 . Ny
Normalization
Miere 9ENES
2 0 05 2
3
e e Doublet detection C Revealing mechanisms
} 07 0 0 - Differential expression Gene set enrichment
o .
Doublet 2
| % 3 3 g
g 3 5 H a
g L & s ]
Feature selection T 5 -
“—Highly informative -
* genes log, FC A B A B ® -
s Gene ratio
2] Low-quality cell filtering
3
4
2 ° Cell-type composition Perturbation modelling

Dying —* A -- - /_‘ e 09
Mean expression cell o 0]

-l I
| 2 o
cHiN N
Integration
Ba(ci‘\ Batch 2 Empty —
droplet
. Cell-cell communication Gene regulatory networks
Gene

»

Heumos et al., Nature Reviews Genetics, 2023
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https://www.nature.com/articles/s41576-023-00586-w

How to represent voxels with pixels?

The elephant bull Tusker (1992-2023) at Zolli Basel plays with a tree trunk on a post (2022)


http://www.youtube.com/watch?v=b-c3DNswVog

Uniform Manifold Approximation and
Projection (UMAP) for dimension reduc

Original 3D Data 2D UMAP Projection

tion

UMAP2

Understanding UMAP by A. Coenen and A. Pearce
UMAP by Leland Mclnnes on SciPy 2018 (YouTube)

UMAP1

32


https://www.youtube.com/watch?v=nq6iPZVUxZU
https://pair-code.github.io/understanding-umap/

AV
FON0N
Single-cell biology benefits both disease e
understanding and drug discovery
Bulk analysis Single cell transcriptome analysis

Nr. of transcripts

Component 2

T T T T T T

Rare subtype

| | | | | | N
Component 1 33




Phase 1b study of Selnoflast in UC

INFLAMMATORY BOWEL DISEASE (IBD)

Crohn's disease

\ Ulcerative colitis /

Enrolled
N=19

I

!

hd

Placebo RO7486967 450 mg
N=6 N=13
Completed Study Completed Study
N=6 N=13
o
B
3 E o
. ™
C S
85 Q-
Es
85 o
S O ™
e ¢
£ g 3
8 ok -
0 25 50 75 100 125 150
IC90 Time (h)

Klughammer, B. et al. Arandomized, double-blind phase 1b study evaluating the safety, tolerability, pharmacokinetics and pharmacodynamics of the NLRP3 inhibitor
selnoflast in patients with moderate to severe active ulcerative colitis. Clinical and Translational Medicine 13, e1471 (2023). IC90 was calculated from in vitro studies 34

(2.0 ug/mL or 1.94 ug/qg).
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Biological assay and omics readout as biomarkers .

[0 mean selnoflast

” B vk et O mean placebo O C-Reactive Protein (mg/L)
Q & 8 placebo -0 o IL-1B (pg/mL) TruCulture LPS
c
g - P Plasma IL-18 (pg/mL)
gj" . T 5 : T
$ ‘2 — == Tissue Neutrophils (cells/mm?)
Lo ©-
@™ —={= - Tissue IL-1 Gene Signature
i) o
b . i
T : : | : : . L Fecal Calprotectin (ug/g)
0 1 2 3 4 5 I N TR P T
Time (d) 10 -8 6 4 -2 0 2 4 6 8 10
Log2 fold change (D7/D1)

Selnoflast is a specific antagonist of NLRP3, a protein component of the
inflammasome. Activation of inflammasome induces interleukin 1 beta (IL-1b),
which in turn induces expression of downstream genes (IL-1b gene signatures).



Single-cell RNA-seq revealed that selnoflast failed
to induce the changes that we had hoped for

(A)

UMAP 2

Brush

MatureEmasmm"’cyteEnterocytePc
GobleP4Tcell
Fibroblast
Pén{lﬂgMonocyte

@ NeuralAndSchwann

Enterocyte 2 i & ProlifE_ndotheliaI
PgrBERAsSIL - lgGPlasma o
ProlifBcell ) ) dothe
Macrophage P
£ B“feulemscell &ZWPST&II
A /- DN{setbaTcell
SR
Rechrje_ll

UMAP 1

(B) B-Cells Cytotoxic CD8* Inflammatory Memory
T-Cells Monocytes B-Cells
9 15
Q ?
O 10 [ g |
0 o o 9 . | placebo
O |
g S
9 ,__‘l.a = :;:,:;—;—;—;—75; — === |
B e — : S
g 15
z
= 10
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~ 5
D e é- e
0
DO D7 DO D7 DO D7 DO D7
Time

Selnoflast was safe and well-tolerated. Selnoflast 450 mg once a
day achieved plasma and tissue exposure predicted to maintain
IL-1B IC90 over the dosing interval. However, PD biomarker results
showed no robust differences between treatment arms, suggesting
no major therapeutic effects are to be expected in UC. 36



Beware of curse of dimensionality when studying
high-dimensional biomarker data

Non-causal statistical
models are useful for
hypothesis generation

and exploratory analysis.

Particular caution is
required for
high-dimensional data,
for extrapolation, and for
designing interventions.

Interpretability
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e 0, 0
,
o f
<5 ol
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[ K-Nearest | = %% =%
|\ Neighbors | P S
R - Random |
. forests |
/,' e’ Featwes Classitir Output label
-— = Q 4
— — KA e
Kernel ‘ :_:‘_»./.,\___7\{?_,_“,(0
|__methods | & B
(" Deep Neural |
L Networks )
Performance
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Simulating the curse of

dimensionality

set.seed(1887)
patient group <- gl(2,10)

response <- c{(rnorm(10, @), rnorm(10, -3))
random features large <- matrix(rnorm(20*50000), nrow=20)
large cor <- cor(response, random features large, method="spearman")

hist(large cor)

largest cor_ind <- which.max(large cor)

{
compactPar()
plot(random features large[, largest cor ind],
response,
bg=patient_group,pch=21,
xlab=sprintf("Random feature [index %d]", largest cor _ind))
abline(lm(response ~ random features largel[, largest cor ind]))
}

Frequency

response
3 2 4

-4

x|~
\/l\/|\/
;C><>42_
Histogram of large_cor /| | N |\
UNI
BASEL
S - .
3
]
&
o
I T T 1
-0.5 0.0 0.5 1.0
T T T
-1 0 1 38

Random feature [index 21360]



Conclusions 4

Biomarkers (1) guide compound optimization and differentiation in preclinical
studies, (2) support human dose prediction in translational PK/PD studies,
and (3) allow patient stratification in clinical trials;

Mathematical and computational biology is indispensable for biomarker
identification;

Beware of curse of dimensionality when using high-dimensional data for
biomarker identification. It is probably beneficial to integrate mechanistic,
statistical, and causal thinking and modeling.
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That was it, MCBDD 2025. THANK YOU! 4

9. Kommentare zur Vorlesung mit Ubungen

" 47. Ich finde an der Vorlesung besonders gut:

W - interesting combination of different scientific fields
- engaged (and entertaining!) lecturer
- biology background knowledge is explained well
- course website makes accessing information easy
- regular emails giving updates and details about the course/exercises

B Always very interesting lecture, independent on the topic of the days lecture.

B Die Vorlesungen ist sehr Praxis orientiert

B Good lecturer

B | enjoy the very concrete connections to the real world and industry use. | also really like how the lecturer mixes in math, biology,
chemistry and informatics into every topic in a very natural way that makes sense

m | especially liked when had David shared new Al/ML tools and how he or his collegues use them in practice

W |t is really practical orientated, it's nothing | would think in my free time about, but very good explained

m Overall, | really enjoy this class. David is one of the best teachers I've had this semester - he’s highly knowledgeable and genuinely
passionate about the subject. The course content is also excellent. It's structured in a logical way that helps connect and reinforce
everything we learn. While some parts are a bit advanced for my current level, I'm still able to follow along and grasp the general idea,
even if | don't understand every detail.

Really engaging, connects all the time with real life scenarios and examples, both historical and current. Gives a great stepping stone
to dive deeper into topics one is interested in. Real projects that were discussed were extremely interesting and excellent to learn
many things from.

B really interesting, and make the compliacted knowledge easy to understand
used clear and engaging examples to simplify complex topics

16.05.2025 evasys-Auswertung Seite 8

N4
>/|\/|\<
NIAl
/XN

B The biology examples are always relevant and make me like biology even more because they're so interesting.

W Vorlesungen sind interessant zuzuhéren und sehr praxis nah.

%2 48. Ich finde, an der Vorlesung kénnte t werden (Erlauterungen. unNgsve ):

® | think it would be great to encourage students who sit in the back to sit closer to the front so we aren't so spread out.

® maybe improving the slides, but that may take time from preparing content, and i would not prefer less quality content over better
slides

B Nothing major comes to mind. However, it would be helpful if some of the technical terms or acronyms on the slides were explained.
That way, students who aren't familiar with them can follow along more easily without needing to look things up during the lecture.

9949, Ich finde an den Ubungen besonders gut:

B - clear expectations
- personally, | enjoyed the coding exercises

u AP

® group works, small exercises on a focussed topic

® Homework assignment covered both practical programming exercises and reading of current papers

m | like that the exercises were very varied and also practical to what | assume | will need later working in the industry

m | really appreciated that we got to do some p g this All the were interesting and engaging. They
provided a great way to revisit and reinforce the concepts we learned in class from a more practical perspective.

m | really like the emphasis on learning rather than on grades. It is inspiring.
B Praxisnshe

® Sind gut auf den Lernstoff abgestimmt

24 50. Ich finde, an den Ubungen kdnnte verbessert werden (Erldutert V ):

" NA
® Nothing to add.

W There can be a mini quiz created after every paper/topic/manuscript given to read. It could be during the class and also discuss the
topics.

40



Outline of lecture 12 K

e An example of integrating statistical and mechanistic modelling: Griffiths et al.

e Mechanistic modelling of biological systems: from Boolean network to
Agent-based modelling

e Causal inference

e \Where can we go from here

41



Drug discovery relies on in vitro, in vivo, and

computational models across scales

Favorable Unfavorable
i./ O pathways pathways
| 2 ™ " =} ™
o £F A =

I - l ] =] =
o .-.1... .. . - l: .. e
qllT. I .. . iz} .- .-

| B ] | | a

d
Cardiomyopathy
models/biopsies

E7 5SS +

Venous blood

Cardiomyopathy-associated pathways
z
| :
3 : J
s s 3 | }
z : 2 ——
Well [ 3 + J T towdosecthon 3
perfused - 3 ] i
b
+ Poorly o - - .
Lperfused | R

Examples of molecular, omics and cellular,
organ and system, and population modelling
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Mechanistic and computational models explain o3

Compartment models

Ty }—
d[LR) -
—— = RilL][R] — ko[ LR] | T ]

s Qi3
Kinetics of ligand-target é. [~ We s
. . g erfused =
interaction :

- grz r—

Transport models

Reaction-Diffusion System

& o o° 2
.... . ® o ... aU - a u S ku
L) .‘_: ® ::I at 1 aX2 ] l |
*® <L Diffusion Binding
% ® e o

Diffusion

Particle models

T 7
o ,.AJ A T e O A e i 04 b
| - B
«
-

Finite state models
e ol ol e Il & |

Kso 43



Integration of knowledge, assumptions and data

Diffusion Binding

d[s—:ﬂ = ki[L][R] — k2[LR)]

L | e
erfused
rfus

Arterial blood

Venous blood

N

KD.3
0.2 Kis
Koa Kz Kp3
—» — —
Go —| & —| G — G
Kio Ko K32
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An example of integrated modelling :

PD1i
Immunotherapy

e (Ciriffiths et al. (PNAS 2020) profiled
peripheral immmune cell abundance in time C
series following treatment of Gastrointestinal Densiy
lependent

(Gl) tumours with immunotherapy in a small  Popuation
growth
clinical trial.

FOLFOX

Chemotherapy
(€)

B cells

' RBC'
4 P Plasma pDC

e The authors used compartment models to
characterize cell-cell interactions and il |
analysed single-cell omics data to reveal e | T T
cD8* % W ~

:

immune cell abundance, pathway activity
patterns, and differentiation status.

W Platelets™ = it
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How this study enriches our knowledge
* Facts

— Clinical response to immune checkpoint inhibitors varies substantially.

— Possible contributing factors correlate only weakly with patient response,
including (1) tumor cell mutational load and antigen production, (2)
immune-cell infiltration and signalling status, (3) Cross-talk between
tumour and immune cells.

— It is challenging to obtain tumour tissue samples.

« Questions: Can circulating immune cells serve as a surrogate
measurement of a tumour’s interaction with the host immune cells
and reflect response to therapy early in the course of treatment?

« Conclusions: It is possible to predict patient response with the
evolution of peripheral immune cell abundance and signalling over
time, as well as how immune cell interact with the tumor.



Design of the clinical trial K
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Mathematical modelling of tumour-immune cell
inte raCtions E Mathematical model flowchart: tumor-immune cell interactions

i) Construct time course of tumor and immune abundance for each patient:

Model inputs (all in time series): \ Tumorburden immune abundance
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4
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Modelling time-series data with Gaussian Process

Challenge: tumor growth = Tumorburden
assessment (RECIST) gi: 8/2/199 S~ ¢ RECIST
. Y ™
involves much labour and g 5 B K evaluations
costly. O %.’ 2w
O © o o=
) : o s, E ©
Solution: assuming that ER-
the data is generated by a _ £ o CET
Gaussian process, and that 2 @ 4 E 5
. e . . 20
cancer-specific antigens is = é o
correlated with the tumor - O ¥ =
growth, we can ‘impute’ the b § E . Day since diagnosis
missing data with other O 2 s o
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Gaussian Process. — 4o



Intuitions about Gaussian Process 4

1. Observe y values as if they are generated from a multivariate Gaussian
distribution with indefinite dimensions, and time-dependent correlations.
2. We can infer the autocorrelation (i.e. kernel function) by data: the more

data, the better we can infer.
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The Lotka-Volterra model of predator-prey
relationships

e The Lotka-Volterra equations modelling predator-prey relationships.

dx

— = ax — Pxy,
dt 2
dy 46
— = —yy + o0xy,
(11_ ) »/ -/

where

e x is the number of prey (e.g. rabbits),

e y is the number of predator (e.g. foxes).

) % and % represent growth rates of the two populations,
@ 7 represents time,

Q

«, 3, v, and 0 are real parameters specifying the interaction of the two species.



The Lotka-Volterra equations, visualized
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N
Modelling of interactions between tumour 2K

and immune cells

Modelling assumptions:

« Tumor cells are attacked by
immune cells

e  Tumor cells recruit immune cells

» Chemotherapy kills both tumour
and immune cells

* Anti-PD1 inhibitor immunotherapy
impacts immune proliferation,
recruitment, and cytotoxic tumor
activity.
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X
Profiles of relative growth rates differ K
between responders and non-responders s
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* Neither tumor nor PBMC responds to chemotherapy in non-responders.
« Responders have lower PBMC abundance in general at baseline.
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Immune cell population identified by scRNAseq ...
PBMCs were analysed A B cells B Neutophils :. -
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at three time points: . Monccytes o f13%
; cDs8* :2 23
1 . CyCIe 1 (C1 ): ' Lo c g CcD4+ - M’Igg §~§
baseline before e w0 3 NK*NKTce"s.L‘ || e 3
= i/ 2 B cells 3
treatment, Dendritic 28 2 Neutrophils ] i
‘] = DC 0 53’
2. CyCIe 3 (C3) 5 e SO § Monocytess 4 §§
"% ot o AT CcD8 s M5
chemotherapy ' I Platelots™ e q
alone: : 7 o2 NK+NKT cells , "8
3 .. = o 8 colls Ml T
3. Cycle 5 (C5):  cells 8335 g2
chemotherapy + e ———F \ = §
anti-PD-1.

A total number of 70781 cells from 13 patients (7 responders and 6 non-responders)
were profiled.



Pathway analysis

Single-sample gene-set enrichment analysis was performed to identify
pathway differences before therapy, during chemotherapy, and during

the early combo of chemotherapy and immunotherapy using a random
effects linear model.

A

CcDsg*
CcD4*
Monocytes
NK cells { |
DCs Chemotherapy
B calla all patients
0 200 400

Immunotherapy
all patients

600 O 200 400 600 O
Number of GSEA pathways

IW«

responders

200

400 600

Examples

[HALLMARK_INTERFERON_GAMMA RESPONSE

HALLMARK_INTERFERON_ALPHA_RESPONSE
HECKER_IFNB1_TARGETS
REACTOME_INTERFERON_ALPHA BETA SIGNALING

_ BROWNE_INTERFERON_RESPONSIVE_GENES
[ ZHANG_INTERFERON_RESPONSE

BILD_HRAS_ONCOGENIC_SIGNATURE

ZWANG_CLASS 3 TRANSIENTLY INDUCED BY _EGF
NAGASHIMA_EGF_SIGNALING_UP
BURTON_ADIPOGENESIS_1
NAGASHIMA_NRG1_SIGNALING_UP

|_RIZ_ERYTHROID_DIFFERENTIATION_12HR



Responders show changes in T-cell
signalling during treatment
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Responders show changes in monocyte
signalling during treatment
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Associations between omics data and

inferred model parameter
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Impact and limitation of the study

* On the biological side, the results suggest that peripheral blood phenotypes
can be used as biomarker of patient responsiveness to therapy. The idea
seems to be confirmed the findings by Wu et al., Peripheral T cell expansion
predicts tumour infiltration and clinical response, Nature 2020.

» On the modelling side, the study integrates machine learning, omics data
analysis, mathematical modelling techniques to link macroscopic findings, for
instance antigen and RECIST scores, with cellular findings, including
scRNAseq and flow cytometry. This study exemplifies what we call multiscale
modelling of drug mechanism and safety.

* We do not know why some patients respond to anti-PD-1 or anti-PDL1
therapies better than other patients based on findings reported in both
papers. Nevertheless, both studies suggest that immune cells in peripheral
blood may be used as biomarkers in certain settings.


https://www.nature.com/articles/s41586-020-2056-8
https://www.nature.com/articles/s41586-020-2056-8

Conclusions KT

e Understanding how drugs work and how to develop
better drugs requires causal reasoning, for which there
are no scientific consensus yet.

e Integrated mechanistic, computational, and statistical
modelling across scales is a viable approach towards
causal reasoning.

e Mathematical and computational biology is
Indispensable to address this grand challenge.
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Ways to learn more about mathematical & X
computational biology in drug discovery

e People around you, both with the same and different backgrounds;

e Reading, including Journal Nature Reviews Drug Discovery, blogs In
the Pipeline, CureFFI, and newsletter This Week in Mathematical
Oncology;

e Online courses: Statistical Rethinking by Richard McElreath, with
freely available lecture videos on YouTube, and Information Theory,
Inference, and Learning Algorithms by David MacKay, with freely
available lecture videos.
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https://www.nature.com/nrd/
https://blogs.sciencemag.org/pipeline/
https://blogs.sciencemag.org/pipeline/
https://www.cureffi.org/
https://thisweekmathonco.substack.com/
https://thisweekmathonco.substack.com/
https://www.youtube.com/watch?v=4WVelCswXo4&list=PLDcUM9US4XdNM4Edgs7weiyIguLSToZRI
https://www.youtube.com/watch?v=4WVelCswXo4&list=PLDcUM9US4XdNM4Edgs7weiyIguLSToZRI
https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6
https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6

FDA'’s opinions on Artificial Intelligence and
Machine Learning in Drug Development

1. Human-led governance, accountability, and

transparency
2. Quality, reliability, and representativeness of data

3. Model development, performance, monitoring, and
validation

BBBBB
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A real-word example with a bispecific antibody
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Exposure-response in animal model and
translatable biomarkers are essential for dose o
prediction

X

TABLE 2
Correlation of responses to dose-related questions (Q) of TmX Guide to dose prediction successes or observation of efficacy in the clinic
Category Q1: desired exposure-response Q2: Translatable Number of drugs for which model-based active

in appropriate animal model? biomarkers? dose prediction is within twofold or clinical efficacy

is observed within predicted dose range out of
total number in category

1 Yes Yes 5/6
27 No No 1/6
3 No Yes 2/2
4° Yes No 0/1
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Tumour mutation burden and immune phenotype

may affect the effect of immunotherapy
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Cristescu et al. established TMB and
T-cell-inflamed Gene Expression Profile (GEP) as

biomarkers

Patients with high
tumor mutation
burden AND a
T-cell-inflamed
gene expression
profile (TME) are
more likely to
respond to cancer
Immunotherapy.

Tumor Mutation Burden (TMB)

B Moderate: Inmune evasion D Strong: Intense cytolytic activity

A Reduced: Lack of immunogenicity | C Moderate: Stromal/endothelial TME

T-cell-inflamed Gene Expression Profile (GEP ) =————————

Non-immunogenic
@ tumor cell (low TMB/
neoantigenicity)

Immunogenic tumor
cell (high TMB/

neoantigenicity)

@ T-cell

% Dendritic cell
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TMB/GEP and responsiveness

GEP: weighted sum of
normalized expression of 18
genes related with immune
response (CCL5, CD27,
CD274 (PD-L1), CD276
(B7-H3), CD8A, CMKLR1,
CXCL9, CXCR6, HLA-DQA1,
HLA-DRB1, HLA-E, IDO1,
LAG3, NKG7, PDCD1LG2
(PDL2), PSMB10, STATT1,
and TIGIT).

HNSCC: head and neck
cancer

T-cell-inflamed GEP Score
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Both TMB and GEP can partially predict

responsiveness
Receiver TMB T=Cell Inflamed GEP
. 100 -
Operating |
Characteristic 80 A
. l
(ROC) curves of £ 60
using either TMB & -
or GEP for binary & “°7
e L TMB GEP
classification. 20 4 Pan-tumor: 0.74 Pan-tumor: 0.782
. 2 HNSCC: 0.617 HNSCC: 0.768
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High TMB and high GEP are associated with higher
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responsiveness to anti-PD1 antibody treatment

From left to right:
three patient cohorts
(pan-cancer;
head-and-neck
cancer; melanoma)
Open red circles: non
responders; Black
dots: responders.
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Data mining in public cancer database TCGA
suggests potential indications
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Meta-analysis (Litchfield et al. 2021) confirms TMB
and T-cell infiltration as predictors of responsivene
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True positive rate

The multivariate classifier improves performance,
but to predict responsiveness is an open question

(other tumor types, Cristescu et al. 2018, n=76)

Testing of TMB versus multivariable CPI stratifier performance in three independent test cohorts (total n=341):

Test cohort 1: KEYNOTE-028 study
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Test cohort 2: University Hospital Essen study

(melanoma, Liu et al. 2019, n=121)

1.0 —

[=}
o
|

2
o)
|

o
~
|

[=}
N
|

2
o
|

p:

0.025*

Multivariate AUC: 0.66
TMB AUC: 0.58

o
[S)

| | I I |
0.2 0.4 0.6 0.8 1.0
False positive rate

Test cohort 3: Samsung MC study
(NSCLC, Shim et al. 2020, n=144)
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Wu et al. characterized T cells in tumour, normal
adjacent tissue (NAT), and blood using single-cell -
RNA and TCR sequencing

Expanded clonotypes (T
cells) found in the tumour
and normal adjacent tissue
can also typically be
detected in peripheral
blood.

Intra-tumoural T cells,
especially in responsive
patients, are replenished
with fresh, non-exhausted
replacement cells from
sites outside the tumour.
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Bonus: Mathematical modelling of epidemiology \

The SIR (S=susceptible, I=infectious, R=removed) model modelling epidemiology (without
viral dynamics, N =5+ 1+ R).

dS 8IS

T e ol ‘ 3

dt N (3)

dI BIS

a- n b (4)

dR "
=1 (5)

= =
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Agent-based modelling of cancer immunotherapy
for colorectal cancer without high TMB

Table 1. Assumptions for the model and references for each assumption

Assumption Ref.

All cells can migrate, proliferate, and die. Trivial

Tumor cells are composed of stem cells and non-stem (14)
cells. Stem cells can divide symmetrically with a fixed [ @ Appears once @ Constant influx ]
probability.

Stem cells can proliferate indefinitely, all other cells die (14)

after a fixed number of proliferation cycles. \ \
All cells can spontaneously enter apoptosis. Own data

Tumor cells can spontaneously enter necrosis. Own data

Tumor cells that are far from the outer margin have a Own data
higher probability of entering necrosis than those cells 1 1 1 l 1 1
closer to the margin. . L. . . .. .

Immune cells are generated through a steady influx into (32), own data Mlgrate Divide Idle Die Mlgrate Divide Idle Die
the domain and proliferation within the domain. max. 10x towards max. 10x

Immune cells move by a "random walk" but have a (31-33), own data if not stem /

tendency to migrate toward tumor cells.

Immune cells can kill adjacent tumor cells whenever they (23)
are close enough. Killing, like other events in the model,
occurs stochastically with a fixed probability and is not Exhausted @
regulated by other factors.

Immune cells can kill five times before they become (23, 34)
exhausted, which means that they cannot kill anymore
but can still proliferate.

Activated immune cells give rise to stroma through a (35, 36)
desmoplastic reaction (stroma reaction). For
simplicity, this behavior is restricted to immune cells
that have successfully killed five times in the model.

By default, cells cannot migrate through stroma, but 37)
stromal permeability can be increased optionally. 82
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Agent-based modelling of cancer immunotherapy
for colorectal cancer without high TMB
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Counterfactual and statistical analysis allow us

learn from the models confirm the learnings
B Kaplan-Meier curves for all groups
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Bradford Hill Criteria for causation

SCOWwooNoGahlkWDd-=

Strength (effect size)

Consistency (reproducibility)

Specificity

Temporality

Biological gradient (dose-response relationship)
Plausibility

Coherence

Experiment

Analogy (similarity)

Reversibility (proposed by others)
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Statistical causal inference with Directed Acyclic
Graphs (DAGSs)

The Fork The Pipe The Collider The Descendant
X

NS e SN N
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Reading: chapter 1-6 of Statistical Rethinking (2nd Edition)
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